10.1071/EN19051_AC

©CSIRO 2020

Environmental Chemistry 2020, 17(3), 240-251

Supplementary Material

Molecular composition and spatial distribution of dissolved organic matter (DOM) in the Pearl River Estuary, China

Chen He,^A Qiong Pan,^A Penghui Li,^B Wei Xie,^C Ding He,^D Chuanlun Zhang^{A,B,E} and Quan Shi^{A,B,E}

^A State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
^B Shenzhen Key Laboratory of Marine Archaea Geo Omics Research, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
^C School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
^D Institute of Environmental and Biogeochemistry (eBig), School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

^ECorresponding authors. Email: zhangcl@sustc.edu.cn; sq@cup.edu.cn

Fig. S1. Negative-ion ESI FT-ICR mass spectrum of the SPE-DOM from site A in Pearl River Estuary.

Fig. S2. Ion relative abundance plots of DBE versus carbon numbers for O_6 , O_8 , O_{10} , N_1O_8 , N_2O_8 , N_3O_8 and O_8S_1 class species assigned from the negative ion mass spectrum of the SPE-DOM form site A.

Fig. S3. van Krevelen diagram of CHO classes for DOM in A, B, C, D and E sites detected by negative-ion ESI FT-ICR MS.

Table S1

Sample А В С D Ε K1 K2 K3 K4 K5 m/z_{wa} 386.9 390.1 401.5 409.2 405.3 396.0 407.2 397.8 399.1 396.2 5156 5422 5518 4710 4344 4233 5376 4984 5439 Num 4612 C_{wa} 19.49 19.45 20.19 19.95 19.89 19.94 19.97 20.07 19.83 19.90 H_{wa} 25.09 24.62 25.93 26.34 26.23 25.23 24.85 25.05 25.02 25.37 Owa 8.13 8.45 8.42 7.57 7.90 7.91 8.52 8.06 8.07 7.86 N_{wa} 0.31 0.30 0.32 0.30 0.30 0.32 0.32 0.29 0.32 0.30 0.10 0.07 0.06 0.06 0.08 S_{wa} 0.07 0.05 0.05 0.08 0.07 70.2% 73.5% 70.6% 73.7% 75.2% 73.2% 73.6% 72.0% 71.7% 72.9% CHO (2211)(2219)(1954)(1878)(1871)(2448)(2207)(2077)(2312)(2357)11.3% 11.3% 13.0% 11.8% 12.2% 12.7% 12.6% 11.5% 15.4% 12.6% CHON (1087)(1081)(1237)(1080)(985) (1157)(1164)(1057)(1208)(1148)5.4% 5.4% 4.5% 6.0% 5.0% 5.4% 5.3% 4.1% 5.5% 6.0% CHON2 (645)(606)(369)(381)(456)(671)(612) (478)(612)(634) 3.1% 2.8% 2.7% 2.8% 2.7% 3.1% 2.8% 2.5% 2.7% 2.8% CHON3 (439)(426)(368)(376)(379)(453)(405)(312)(436)(430)8.9% 6.4% 5.0% 7.4% 6.8% 6.6% 5.6% 4.4% 4.5% 6.7% CHOS (904) (755)(724)(612) (529)(601)(563)(665)(771)(757)1.1% 0.6% 0.6% 0.4% 0.3% 0.5% 0.4% 0.5% 0.8% 0.7% CHONS (232) (83) (112)(135)(124)(79) (99) (89) (166)(162)O/C_{wa} 0.39 0.41 0.41 0.42 0.43 0.40 0.43 0.41 0.41 0.40 H/C_{wa} 1.30 1.31 1.27 1.29 1.26 1.30 1.27 1.23 1.26 1.25 DBE_{wa} 8.10 8.29 8.16 8.16 7.99 8.43 8.80 8.45 8.55 8.41 AI_{mod, wa} 0.27 0.28 0.25 0.24 0.23 0.28 0.29 0.28 0.28 0.28

FT-ICR MS intensity-weighted average (wa) molecular parameters of the DOM in all samples.

Sample	А	В	С	D	Е	K1	K2	K3	K4	K5
Polycyclic aromatics (%)	1.4	1.6	0.7	0.5	0.3	1.4	1.5	1.2	1.4	1.3
Highly aromatics (%)	8.2	8.5	5.9	4.3	3.1	8.2	8.6	8.2	8.4	8.3
Highly unsaturated (%)	71.1	73.7	76.3	80.2	81.9	75.0	78.2	75.4	75.7	73.7
Unsaturated aliphatics (%)	19.2	16.2	17.0	14.9	14.6	15.2	11.6	15.2	14.4	16.4
CRAM(%)	64.3	66.9	67.7	68.9	68.8	68.1	71.2	68.5	69.1	67.3

Num: number of assigned formulae; AI_{mod}: modified aromaticity index; DBE: double bond equivalents; O/C: oxygen to carbon ratio; H/C: hydrogen to carbon ratio; CRAM: carboxylic-rich alicyclic compounds.