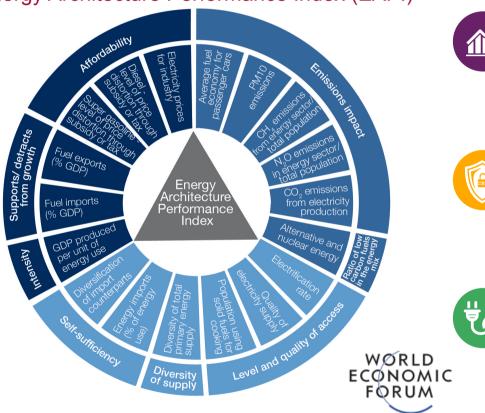



## The history of the energy industry is marked by profound energy transitions

### Through the centuries industrial revolutions have been underpinned by transitions in fuel energy



Source: Vaclav Smil, Energy Transitions: History, Requirements, Prospects, 2010


## We are in the midst of the next transition with multiple disruptive forces at play

| Changing energy map      |
|--------------------------|
| Policy implications      |
| Industry reconfiguration |
| Industrial change        |

| US LNG export         | Decentralised<br>energy systems | New demand centres  | China/Indian<br>demand uncertainty |
|-----------------------|---------------------------------|---------------------|------------------------------------|
| Unconventionals       | Energy efficiency               | Drop in solar costs | Russian Trade<br>Flows             |
| Climate change        | Carbon market                   | Local content       | Stranded assets                    |
| Market consolidation  | Cost focus                      | Market entrants     | Energy investment cycle            |
| Floating LNG economic | Hydrogen economy                | Energy storage      | Industrial Internet of<br>Things   |
| Carbon sequestration  | Digital<br>transformation       |                     |                                    |

### Countries around the world are grappling with the energy trilemma

Energy Architecture Performance Index (EAPI)





#### **Economic Growth & Development**

Extent to which a country's energy architecture adds or detracts from the economy:

- · Energy efficiency
- Electricity prices
- Gasoline prices
- · Cost of energy imports
- Diesel prices
- Value of energy exports



#### **Energy Security**

Extent to which a energy supply is secure, accessible and diversified:


- · TPES diversity
- Electrification
- Import counterparts
- Solid fuel use (cooking)
- Import dependence
- Electricity supply quality

### **Environmental Sustainability**

**Environmental impact of energy supply and consumption:** 

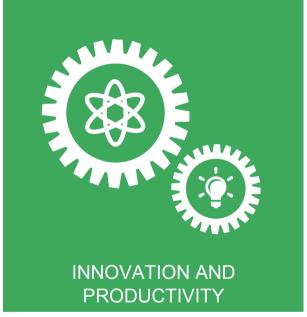
- CO2 emissions
- Air pollution
- NO2 emissions
- Fuel economy
- CH4 emissions
- · Alt. and nuclear energy

# Australia ranks high on Economic Growth & Development and Energy Security but low on environmental sustainability



# Australia scores low in using renewable energy sources and higher emissions compared to other countries

### 2015 EAPI – Key country rankings


|                                                                           | BRAZIL           |      | USA              |      | NORWAY          |       | NEW<br>ZEALAND  | **   | AUSTRALIA        | * *   |
|---------------------------------------------------------------------------|------------------|------|------------------|------|-----------------|-------|-----------------|------|------------------|-------|
| Energy efficiency GDP/unit energy use Higher efficiency = Higher score    | -ģ-              | 8.48 | -Ö:              | 7.62 | -0:             | 11.05 | -\dis           | 7.69 | 游                | 7.28  |
| TPES diversity Herfindahl index Greater diversity = Higher score          | <b>2</b> 93      | 0.18 | 208              | 0.16 | 888             | 0.23  |                 | 0.10 | 88               | 0.21  |
| Alt. and nuclear energy<br>% total<br>Higher percentage =<br>Higher score | 1                | 43%  | +                | 16%  | 1               | 48%   | 1               | 33%  | +                | 6%    |
| CO2 emissions Tonnes/capita Higher emissions = Lower score                | 6                | 63   |                  | 603  | (0)             | 13    |                 | 141  | •                | 823   |
| Import dependence Imports net % use Higher imports = Lower score          | <u>fat-</u>      | 8%   | Ė.               | 16%  | Ė.              | -677% | Ė.I.            | 14%  | Ė.I.             | -136% |
| EAPI RANKING                                                              | 23 <sup>rd</sup> |      | 37 <sup>th</sup> |      | 2 <sup>nd</sup> |       | 4 <sup>th</sup> |      | 38 <sup>th</sup> |       |

Source: The Global Energy Architecture Performance Index Report 2015; World Economic Forum-Accenture

## How does this impact Australia's future energy system?

Three critical areas of opportunity . . .









### **Driving Better Industry Collaboration**

Achieving further industry collaboration and infrastructure sharing is key to improving productivity and managing costs in the oil and gas industry...

**Industry Group –** create a CRINE equivalent for Australia, align existing initiatives around a shared agenda and agree transparent targets

**Infrastructure Sharing –** Optimisation of development and use of infrastructure

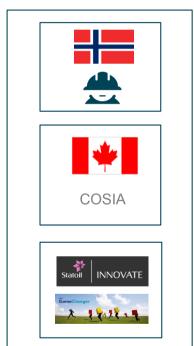
**Innovation and Knowledge Sharing –** a more proactive and progressive sharing mindset to overcome collective cost challenges

**Third Parties –** can be a driver and have a role in creating and managing shared capability and infrastructure





### Accelerate the pace of Innovation to drive Productivity


Australia needs to improve its productivity and global competitiveness to attract capital and be able to develop resources profitably

**Service Provider Partnerships –** 80% of oil and gas technology patents and over 63% of deployed innovations originated with services companies

**Research and Development –** further incentives and credit for developing and applying R&D in the industry and particularly in new basins

**Digital –** Embrace the Internet of Things, Predictive Analytics and Mobility to transform how business is conducted

The process of Innovation – embrace Open Innovation and develop 'incubator' type capabilities to be able to commercialise ideas





### Government – policy, reform and support

With emergence of alternative global supplies the government needs to step up in a couple of areas

Environmental Sustainability – what is the right balance for Environmental Sustainability vs Econ. Growth and Energy Security?

**Labour reform –** improve labour market efficiency

**Tax and Royalty Regime –** maximise the incentive for operators to keep developing, especially in undeveloped areas

Regulatory Regime – simplify and align across Federal, State and Local



### The opportunity is significant – let's make it work.... TOGETHER

All the players involved will need to work together to architect the future of the industry



 Create a CRINE equivalent for Australia, align existing initiatives around a shared agenda and agree transparent targets



- Embrace open innovation and work with partners who can help to accelerate productivity improvement
- Leverage the 'ecosystem of partners' to drive innovation



- Balancing 'Environmental Sustainability' as part of the Energy system
- Maximise incentives for doing business and make it easy to do business in Australia (remove red tape)