Development of a new approach for hydraulic fracturing in tight sand with pre-existing natural fractures

Kunakorn Pokalai

K. Pokalai, D. Kulikowski, R.L. Johnson, Jr., M. Haghighi and D. Cooke Australian School of Petroleum, University of Adelaide APPEA Conference and Exhibition, 5 - 8 June 2016

1

- Introduction
- Theoretical Background
- Case Study
- Diagnostic Fracture Injection Tests (DFIT)
- Developing "Best-fit"1D Stress Profile
- Hydraulic Fracture Simulation
- Fracture Orientation and Well Design
- Conclusions

Introduction

Stress versus depth between Toolachee and Patchawarra formations in Cooper Basin (Reynolds et al, 2006)

- The existence of a complex stress regime where normal, strike-slip and reverse fault regimes exist.
- Complexity in fracture propagation, reducing effective proppant placement and leading to lower gas production.
- Highly complex stress regimes and preexisting natural fractures can manifest near-wellbore pressure loss (NWBPL) and pressure dependent leakoff behaviour during fluid injection

(Johnson and Greenstreet, 2003)

Introduction

Theoretical Background

Theoretical Background

Case Study

The Cooper Basin N-E South Australia

Structural map of the C-Field with a cross-section showing the Patchawarra Formation correlation across wells. 7

Case Study

Borehole breakout and natural fracture analysis

Hydraulic fracturing in Well C7

Well/stage	Depth	Net pay	Permeability	Porosity	Water saturation	
C-7, stage 1	9,533–9,634 ft	70 ft	0.12 mD	11.3%	34%	
C-7, stage 2	9,294–9,351 ft	36 ft	0.06 mD	10.0%	31%	

Diagnostic Fracture Injection Test (DFIT)

BCA results									
Well/stage	Breakdown pressure (P _{wb})	ISIP	Closure pressure (<i>P_c</i>)	Fissure opening pressure (P _{fo})	Leakoff type	Pressure dependent leakoff (PDL) coefficient			
C-7, stage 1	9,962 psi	8,812 psi	7,596 psi	7,822 psi	PDL	0.005			
C-7, stage 2	10,291 psi	8,528 psi	7,406 psi	8,064 psi	PDL and height recession	0.003			

1D "Best-Fit" Stress Profile

- "Best-fit" match between calculated and observed breakdown and closure values from DFIT in Stage 1 and 2
- Effective tectonic strain is 338 microstrains $(\epsilon_{eff} = f(\epsilon_{h-min}, \epsilon_{H-Max}, v)$
- The stress contrast at the boundary between sand and coal are 1200 psi
- The hydraulic fracturing propagation may also experience secondary containment as a result of stress regime or modulus changes

Hydraulic Fracture Simulation

- Delayed borate crosslinked fluid was injected reached a bottom hole pressure of up to 9000 psi.
- 100 mesh sand was injected in order to reduce the NWBPL
- The fracture shows good height containment within the target formation with the average conductivity of 10 md.ft.
- Log-log plot of net pressure was observed the fracture was created in a confined area and the length growth remained within the target zone.
- Production matching was performed at the average gas production rate of 300 Mscf/day over 5 years

Fracture orientation and Well Design

Well Inclined Drilling (Azimuth 138 Degrees with Inclination 60 Degrees)

1.2 psi/ft

Conclusions

- A rigorous process of DFIT interpretation has been proposed, incorporating step down, before closure and after closure analysis methods.
- A "best fit" 1D stress profile has been presented for this case study in the Cooper Basin using the DFIT break down and closure values with image log data.
- The process used the stress profile in a planar 3D fracturing model to pressure historymatch the hydraulic fracturing treatment with corresponding production history match
- A deviated well plan was developed to maximise hydraulic fracture interaction by striking a well perpendicular to the natural fracture orientation and at an inclination favourable for minimising fracture complexity
- In this case study area, the recommendation is for using a deviated and inclined wellbore with an azimuth of 138° and inclination of 60° to maximise natural fracture interaction and minimise opportunities for near-wellbore tortuosity effects
- A similar process could be used for other wells in high-stress strike-slip stress regimes using offset or pilot hole image log and DFIT data.

Acknowledgements

Co-authors

Manouchehr Haghighi David Kulikowski

ii Raymond (Ray) L. Johnson, Jr Dennis Cooke

Thank you

OpenStereo 0.1.2 Carlos H. Grohmann