Supplementary Material

A quantitative method for evaluating ecological risks associated with long-term degradation of deep-sea plastic-containing infrastructure

Alexander N. Testoff^{A,*}, Nicholas A. Nelson^A and Joseph P. Nicolette^A

AMontrose Environmental Solutions, Sandy Springs, GA 30350, USA

^{*}Correspondence to: Email: atestoff@montrose-env.com

Supporting Information. Degradation Rate Model Derivation

Plastic mass remaining at time t based on integration and rearrangement of differential equation.

$$-\frac{dm}{dt} = k_d \left(\frac{m}{V}\right) S_A$$

$$-\frac{dm}{dt} = k_d m \left(\frac{2r_2}{r_2^2 - r_1^2}\right)$$

$$-\frac{dm}{dt} = k_d m \left[\frac{2\left\{ (\frac{m}{\rho \pi l} + r_1^2)^{1/2} \right\}}{\left(\frac{m}{\rho \pi l} + r_1^2 \right) - r_1^2} \right]$$

Cross Section

Surface Area: Volume Ratio

$$\frac{S_A}{V} = \frac{2\pi r_2 l}{\pi l \left(r_2^2 - r_1^2\right)} = \frac{2r_2}{\left(r_2^2 - r_1^2\right)}$$

*Note: Degradation examined along some length (I) of flowline exposed to environment, not at the ends of the flowline. *

r₂ in Terms of Mass:

$$V = \pi l (r_2^2 - r_1^2)$$

$$\frac{m}{\rho} = \pi l (r_2^2 - r_1^2)$$

$$r_2^2 = \frac{m}{\rho \pi l} + r_1^2 \rightarrow r_2 = (\frac{m}{\rho \pi l} + r_1^2)^{1/2}$$

$$-\frac{dm}{dt} = 2k_d\rho\pi l\left(\frac{m}{\rho\pi l} + r_1^2\right)^{1/2}$$

$$\int -\left(\frac{m}{\rho\pi l} + r_1^2\right)^{-\frac{1}{2}} dm = \int 2k_d \rho\pi l \ dt$$

$$-\int_{m_i}^{m_t} \left(\frac{m}{\rho \pi l} + r_1^2\right)^{-\frac{1}{2}} dm = \int_0^t 2k_d \rho \pi l \ dt$$

(U-substitution, see calculation on right)

$$-2 \rho \pi l \left\{ \left(\frac{m_t}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} - \left(\frac{m_i}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} \right\} = (2k_d \rho \pi l) t$$
(cont. next page)

$$\left(\frac{m_t}{\rho \pi l} + r_1^2\right)^{\frac{1}{2}} - \left(\frac{m_i}{\rho \pi l} + r_1^2\right)^{\frac{1}{2}} = -k_d t$$

U-Substitution

$$u = \frac{m}{\rho \pi l} + C; \frac{du}{dm} = \frac{1}{\rho \pi l} \rightarrow dm = \rho \pi l du$$
$$-\int \left(\frac{m}{\rho \pi l} + r_1^2\right)^{-\frac{1}{2}} dm$$
$$-\rho \pi l \int (u)^{-\frac{1}{2}} du = -2\rho \pi l u^{\frac{1}{2}} =$$
$$-2\rho \pi l \left(\frac{m}{\rho \pi l} + r_1^2\right)^{1/2}$$

$\left(\frac{m_t}{\rho \pi l} + r_1^2\right)^{\frac{1}{2}} = \left(\frac{m_i}{\rho \pi l} + r_1^2\right)^{\frac{1}{2}} - k_d t$	
$\left(\frac{m_t}{\rho\pi l} + r_1^2\right) = \left\{\left(\frac{m_i}{\rho\pi l} + r_1^2\right)^{\frac{1}{2}} - k_d t\right\}^2$	
$\frac{m_t}{\rho \pi l} = \left\{ \left(\frac{m_i}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} - k_d t \right\}^2 - r_1^2$	
$m_t = ho \pi l \left[\left\{ \left(rac{m_i}{ ho \pi l} + r_1^2 ight)^{rac{1}{2}} - k_d t ight\}^2 - r_1^2 ight]$	
Time for complete degradation (t _d) of plastic.	
$m_t = \rho \pi l \left[\left\{ \left(\frac{m_i}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} - k_d t \right\}^2 - r_1^2 \right]$	$m_t = 0 \ at \ t_d$
$0 = \rho \pi l \left[\left\{ \left(\frac{m_i}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} - k_d t_d \right\}^2 - r_1^2 \right]$	
$0 = \left\{ \left(\frac{m_i}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} - k_d t_d \right\}^2 - r_1^2$	
$r_1^2 = \left\{ \left(\frac{m_i}{\rho \pi l} + r_1^2 \right)^{\frac{1}{2}} - k_d t_d \right\}^2$	
$r_1 = \left(\frac{m_i}{\rho \pi l} + r_1^2\right)^{\frac{1}{2}} - k_d t_d$	
$k_d t_d = \left(\frac{m_i}{\rho \pi l} + r_1^2\right)^{\frac{1}{2}} - r_1$	
$t_d = rac{1}{k_d} \left\{ \left(rac{m_i}{ ho \pi l} + r_1^2 ight)^{rac{1}{2}} - r_1 ight\}$	