Supplementary Material

Surface Chemistry of Bovine Serum Albumin with Hematite Nanoparticles and its Effect on Arsenate Adsorption

A. M. Eid^{‡1}, Shea Kraemer ^{‡1}, and Hind A. Al-Abadleh^{‡*}

[‡]Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada

¹ These authors contributed equally to the work

Journal: Environmental Chemistry

Supplementary Data (11 pages)

Content

S2
S4
S5
S7
S8
S8
S9
S10
S11

adsorbent	Protein	pН	Experimental setup	Model	Findings	Ref
Hematite NP (α-Fe ₂ O ₃) (39, 68 nm size)	Bovine Serum Albumin (BSA)	5.7	ATR-FTIR under flow conditions	Modified kinetic two- state model for protein unfolding and refolding	The rate of BSA adsorption is dependant on three steps: 1-transport of proteins from the bulk solution to the near-surface region 2- adsorption/desorption of proteins onto/ from the surface 3- conformational changes/refolding of adsorbed proteins	(Liu <i>et al.</i> 2019)
Hematite NP (different exposed surface (001)&(104))	βglucosidase	5.7	ATR-FTIR under flow conditions	Kinetic Conc. /Time study: the ratio of concentrations of adsorbed molecules to the initially added	β -glucosidase had stronger interactions with hematite (001) face than hematite (104) face since the former has relatively higher surface density of hydroxyl groups. So, greater conformational change and less amount of β - glucosidase adsorbed on the (104) face.	(Zang <i>et al.</i> 2020)
α-hematite colloids	Humicacid (HA) and Fulvic acid (FA)	Range (7, 9.2, 11)	UV-VIS under batch with centrifugation	Langmuir isotherm	HA adsorbed to a greater extent than FA at the different pH ranges due to higher hydrophobicity than the FA	(Ko <i>et al.</i> 2005)
Hematite NP	human plasma	pH= 3.5-7	IR and Electrophoresis	Adsorption isotherm	Coulomb forces between the protein	(Koutsoukos et al. 1983)

Table S1. Adsorption of different proteins and macromolecules on the surface of hematite and other iron oxides.

$(\alpha - Fe_2O_3)$	albumin	for	under patch		and the hematite	
(20-50 nm	(HPA) and	(HPA)	with		were decisive with	
size)	bovine	and	centrifugation		respect to adsorption	
	pancreas	7-10 for			of RNase, however	
	ribonuclease	(RNase)			for HPA other factors	
	(RNase)				dominated the	
					process such as the	
					conformational	
					changes on surface.	
					This gives an idea on	
					how each protein	
					behaves differently	
					on surface.	
					1-BSA binds in a	
					multi-layered	
					fashion to the	
					surface of the	
					particles	
	BSA			Langmuir	2-BSA–BSA	
		7.4	FTIR under	isotherm	interactions are	(Rahdar <i>et</i>
Magnetite			batch setup	under pseudo	stronger than	al. 2019)
			I	second order	BSA-magnetite	
				kinetic model	interactions.	
					3- protein corona	
					tormation around	
					magnetite is	
					tavourable, but not	
					strong	

Species	Acid-base equilibria	pKa
Arsenate	$H_3AsO_4 \rightleftharpoons H_2AsO_4 + H^+$	2.20
As (V)	$H_2AsO_4^- \rightleftharpoons HAsO_4^{2-} + H^+$	6.97
	$HAsO_4^{2-} \rightleftharpoons AsO_4^{3-} + H^+$	11.53
Arsenite	$H_3AsO_3 \rightleftharpoons H_2AsO_3^- + H^+$	9.22
As (III)	$H_2AsO_3^- \rightleftharpoons HAsO_3^{2-} + H^+$	12.13
	$HAsO_3^{2-} \rightleftharpoons AsO_3^{3-} + H^+$	13.40

Table S2. Acid dissociation of inorganic arsenate and arsenite (Wang et al. 2016)

Arsenical	Competing macromolec ule	Macro molecule Conc. (ppm)	Surface	Mode of testing	Adsorption model	Binding efficiency of As in presence of macro- molecules	Ref																																
As (V)	BSA Alginate SDBS FA	100	TiO ₂	Batch adsorption on pre-coated TiO ₂ with macromolecul e	Langmuir adsorption isotherm	60% 40% 30% 30% 20%	(Ren <i>et al.</i> 2019)																																
As (V)	НА	50	Goethite	Batch adsorption of HA/FA simultaneousl	CD-MUSIC	10 time increase of As(V) (aq) than in absence of HA.	(Weng et al.																																
	FA		Goeunte	Socurie		y with As (V) on the goethite surface	model	100 time increase of As(V) (aq) than in absence of FA.	2009)																														
	_	_	MGNS		Batch adsorption		$qe = 199 mg kg^{-1}$																																
As (III)	НА	40																																			with two arrangements: 1- As (III)/ As (V)		qe1=197 mg kg^{-1} qe2=194 mg kg^{-1}
	FA	40		added after pre- equilibrati on of	Langenvir	qe1=196 mg kg^{-1} qe2=196 mg kg^{-1}																																	
	_	_		MGNS	MGNS MGNS with macro- molecule solutions 2- MGNS	and	qe = 199 mg kg^{-1}	(Li et al.																															
As (V)	НА																	macro- molecule solutions 2- MGNS	isotherms	qe1=165 mg kg^{-1} qe2=190 mg kg^{-1}	2017)																		
	FA	40		pre- equilibrati on of As (III)/As (V) with macro-		qe1=180 mg kg^{-1} qe2=186 mg kg^{-1})																																	

 Table S3. Adsorption competition between As(III)/As(V) and macomolecules.

		molecule		
		solutions		

* Notes: BSA: Bovine Serum Albumin, SDBS: Sodium Dodecyl Benzene Sulphonate, HA: humic Acid, FA: Fulvic Acid, MGNS: Modified Granular Natural Siderite, CD-Music model: chargedistribution multi-site complexation model. qe: adsorption capacity (loading) at equilibrium in absence of NOM, qe1: adsorption capacity (loading) at equilibrium for arrangment1, qe2: adsorption capacity (loading) at equilibrium for arrangment2.

Atom	Partial	Atom	Partial	Atom	Partial	Atom	Partial
	charge		charge		charge		charge
Fe	0.861	Fe8	-0.119	02	0.021	O10	-0.343
Fe1	-0.605	Fe9	-0.607	03	0.019	011	-0.566
Fe2	-0.123	Fe10	-0.608	04	-0.568	012	0.019
Fe3	-0.120	Fe11	-0.119	05	-0.568	013	-0.350
Fe4	-0.604	Fe12	-0.121	O6	-0.346	O14	-0.566
Fe5	-0.607	Fe13	-0.608	07	0.019	015	0.021
Fe6	-0.121	0	-0.351	08	-0.568	O16	0.021
Fe7	0.864	01	-0.351	09	-0.344	017	-0.564

Table S4. Calculated partial charges for the simulate hematite particle in electron charge as unit charge.

Conformational analysis

Figure S1. Original amide I band of adsorbed BSA $[BSA(aq)] = 10 \text{ mg } \text{L}^{-1}$, the deconvoluted peaks representing the different secondary structure features. The dotted lines representing the cumulative fit peak to the original one with $R^{2}=0.998$

Figure S2. Original amide I band of adsorbed BSA $[BSA(ads)]_0 = 3.7 \times 10^{-5} \text{ mg cm}^{-2}$ on hematite surface and the deconvoluted peaks representing the different secondary structure features. The dotted lines representing the cumulative fit peak to the original one with $R^2 = 0.99986$.

Figure S3. Original amide I band of adsorbed BSA $[BSA(ads)]_0 = 3.4 \times 10^{-5} \text{ mg cm}^{-2}$ on hematite surface and the deconvoluted peaks representing the different secondary structure features. The dotted lines representing the cumulative fit peak to the original one with $R^2 = 0.99988$.

L-RMSD visualization

Figure S4. The superimposed structures of the native energetically minimized hematite (light green colored) with the docked one (red colored) for L-RMSD analysis

References

Ko I, Kim J-Y, Kim K-W (2005) Adsorption properties of soil humic and fulvic acids by hematite. *Chemical Speciation & Bioavailability* **17** (2), 41-48. doi:10.3184/095422905782774928

Koutsoukos P, Norde W, Lyklema J (1983) Protein adsorption on hematite (α -Fe2O3) surfaces. *Journal of colloid and interface science* **95** (2), 385-397. doi:10.1016/0021-9797(83)90198-4

Li F, Guo H, Zhou X, Zhao K, Shen J, Liu F, Wei C (2017) Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS. *Chemosphere* **168**, 777-785. doi:10.1016/j.chemosphere.2016.10.135

Liu F, Li X, Sheng A, Shang J, Wang Z, Liu J (2019) Kinetics and Mechanisms of Protein Adsorption and Conformational Change on Hematite Particles. *Environ Sci Technol* **53** (17), 10157-10165. doi:10.1021/acs.est.9b02651

Rahdar S, Rahdar A, Ahmadi S, Trant JF (2019) Adsorption of bovine serum albumin (BSA) by bare magnetite nanoparticles with surface oxidative impurities that prevent aggregation. *Canadian Journal of Chemistry* **97** (8), 577-583. doi:10.1139/cjc-2019-0008

Ren M, Qu G, Li H, Ning P (2019) Influence of dissolved organic matter components on arsenate adsorption/desorption by TiO2. *J Hazard Mater* **378**, 120780. doi:10.1016/j.jhazmat.2019.120780

Wang Y, Sun L, Han T, Si Y, Wang R (2016) Arsenite and arsenate leaching and retention on iron (hydr) oxide-coated sand column. *Journal of soils and sediments* **16** (2), 486-496. doi:10.1007/s11368-015-1230-3

Weng L, Van Riemsdiik WH, Hiemstra T (2009) Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. *Environ Sci Technol* **43** (19), 7198-204. doi:10.1021/es9000196

Zang Y, Liu F, Li X, Sheng A, Zhai J, Liu J (2020) Adsorption kinetics, conformational change, and enzymatic activity of beta-glucosidase on hematite (alpha-Fe2O3) surfaces. *Colloids Surf B Biointerfaces* **193**, 111115. doi:10.1016/j.colsurfb.2020.111115