APPEA 2021

Sediment provenance analysis of the Permian from the Perth Basin using an automated Raman heavy mineral technique

Stuart Munday ^A, Anne Forbes ^A, Brenton Fairey ^B, Juliane Hennig-Breitfeld ^B, Tim Breitfeld ^B, Tim Hicks ^C,

Jordan Sheehan ^D and Bow Kocijan ^D

^A Chemostrat Australia Pty Ltd, 1131 Hay St, West Perth, WA 6005

^B Chemostrat Ltd, 1 Ravenscroft Court, Buttington Cross Enterprise Park, Welshpool SY21 8SL, UK

^c Mitsui E & P Australia Pty Ltd (MEPAU), Exchange Tower, Level 11/2 The Esplanade, Perth, WA 6000

^D Beach Energy, Level 8/80 Flinders St, Adelaide, SA 5000

Objectives

Northern Perth Basin Chronostratigraphy (Permo - Triassic)

Project Background

- Provenance history of North Perth Basin Permian sediments poorly understood
- Abundance of opaque material and variable HM returns made identification and obtaining viable sample numbers problematic

Objectives

- Trial Raman spectroscopy heavy mineral identification
- Integrate with ICP-OES/MS elemental and detrital zircon data to elucidate stratigraphic and spatial changes in Permian reservoirs

Study Area

- Onshore North Perth Basin, Early Permian play fairway
- Northern end of
 Dandaragan Trough
- Surrounded by Archean and Proterozoic terranes
- Underlain by highly segmented Mesoproterozoic basement

(OZ SEEBASE® 2021)

CHEMOSTRAT

In-house Raman Spectroscopy

- A molecule scatters incident light from a high intensity laser light source
- A small amount of light is scattered at different wavelengths to the source – termed Raman Scatter
- Based on chemistry and structure of HM, thus Raman can differentiate:

Solid solutions (e.g., garnet end-members)

Polymorphs (e.g., TiO₂ HMs)

Translucent HMs with similar optical properties (e.g., apatite vs. baryte)

Opaque grains (e.g., chrome spinel, altered rutile)

- Cost and time effective as fully automated (both spectra acquisition and spectra matching)
- Analysis of sands and silts, removes operator bias

CHEMOSTRAT

Raman Results Kingia / High Cliff Sst (South)

 The apatite rich Kingia Sst would suggest a granitoid source with input from ?recycled metamorphics (high rutile)

CHEMOSTRAT

Xenotime

Cr Spinel

Zircon

Raman Results Kingia / High Cliff Sst (North)

Depot Hill-1 Depth MD (m) Lithostrat Package GR Non Opaque HM % 100 -2500 1700 High -1800-1850 루 1900

- Dominated by garnet
- Subordinate apatite and ultrastable HMs (ZTR)
- The garnet-rich nature would suggest metamorphic source

100

Early Permian

Amphibole

Andalusite

Cr-spine

Epidote

Titanite

Pyroxene

Tourmaline

Xenotime

- Clear distinction in dominant provenance between south and north/northeast wells in Kingia & High Cliff Ssts
- Garnet-rich source active over all of the study area during early deposition • of Irwin River Coal Measures

Late Permian Heavy Mineral Synthesis

- Evolving Wagina Sst low mod high garnet content, abundant monazite (and xenotime) rare earth phosphates
- Increasing zircon content in upper Wagina Sst
- Senecio-3 (Dongara Sst) rutile dominated

Perth Basin Detrital Zircon All Published Data

- All published detrital zircon data (Olierook, 2019)
- Indicates contribution ultimately sourced from multiple Archean – Early Proterozoic terranes that surround and underly N Perth Basin
- Early Permian 'rift axis' sediments not represented

Waitsia-1 Detrital Zircon Analysis

Kingia-High Cliff Sst

- Early Paleozoic population
- Mixed Late Meso-Early Neoproterozoic
- Minor Archean component only
- More scatter in the High Cliff Sst

Irwin River Coal Measures

 Shift to Late Neoproterozoic dominant population at the top → coinciding with the significant increase in garnet

Perth Basin Basement

PINJARRA BASEMENT

Isotopically consistent ortho /paragneiss basement. Detrital zircon data indicates Albany-Fraser inherited grains, eg Northampton Complex:

LEEUWIN COMPLEX

Activity resumed at c. 755 Ma with the intrusion of the voluminous granites. Late Neoproterozoic – Early Paleozoic high-grade metamorphic events record late stage amalgamation of Gondwana

Conclusions

- Geochemical evidence for changes in provenance defining top Kingia Sst
- New Raman data successful in demonstrating multiple drainage systems sourcing Kingia-High Cliff Sst reservoirs
- Apatite dominated Kingia Sst to the south but garnet-rich facies in northern study wells that's observed in Waitsia in the Irwin River Coal Measures
- Waitsia-1 detrital zircon data dominated by Mesoproterozoic Paleozoic populations that can be tied back to Pinjarra basement
- Late Permian has minor apatite and garnet, but abundant rutile, zircon and RE phosphates

Ongoing Work

 Part of ongoing multidisciplinary program to refine the sedimentary depositional systems of Late & Early Permian reservoirs

Chemostrat Ltd

1 Ravenscroft Court Buttington Cross Enterprise Park Welshpool Powys SY21 8SL UK

t +44 (0)1938 555 330 UKoffice@chemostrat.com

Chemostrat Inc.

3760 Westchase Drive,

Houston, Texas,

TX 77042 USA

Chemostrat Australia Pty Ltd

t 832 252 7200 USAoffice@chemostrat.com 1131 Hay Street West Perth, WA6005 Australia

t +61 (0) 468 585 057 AUoffice@chemostrat.com

Chemostrat Canada Ltd

102, 902 – 9 Avenue SE Calgary, Alberta, T2G 0S4 Canada

t 403 463 8188 CAoffice@chemostrat.com

www.chemostrat.com

Chemostrat – part of the Hafren Scientific Group