BIG DATA ANALYTICS -LESSONS LEARNED FROM GLOBAL E&P OPERATORS

Tremendous untapped potential in your BIG DATA!

SAS FOR DOWNSTREAM PROCESS MANAGEMENT

ANALYTICAL APPROACH

SAMPLE

- Consolidate multiple data sources
- Quality Check
- Cleanse

Explore

- Visualize sensor and fault data
- Collaborate with subject matter experts
- Identify candidate anomalies

MODIFY

- Transform variables
- Filter outliers
- Cluster similar acting groups
- Variable selection

Model

- Identify early fault indicators
 Root cause analysis
- Generate predictive models

□ Decision trees □ Logistic regression □ Neural networks

 Review results with subject matter experts

Assess

- Score new data
- Automate ongoing assessment of prediction accuracy
- Flag model needing tuning
- Alert when operation becomes unstable

AMINE GASTREATMENT CASEProcessing Contactor Overview

AMINE GAS TREATMENT CASE DATA OVERVIEW

• Systems:

- Contactor C-101 (HAW31): 22 sensor variables & 18 calculated variables
- Contactor C-201 (HAW32): 22 sensor variables & 18 calculated variables
- Contactor Feed Flow (HAW22): 1 sensor variable
- Storage tanks (HAW41, 42 & 43): 3 sensor variables (1 per tank)
- Time range:
 - January 1, 2010 to April 12, 2014

DATA OVERVIEW

Location	Tag Name	Tag ID	Тад Туре
	Final Product Concentration	MC_X_AI014H	CONCENTRATION
	Raw Material Feed Flow	MC_X_FIC003A	FLOW
	Flow of Chemical Agent to Machine	MC_X_FIC004	FLOW
	Antifoam Feed Flow A	MC_X_FY106	FLOW
	Antifoam Feed Flow B	MC_X_FY107	FLOW
Machine 1 & Machine 2	Chemical Agent Strength	MC_X_HIC004	CONCENTRATION
	Feed Filter Separator Level	MC_X_LI003	LEVEL
	Antifoam Feed Tank Level A	MC_X_LI106	LEVEL
	Antifoam Feed Tank Level B	MC_X_LI107	LEVEL
	Sensor 21 Level	MC_X_LIC016	LEVEL
	Machine Level	MC_X_LIC020	LEVEL
	Drum Level	MC_X_LIC037A	LEVEL
	Feed Filter Separator Pressure Drop	MC_X_PDI006	DIFF_PRESSURE
	Machine Differential Pressure	MC_X_PDI022	DIFF_PRESSURE
	Pressure Differential Precoat Filter	MC_X_PDI205	DIFF_PRESSURE
	Raw Material Feed Flow Pressure	MC_X_PI023	PRESSURE_VALUE
	Raw Material Feed Flow Temp	MC_X_TI015	ТЕМР
	Machine Lower Tray Temp	MC_X_TI026	ТЕМР
	Machine Upper Tray Temp	MC_X_TI028	ТЕМР
	Secondary Process Temp	MC_X_TIC109	ТЕМР
	Raw Material Feed Temp - Antifoam Temp	MC_X_KPI_Temp	ТЕМР
	Machine KPI	MC_X_KPI	RATIO
	Raw Material Concentration Sub Area 1	SA_1_AI002H	CONCENTRATION
Sub Areas 1 to 4	Storage Tank Sub Area 2 Level	SA_2_LI029	LEVEL
	Storage Tank Sub Area 3 Level	SA_3_LI029	LEVEL
	Storage Tank Sub Area 4 Level	SA_4_LI029	LEVEL

Copyright © 2012, SAS Institute Inc. All rights reserved.

SAMPLE

AMINE GAS TREATMENT CASE CONTACTOR EVENT DATA DEVELOPMENT

- Production Offline
 - Used to identify 'foaming/flooding' periods
 - Defined as PROD_OFFLINE when Feed Gas Flow (HAW31FIC003A) < 100
- Low Amine Pickup Ratio KPI
 - Defined as LOW_AMINE when HAWGT1PickUpRatio <= 0.2
- Excess Amine Pickup Ratio KPI
 - Defined as EXCESS_AMINE when HAWGT1PickUpRatio >= 0.4

GOAL: PROACTIVELY PREDICT PROCESSING FAULTS

Flooding/Foaming Event

Excess Amine Pickup

Low Amine Gas Pickup

Lean Amine to Contactor

AMINE GAS CASE EXPLORE SENSOR DATA AND FAILURE TIMES

Copyright © 2012, SAS Institute Inc. All rights reserved.

EXPLORE

Asset Performance Analytics Pareto Analysis Run Pareto Analysis Created on July 21, 2014 04:18:10 PM

Data Selection: Pareto Analysis of Events [DSHXW6AP6B]

Pareto Analysis

MODIEY

Graphically show associations between sensor variables

Correlation Analysis

MODIE

Purpose:

• Measures strength of a linear relationship between numerical variables

Benefits:

Improves accuracy and performance of predictive models

VARIABLE CLUSTER ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS

Cluster Analysis

Purpose:

- Predicts contactor processing liquid levels
- · Explains variables or combination of variables affecting contactor processing liquid levels

Benefits:

- Analyzes more information generating greater predictive power
- Generates better understanding of relationships between variables

SAS APA ANALYSIS ROOT CAUSE ANALYSIS

Foaming/Flooding Event

Analytical rule	Lift
PDI205_v_gt95p & PDI022_v_gt95p ==> TARGET_EVENT	17.86
PDI205_v_gt95p & PDI006_v_gt95p ==> TARGET_EVENT	16.76
TI028_v_gt95p & PDI205_v_gt95p ==> TARGET_EVENT	15.94
TI028_v_gt95p & FIC004_v_gt95p ==> TARGET_EVENT	15.59
PDI022_v_gt95p & FIC004_v_gt95p ==> TARGET_EVENT	15.52
TI026_v_gt95p & FIC004_v_gt95p ==> TARGET_EVENT	15.45
TI026_v_gt95p & PDI022_v_gt95p ==> TARGET_EVENT	15.12

Purpose:

- · Helps understand why processing fault occurred
- · Identifies variables potentially contributing to fault/failure event

Benefits:

Identifies association rules to predict occurrence of future faults/failures

SAS APA ANALYSIS PREDICTION OF FUTURE PRODUCTION EVENTS USING NEW DATA

Selected Events

Event ID EXCESS_AMINE

LOW_AMINE

PROD_OFFLINE

Copyright © 2012, SAS Institute Inc. All rights reserved.

Assess

CONTACTOR LEVEL STABILITY FORECAST

Copyright © 2012, SAS Institute Inc. All rights reserved.

Assess

SUMMARY OF ANALYTICAL FINDINGS

Proactively predict foaming and flooding events

 Discovered foaming/flooding fault signatures

Predict and monitor processing liquid levels

 Developed prediction models and stability monitoring forecast models

Optimize Amine utilization

 Developed stability model to feed optimization model

- Sensor and fault data can easily be analyzed
- Wide variety of analytical methods available
- Tremendous business value discovering root cause of faults and failure initiating variables

Tremendous untapped potential in your BIG DATA!

THANK YOU

KEVIN.KALISH@SAS.COM

VISIT OUR OIL & GAS SITE FOR FURTHER INFORMATION

Copyright © 2012, SAS Institute Inc. All rights reserved.