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East Coast Lows (ECLs) are important weather systems that affect the eastern 

seaboard of Australia. They have attracted research interest for both their 

destructive nature and water supplying capability. In this paper, three objective 

ECL tracking methods are applied to the twentieth century reanalysis ensemble 

(20CR V2C) for the period of 1851–2014 to identify historical trends and 

variability in ECLs. While the ensemble mean is unsuitable for tracking ECLs, 

when all methods are applied to the full 56-member ensemble there is large 

agreement between tracking methods as to the low-frequency variability and 

trends in ECLs. The uncertainty between 56 ensemble members has dramatically 

decreased in recent decades. For comparison, the three tracking methods are also 

applied to ERA-I reanalysis dataset for the overlapping time period (1980-2009). 

The inter-annual variability and monthly distribution of ECLs agrees well 

between different reanalysis for each of tracking methods. The most recent decade 

has had relatively low numbers of ECLs compared to the previous century. 

 

1  Introduction 

East Coast Lows (ECLs) are intense low-pressure systems that occur several times each year off the eastern coast of 

Australia, in particular, southern Queensland, New South Wales (NSW), and in eastern Victoria (Hopkins and Holland 

1997). ECLs are most common in winter (June-August) with a maximum frequency in June, although they can occur in any 

season.  ECLs are one of the main influences on rainfall variability and severe weather in this region (e.g. Dowdy et al. 2014, 

Callaghan and Power 2014, Kiem et al. 2016).  

ECLs often intensify rapidly overnight making them one of the most dangerous weather systems to affect the Australian 

eastern coast (Holland et al 1987). They can generate heavy widespread rainfall leading to flash and/or major river-flooding, 

gale or storm force winds along the coast and adjacent waters, and very rough seas and prolonged heavy swells over coastal 

and ocean waters which can cause damage to the coastline (e.g. Abbs et al 2006, Callaghan and Helman 2008, Speer et al. 

2009, Dowdy et al. 2014). The falling trees and flash flooding have caused fatalities on the land and large vessels have run 

aground during these events. For example, an ECL on 8th of June 2007 caused extensive damage along the central NSW 
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coastline including the beaching of the bulk carrier 'Pasha Bulker', nine deaths, major flash flooding, extreme wind gusts 

and sea waves, and over $1.5 billion in damage (Verdon-Kidd et al. 2010, 2016, Mills et al. 2010). Although ECLs can cause 

significant damage to coastal infrastructure and ecosystems, they also contribute positively to the fresh water resources in 

eastern Australia, particularly in north-eastern NSW (Risbey et al. 2009a, Pepler and Rakich 2010, Pepler et al. 2014).  

Historically, ECLs have mainly been investigated in the context of individual or a group of events (Bridgman 1985, Holland 

et al. 1987, McInnes et al. 1992, Hopkins & Holland 1997, Leslie and Speer 1998, Qi et al. 2006, Mills et al. 2010, Verdon-

Kidd et al. 2010, Evans et al. 2012, Ji et al. 2011, 2014, Gilmore et al. 2015, Pepler et al. 2016c). There has been some effort 

to build ECL datasets using various classification schemes based on surface variables, but these have generally been for 

periods shorter than 50 years (PWD 1985, 1986, Holland et al. 1987, Hopkins and Holland 1997, Qi et al. 2006, Speer et al. 

2009, 2011).  

In more recent years, several objective tracking schemes (Pepler and Coutts-Smith 2013, Browning and Goodwin 2013) and 

a detection scheme (Dowdy et al. 2013) have been widely used in detecting ECLs in Australia. These use a range of 

approaches, resulting in clear differences in observed ECL seasonality and inter-annual variability, although all show similar 

skill at identifying the most significant and impactful events (Pepler et al. 2015). The different methods also give a range of 

future trends when applied to regional climate model data, with the uncertainty related to the choice of identification method 

similar in magnitude to the uncertainty between different sets of climate models (Ji et al. 2015, Pepler et al. 2016a). 

To understand future changes in ECL activity, it is important to first understand how cyclones have changed over the past 

century. While this has been performed manually for the subset of ECLs associated with severe coastal flooding (Power and 

Callaghan 2015), this task is too arduous to be completed manually for the full range of ECLs. Instead, long datasets of 

ECLs using automated methods have recently become possible using long reanalysis datasets such as the 20th Century 

Reanalysis (20CR v2c, Compo et al. 2011). This has been used to identify trends and variability in historical ECLs using 

two different approaches (Pepler et al. 2016b, Browning and Goodwin 2016), both of which identify a step-change in 

agreement between ensemble members in the mid-1950s, with additional uncertainty prior to the mid-1910s. 

However, as the identification of cyclones is sensitive to the method used to identify the cyclones, several questions remain. 

Are the multi-decadal variability and observed trends in ECL frequency consistent across all methods used to identify ECLs, 

and can these be related to major climate drivers? How sensitive are different methods to the increasing uncertainty in the 

reanalysis ensemble prior to the 1950s? What are the true trends in ECL frequency over the twentieth century? 

In this study, we apply the three objective tracking methods (Pepler and Coutts-Smith 2013, Browning and Goodwin 2013, 

Dowdy et al. 2011) to the 20CR reanalysis data to explore the long-term variation of ECLs, and compare the similarity and 

differences in tracking ECLs.  

2 Data 

The data used in this study are global 6-hourly MSLP and geopotential at 500hpa fields from the 56-member 20CR V2C 

ensemble and the ensemble-mean analyses spanning the 164-year period from 1851 to 2014 (NOAA, 2016). 20CR V2C 

uses the same model as 20CR version 2 (Compo et al. 2011) with new sea ice boundary conditions from the COBE-SST2, 

new pentad Simple Ocean Data Assimilation with sparse input (SODAsi.2) sea surface temperature fields, and additional 

observations.  

The analyses are generated by assimilating only surface pressures and using monthly sea surface temperature (SST) and sea 

ice distributions as boundary conditions within a 'deterministic' Ensemble Kalman Filter (EKF). A unique feature of the 

20CR is that estimates of uncertainty are derived using a 56 member ensemble. Overall, the quality is approximately that of 

current three-day Numerical weather prediction (NWP) forecasts. The NWP model used is the NCEP Global Forecast 

System, a coupled atmosphere-land model, at a T62 (approximately 1.9 degree) horizontal resolution with 28 vertical hybrid 

sigma-pressure levels (Compo et al. 2011). 

A more modern reanalysis, ERA-Interim (Dee et al. 2011), is also used to evaluate the 20CR reanalysis during the recent 

period 1980 to 2009.  The spatial resolution of ERA-Interim is 0.75x0.75 degrees which is finer than 20CR with resolution 

of 2x2 degrees. Di Luca (2015) showed that fewer ECLs are identified on average using lower resolution reanalyses, hence 

we expect 20CR to have fewer ECLs than ERA-Interim just due to this effect.  

https://en.wikipedia.org/wiki/Numerical_weather_prediction
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The subjectively analysed ECL database (Speer et al 2009), which is referred to as the Maritime Low Database (MLD), is 

the available “subjectively analysed dataset” to evaluate objective tracking results. The dataset was constructed from daily 

charts of mean sea level pressure, station data and satellite images, includes details (date, intensity, and category etc.) for 

each ECL event in the region indicated in Figure 1 between 1970 and 2006, as identified through manual inspection of the 

0000UTC synoptic charts. This database averages 22 ECLs per year, many of which have no identified weather impacts on 

the Australian coast.  

Some major climate drivers including El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern 

Annular Mode (SAM; Risbey et al. 2009b), the Interdecadal Pacific Oscillation (Folland et al. 2002) are used to discuss the 

large-scale climate modes influence on ECLs. In this study the oceanic component of canonical ENSO is represented by the 

Niño 3.4 SST anomaly (SSTa) index calculated using the definition of Trenberth (1997). NINO3.4 is used since this has 

been shown to be more closely related to Australian climate than NINO3 (Wang and Hendon, 2007). To represent non-

canonical central Pacific ENSO we use the ENSO Modoki index calculated using the definition of Ashok et al. (2007). The 

Southern Oscillation Index (SOI; atmospheric component of ENSO) is calculated as the normalised sea level pressure 

difference between Tahiti and Darwin. To represent Pacific decadal variability, we use the IPO index calculated using the 

tripole approach of Henley et al (2015) as the tripole index is a simple but robust index of IPO which has become widely 

used for studies of interdecadal variability, particularly in Australia. 

SOI, IPO, and Nino3.4 indices are downloaded from http://www.esrl.noaa.gov/psd/data/climateindices/list/, SAM can be 

found at http://www.nerc-bas.ac.uk/icd/gjma/sam.html (Marshall, 2003), ENSO Modoki and IOD are from 

http://www.jamstec.go.jp/frsgc/research/d1/iod/modoki_home.html.en, and 

http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.txt , respectively.  

3 Method 

The three objective tracking methods are described in Pepler and Coutts-Smith (2013), Browning and Goodwin (2013), and 

Dowdy et al. (2011). They are further summarised in Pepler et al (2015). Each of the low tracking methods has some tunable 

parameters, which can result in large variability in the numbers of ECLs identified. In this paper, our purpose is to compare 

long term trend and low frequency variability of ECLs between different methods, therefore, we do not restrict each method 

to identify similar number of ECLs. The normalised ECL distribution instead of actual distribution of annual and monthly 

ECLs is used for the comparisons. 

The Pepler and Coutts-Smith (2013) method is based on the University of Melbourne cyclone tracking scheme (Murray and 

Simmonds 1991, Simmonds et al. 1999), and is referred to as the Laplacian method (LAP). This method first identifies a 

maximum in the Laplacian of sea level pressure, before employing an iterative technique to identify a corresponding pressure 

minimum from a spline-fitted pressure field and joining cyclones into a single event track. To be considered an ECL, a 

cyclone must have an average intensity (Laplacian) within 2° of the cyclone center greater than 1 hPa.(deg lat)-2, persist for 

at least two instances (6 hours), and be within the ECL region marked in Figure 1 in at least one instance. These criteria were 

chosen to give a frequency of 22 ECLs p.a. using the ERA-Interim reanalysis, consistent with the subjective ECL database. 

The Browning and Goodwin (2013; 2016) approach uses the average pressure gradient to decide on the existence of a cyclone 

and to indicate the intensity of the cyclone, similar to Alpert (1990), this approach is referred to as the pressure gradient (PG) 

method. In the PG method, closed low pressure systems are identified from un-interpolated sea level pressure fields within 

the region shown in Figure 1. A low is declared when the pressure gradients between all eight surrounding cells and the 

central cell are positive, and the average of these pressure gradients exceeds 1hPa. These lows are then grouped into events 

based on their geographical proximity. Additional criteria are imposed to restrict the dataset to only events likely to have 

impacted the coastline: events are required to have a minimum duration of 18 hours; events must, at some stage, achieve a 

pressure gradient of least 6 hPa per 4 (latitude–longitude) (~350 km); and this pressure gradient must be oriented such that 

the inferred geostrophic wind field is directed toward the coast. These criteria differ from those used in Di Luca et al. (2015) 

and Pepler et al. (2015), and are described in more detail in Browning and Goodwin (2013, 2016). 

Dowdy et al (2011, 2013a) attempted to identify ECL favorable conditions in the upper level circulation, which are easier 

to apply to global climate models than methods that identify individual surface lows (Dowdy et al. 2013b, 2014). This 

method is referred to as the upper level geostrophic vorticity approach (ULGV), and uses the maxima of 500 hPa geostrophic 

vorticity in a region to the northwest of the main ECL area for each 6-hourly observation to identify periods where the 

http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
http://www.jamstec.go.jp/frsgc/research/d1/iod/modoki_home.html.en
http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.txt
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likelihood of ECL formation is enhanced. While all ECL tracking methods are sensitive to the resolution of the reanalysis 

used (Di Luca et al. 2016), this approach is particularly sensitive to changes in the climatology of ULGV between reanalyses. 

Consequently, this method uses different intensity thresholds for each reanalysis and ensemble member. ULGV adjusts 

thresholds for each of 56 members to match number of identified ECLs for 1970 to 2006 to 22 ECLs per year, approximating 

the numbers observed in the MLD, this is similar to the approach used for ECLs in Dowdy et al. (2011, 2013), as well as for 

front identification schemes in other studies (e.g. Hope et al. 2013). The thresholds of ULGV are slightly different between 

the 56 ensemble members varying from the 86th to 88th percentile of maximum GV from 1850 to 2014, however the 

threshold of duration is same (at least 12 hours) for all ensemble members. 

The 20CR ensemble mean has consistently been demonstrated to have large step changes in cyclone frequency related to 

changes in data availability, particularly for the southern hemisphere, and cannot be used prior to the mid-1950s (Wang 

et al. 2013, Pepler et al. 2016b, Browning and Goodwin 2016). Unless otherwise noted, in this paper 'ensemble mean' refers 

to the average ECL frequency across the 56 ensemble members, with each member equally weighted, which is a much better 

indication of the true ECL frequency. In the limit of large ensembles, the error in the ensemble mean is, on average, half of 

that for a randomly drawn ensemble member (Holton, et al. 2013).  

The ensemble mean is normalised to compare the annual and monthly ECLs indicated by the three methods (LAP, PG, and 

ULGV) and using two different reanalysis datasets (20CR and ERA-I). The formula (𝑋 − 𝑋̅)/𝑋̅ is used to normalise variable 

x, where 𝑋̅ is mean of X.  

 

Figure 1  Southeastern Australia, with key features marked. The solid black lines indicate the domain for identifying 

ECLs in the surface pressure, while the dashed line indicates the corresponding region for detecting 

geostrophic vorticity maxima at 500 hPa (note the westward shift relative to the ECL domain). 
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The formula 100 x (max number of tracked ECLs – minimum number of tracked ECLs)/(ensemble mean) is used to quantify 

relative uncertainty range for each of the three methods (LAP, PG and ULGV).  

We also analyse changes in the frequency of the strong ECLs for each of the methods. The threshold of 2 hPa.(deg lat)-2 is 

used for the LAP method and 8 hPa per 4 (latitude–longitude) (~350 km) for the PG method to extract the strong ECLs.  A 

different method is used for the ULGV method.  The threshold is adjusted to have about 5 strong ECLs a year for 1970-

2006, then the threshold is applied for the whole time period (1851-2014) to have strong ECLs time series.  

The Pearson’s correlation is calculated to assess the teleconnection of ECL frequency with major climate drivers. The time 

period of climate drivers is 1950-2014 for Nino3.4, 1951-2014 for SOI, 1957-2014 for SAM, 1870-2014 for IOD, and 1870-

2014 for IPO and ENSO Modoki. We note that as SST data were sparse in the early period, these indices have considerably 

more uncertainty then. The correlation is calculated for the overlap period (1957-2014) and for the whole time period. 

In this study, we first compare the identified ECLs between 20CR and ERA-In, and between 20CR and the MLD dataset to 

assess the three method’s capability to identify ECLs. Then we investigate long term trends and low frequency variability 

of ECLs, and the monthly distribution and possible seasonal shift of ECLs. We then investigate relationships between large 

scale climate drivers and ECLs. Finally, we analyse the variation of uncertainty range for indicated ECLs.  

4 Results 

4.1 Evaluation of identified ECLs 

During the overlap period, 1980-2009, all three tracking schemes have interannual correlations greater than 0.7 (n = 30, 

p > 0.01) between the number of ECLs in the ERA-Interim reanalysis and the average frequency of ECLs across the 56 

members of the 20CR ensemble (Figure 2), with very similar monthly distributions of ECL frequency (correlations above 

0.9 for all methods) (Figure 3). However, while the ULGV method by design has the same average ECL frequency in both 

the 20CR and ERA-Interim reanalysis, the average frequency of ECLs in the 20CR is lower than ERAI for both the LAP 

and PG methods, a decline of 16% and 28% respectively. This was also observed in Pepler et al. (2016), and could be related 

to the lower spatial resolution, which has been shown to influence the frequency of cyclones identified for a given intensity 

threshold (e.g. Di Luca et al. 2015). 

Due to the different annual ECL frequencies for the different tracking schemes, annual frequencies have been normalised so 

that they have the same average frequency during the period 1970-2006. During this period, the inter-annual correlations 

between ECLs using the three subjective methods range between 0.65 and 0.78 (Figure 4), similar to the correlations reported 

in Pepler et al. (2015), with slightly lower correlations (0.54-0.57) between each method and the subjective MLD ECLs. 

Interestingly, while there is no trend in the MLD during this period, all tracking schemes identify a weakly declining ECL 

frequency in the 20CR reanalysis during this period even if these trends are not significant. 

Normalised monthly ECLs for the three tracking schemes and the MLD are shown in Figure 5. All three tracking methods 

indicate that ECLs are most common in the winter (JJA), which is the same as that observed in the MLD. The distribution 

of monthly ECLs for LAP and PG are the most similar to that in MLD, with correlations around 0.88. However, ULGV 

indicated more ECLs in cold months and fewer ECLs in warm months than LAP, PG and MLD, which was also observed 

in Pepler et al. (2015). LAP and PG both indicated the maximum ECLs in September, which is consistent with MLD, but 

the ECL peak indicated by ULGV is in August.  

4.2 Low frequency variability and trend 

The long-term normalised annual ECLs using the three methods are summarised in the Figure 6. During the period where 

the 20CR is relatively well constrained by surface observations, 1961-2014, the inter-annual correlations between the three 

methods are between 0.57 and 0.72, similar to the ERA-Interim reanalysis (Pepler et al. 2015). However, these correlations 

strengthen during the full 1871-2014 period, with a very strong correlation (0.87) between annual frequency using LAP and 

PG on the 20CR data. The low frequency variability of ULGV is similar to that of LAP and PG, especially for the period of 

1890-1950, the correlations are 0.74 and 0.73 with LAP and PG respectively. 
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Figure 2  Annual ECL frequency tracked by three different methods for two reanalyses (20CR and ERA-I) Three 

colours are for three tracking methods, different line styles are for different reanalyses.  

 

 

Figure 3  Distributions of monthly ECL frequency tracked by three different methods for two reanalyses (20CR and 

ERA-I) Three colours are for three tracking methods, different line styles are for different reanalyses. 
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Figure 4  Normalised annual ECL frequency using three tracking methods and Maritime Low Database (MLD). The 

normalisation  is calculated against the mean number of ECLs for 1970-2006. The four different colours are 

for three tracking methods and MLD. The solid lines are for normalised annual ECLs and dot lines are trend 

lines for them. 

 

 

Figure 5 Normalised monthly ECL frequency for three tracking methods and MLD. The normalisation  is calculated 

against the mean number of monthly ECLs for 1970-2006. The four different colours are for three tracking 

methods and MLD. 
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Figure 6  Normalised annual number of ECLs for three tracking methods. The normalisation  is calculated against the 

mean number of ECLs for 1970-2006. The three different colours are for three tracking methods, and thin 

solid lines are for annual ECL anomaly and dot lines are 11 year moving average, and solid lines are trend 

lines for 1880-1920, 1920-1975 and 1975 to 2014.  
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4.3 Monthly distribution and seasonal shift 

Long-term normalised monthly ECLs for 1851-2014 is similar to that for 1970-2006 for each method (Figure 8). Cold 

months dominant ECLs can be observed in all results. ULGV has a larger seasonal cycle than LAP and PG with more ECLs 

in the cold months and fewer in warm months. However, a clear decrease of ECL frequency in early winter and an increase 

in late winter/early spring (SON) can be observed in each result. The peak of monthly ECLs for 1851-2014 was shifted from 

early winter to late winter and early spring for 1970-2006, which is consistent in all results. This seasonal shift of monthly 

ECLs can be also observed in the two most recent 30-year periods as well (Fig S6).  

We further analyse changes in seasonal ECLs for two specific periods (increasing in annual ECL frequency for 1895-1954 

and decreasing in annual ECL frequency for 1955-2014). During the first period, an increase in annual ECL frequency 

mostly occurs in spring and autumn (Figure 9), however, the decrease in annual ECL frequency mostly occurs in winter for 

the second time period (Figure 10). This winter decline is also observed in future projections of ECLs (Ji et al, 2015, Pepler 

et al 2016b).   

4.4 Teleconnection with major climate drivers 

The relationships between ECL frequency and major climate drivers are moderate to weak for both annual and cold season 

(May-Sept) means (Table 1), regardless of the ECL identification method used. ECL frequency has almost no correlation 

with SAM. Negative correlation is observed between ECL frequency and other major climate drivers except for SOI. ECLs 

are favoured during La Niña periods, with a weakly positive correlation between ECL frequency and the SOI, and weakly 

negative correlations with NINO3.4 and ENSO Modoki. This has previously been identified for ECLs associated with major 

flooding on the east coast (Power and Callaghan 2016) and the PG method (Browning and Goodwin 2013), and may be 

related to the generally lower surface pressures recorded over northern and eastern Australia during La Niña years. Weakly 

negative correlations are also observed between ECL frequency and both the IPO and IOD. The correlation between ECL 

frequency and climate drivers are generally weak, this indicates that ECLs are a regional low system which are not strongly 

influenced by the major climate drivers that affect rain elsewhere in southeast Australia. 

 

(a) Annual ECLs SOI SAM Nino3.4 Modoki(EMI) IPO IOD 

LAP 0.20 0.08 -0.22 -0.08(-0.13) -0.21 (-0.28) -0.39 (-0.14) 

PG 0.30 0.02 -0.33 -0.18(-0.20) -0.31 (-0.31) -0.27 (-0.02) 

ULGV 0.15 -0.04 -0.14 0.03(-0.11) -0.12 (-0.16) -0.37 (0.09) 

       

(b) ECLs(May-Sept) SOI SAM Nino3.4 Modoki(EMI) IPO IOD 

LAP 0.29 0.04 -0.18 -0.05(-0.13) -0.18(-0.19) -0.21(-0.17) 

PG 0.24 0.01 -0.18 -0.23(-0.21) -0.19(-0.15) -0.09(-0.07) 

ULGV 0.25 0.12 -0.08 -0.05(-0.17) -0.08(-0.11) -0.08(0.05) 

 

Table 1  Pearson’s correlation (r) between ECL frequency and the major southern hemisphere climate mode indices 

for (a) annual and (b) winter (May to September). The time period of climate drivers is 1950-2014 for 

Nino3.4, 1951-2014 for SOI, 1957-2014 for SAM, 1870-2014 for IOD, and 1870-2015 for IPO and ENSO 

Modoki. The correlations are calculated for the overlap period from 1957-2014. The correlations for whole 

period are included in bracket for climate drivers with long record. The significant correlations at p < 0.05 

(according to a t-test) are highlighted. 
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Figure 7  Ratio of strong ECLs for three time periods (1880-1920, 1920-1975 and 1975 to 2014) for three tracking 

methods  

 

Figure 8  Normalised monthly ECLs for three tracking methods for 1851-2014 and 1970-2006. The normalisation is 

calculated against the mean number of ECLs for 1970-2006. The three different colours are for three 

tracking methods, and solid lines are for 1851-2014 and dot lines are for 1970-2006.  
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Figure 9  Changes in seasonal ECLs for two 30-year periods when the increasing trend is observed 

 

Figure 10  Changes in seasonal ECLs for two 30-year periods when the decreasing trend is observed 

4.5 Uncertainty 

The 20CR data has known temporal inhomogeneities, especially in the early decades in which the uncertainty (i.e., inter-

member variability) is much larger due to the much lower number and spatial density of observations available for 

assimilation (Wang et al. 2013).  The relative uncertainty ranges (between maximum and minimum number, and between 

75th and 25th percentile of the number) of ECLs for the 56 ensemble members are summarised in Figure 11. Larger 

uncertainty in early decades and much less uncertainty in recent decades are observed in the results using the three tracking 

methods. In early decades, the uncertainty can be larger than 100%, relative to ensemble mean, however, the uncertainty 

ranges reduce to 40-50% in recent decades. The linear decreasing trend in ensemble uncertainty can be generally observed 

in all results.  
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Figure 11  Relative uncertainty range of indicated annual ECLs for 1851-2014. Solid lines are for uncertainty between 

maximum and minimum number of identified ECLs of 56 ensemble members for three tracking methods. 

Dot lines are for uncertainty between 75 percentile and 25 percentile of identified ECLs of 56 ensemble 

members for three tracking methods. 

The relative uncertainty range for PG indicated ECLs shown in Figure 11 tends to be larger than that for LAP and ULGV 

indicated ECLs. This is possibly due to larger threshold values used in the analyses that results in a smaller number of mean 

indicated ECLs. For the similar range of differences in 56 ensemble members, the relative uncertainty range is larger, the 

ULGV method does show smaller uncertainty when comparing with the LAP method as they indicate a similar number of 

ECLs. 

5 Conclusion 

In this study, three objective ECL tracking methods (LAP, PG and ULGV) are applied to twentieth century reanalysis (20CR) 

6-hourly mean sea level pressure and geopotential at 500hpa fields for the period 1851–2014 to infer historical trends and 

variability in ECLs.  

The results using three tracking methods are firstly evaluated against the ERA-Interim reanalysis (1980-2009) and a 

subjective database of ECLs (MLD). All three results fully capture the inter-annual variability of ECLs for this period, the 

weak decreasing trend in ECL number, and winter dominant ECL distribution. However, both the LAP and PG methods 

identify fewer ECLs using the 20CR than the ERA-Interim reanalysis, which is likely related to the lower spatial resolution 

of 20CR (see Di Luca et al 2015). The differences in monthly ECLs between reanalyses are generally smaller than the 

differences between different tracking methods. 

The tracking methods are applied to each of the 56 ensemble members individually, ECL statistics for three tracking methods 

obtained by averaging statistics from individual members generally agree well. A clear increasing trend of annual ECL 

frequency can be observed for all three methods between 1880 and 1920, with a similar increasing rate. There is no trend 

between 1920 and 1975 for LAP and PG even through there is an increase in the availability of surface observation. This 

indicates the density of surface observation may have less of an effect on estimated ECL numbers than is implied. The 

ULGV method is particularly sensitive to the quality of the 20CR reanalysis compared to other two methods. In contrast, a 

clear decreasing trend in annual ECL frequency can be seen between 1975 and 2014 with a similar decreasing rate. During 

the late18th century and early 19th century, the increase in annual ECL frequency is mostly contributed by spring and autumn 

ECLs, however the decrease in ECL frequency during recent decades is mostly caused by a decrease in winter ECLs. A 

seasonal shift of monthly ECLs from early winter to late winter/early spring is consistent in all three tracking methods for 

1970-2006 relative to 1851-2014 and for the two most recent 30-year periods.  
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The relationships between ECL frequency and major climate drivers are moderate to weak. Negative phase of climate major 

climate drivers such as Nino 3.4, Modoki, IPO, and IOD are favourable conditions for low systems except for SOI that is 

opposite to other drivers and SAM that has no relation to ECLs. The uncertainty between 56 ensemble members has been 

dramatically decreased in the recent decades for all methods.  

In summary, ECLs statistics for three tracking methods obtained by averaging statistics from individual members generally 

agree well with similar low frequency variability and seasonal shift of ECLs, although as with previous studies this variability 

has little relationship with the main climate drivers. The inter-annual variability and monthly distribution of ECLs agree well 

between different reanalysis for each of the tracking methods, with a decline in winter ECL frequency over the last 60 years. 

This is consistent with future projections of ECL activity (e.g. Ji et al. 2015, Pepler et al. 2016a).  
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