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Abstract. Content enhancement of real-world environments is demonstrated through the combination of machine
learning methods with augmented reality displays. Advances in machine learning methods and neural network

architectures have facilitated fast and accurate object and image detection, recognition and classification, as well as
providing machine translation, natural language processing and neural network approaches for environmental forecasting
and prediction. These methods equip computers with a means of interpreting the natural environment. Augmented reality

is the embedding of computer-generated assets within the real-world environment. Here I demonstrate, through the
development of four sample mobile applications, howmachine learning and augmented reality may be combined to create
localised, context aware and user-centric environmental information delivery channels. The sample mobile applications
demonstrate augmented reality content enhancement of static real-world objects to deliver additional environmental and

contextual information, language translation to facilitate accessibility of forecast information and a location aware rain
event augmented reality notification application that leverages a nowcasting neural network.
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1 Introduction

Augmented reality is the merging of real-world environments
with virtual content, providing interactive experiences and scene
enhancements (Azuma 1997; Azuma et al. 2001). Through
computer vision methods, such as object detection and image

recognition, the features present within the real-world environ-
ment become accessible to computer interpretation, analysis and
modification. The combination of this information with aug-

mented reality allows thecreationofuser centric experiences that
are location aware, context sensitive and interactive.

Modern machine learning methods have made significant

advances in the field of computer vision, including image classifi-
cation, object detection and tracking, and scene segmentation, and
these advances have equipped computers with the means to
interpret the real world environment. Wider applications of

machine learning have advanced the fields of natural language
processing,machine translation and understanding. Further, hard-
ware architecture developments have provided a platform for the

deployment of machine learning models directly onto consumer
level mobile devices, with no degradation in performance.

The following work combines machine learning with aug-

mented reality to explore the ways in which the real-world
environment can be enhanced with digital assets to create new
channels of environmental information delivery that is user

centric, location and scene aware, and interactive. Four mobile
augmented reality applications were developed to explore and

demonstrate theseelements.Within theapplications, thedelivery

of environmental information through augmented reality over-
lays is demonstrated through four conceptualised applications.
Each application showcases an approach to delivering user
focussed environmental information. Machine learning models

provide the mechanisms for scene awareness and the creation of
user focussed environmental information.

Through this approach, the applications demonstrate the

enhancement of real-world static content with additional digital
information,theaugmentedrealityenhancementofreal-worldstatic
assets with animation and video streams, and the generation and

delivery of user-centric, spatially localised and accurate environ-
mental forecasts delivered through augmented reality channels.

2 Method

The augmented reality applications were built using ARKit

(https://developer.apple.com/augmented-reality/). ARKit pro-
vides a framework for real-world and virtual content tracking
on mobile devices. ARKit combines mobile device features

such as motion tracking, camera scene capture and scene
processing aswell as augmented reality content delivery.Within
ARKit, real-world tracking is accomplished using a technique

called visual-inertial odometry.
Visual-inertial odometry combines motion sensor data with

computer vision analysis of camera imagery to determine and
track a device’s position and orientation in the real-world space
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(Li andMourikis 2013).Computervisionanalysisof the real time
camera imagery stream enables the registration of scene features
andtheconstructionofageometricdescriptionof thesurrounding

environment. Within this digital representation, augmented
reality content can be registered and integrated with the camera
imagery stream, creating the perception of computer generated

components being seamlessly embedded with the real-world
environment.

The architecture of the four sample applications is given in

Fig.1.Theseapplications leverageseveral technologies toenable
context aware delivery of environmental information through
augmented reality channels. Three of the four demonstration
applications rely on the detection, recognition and registration of

image assets within the real-time camera stream. During the
processof tracking, thedetectionofanyof these reference images
results inARKit establishing a set of anchor points describing the

locationandgeometryof the imagewithin the real-world.Further
processing by the application allows the creation and display of
associatedaugmentedrealityassets, thatarealignedwith thereal-

worldanchorpositions. In thefourthapplication, the likelihoodof
rain is predicted using amachine learning approach and provides
thebasis foraugmentedrealitycontent that isgeneratedrelative to

the mobile device’s location and orientation in the real-world.
More detailed methods are provided in the following sections.

2.1 App 1: image recognition augmented with digital
content – image2info

This application enhances real-world static contentwith additional
digital information. This digital content is presented as an aug-
mented reality overlay that is integrated within the real-world

environment. The application detects the presence of a reference
imagewithintheusersenvironmentvia thereal-timedevicecamera
stream(https://developer.apple.com/videos/play/wwdc2018/610/,

https://developer.apple.com/videos/play/wwdc2019/228/).Suc-
cessful recognition triggers the delivery of the augmented reality
content as described by the red pathway in Fig. 1.

Here, the known feature is a reference image asset that
contains a weather forecast infographic, as shown in Fig. 2.
Detection of the reference image within the real-time camera

stream results inARKit generating a set of reference coordinates,
or anchor points, that describe the real-word coordinates of the
recognised image. These anchor points are tracked and computer

generated virtual content is displayed relative to the real-world
position of the recognised image.

In this example, the weather forecast infographic is augmented

withadditionalrelatedinformationthatdisplaysthetemperatureand
rainfall predictions for thenext24hours, as shownin theaugmented
reality overlay in Fig. 2. Device rotations and translations result in
corresponding transformations of the augmented reality asset

relative to the detected asset’s location, giving the appearance that
the virtual content is embeddedwithin the real world.

This application demonstrates an augmented reality pathway

for the delivery of content enhancement. Through this method,
user-centric informationservicesmaybedelivered.Extensionsto
the application include thedelivery of alerts andwarnings,which

can be dynamically generated, delivered and inserted within the
user’s augmented reality view. Such an approach will eliminate
the need for users to manually search for this information on a

website, orpiece together information frommultiple sources, and
enables an information delivery pathway for situational aware-
ness that is integrated with the user’s current environment.

2.2 App 2: image recognition augmented with digital
content – image2video

Within an augmented reality context, real-world static assets can
be enhanced to enable the delivery of dynamical information. To

demonstrate this concept, six reference images were embedded
within the application. Each of these images, shown in Fig. 3,
represent the first frame of an associated animation. The data

visualisations were generated using data from the seasonal
forecasting system (Alves et al. 2003), showing the sea surface
anomaly and rainfall over land areas from summer 2010 to

Sensor data

Reference image(s)
Image recognition

App 1

App 2

App 3

App 4

Camera stream

Prediction model

Device position
Device orientation World tracking

Content tracking

Image recognition
AR content tracking

Cloud service

Machine learning

ARKit

ARKit

ARKit AR display 

Machine learning

Fig. 1. Architecture diagram for the four demonstration applications. The processing chain utilised by each application is shown using the

associated colour coded arrow.
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summer 2012, the Bluelink ocean forecasting system (Schiller
et al. 2019) showing the sea surface temperature, sea surface
velocity magnitude and the sea surface temperature anomaly for

theperiodJanuary2006–June2009,anoceanicparticleadvection

model over the East Australia Current showing the change in
position of 100passive tracers over several days of advection due
to sea surface currents, and themeanmonthlymaximum temper-

ature for Australia from 2011 to 2013 (Jones et al. 2009).

Reference images
Recognition

QR code
Video

Fig. 3. Example showing the real-world static reference images that are recognised by the imageg2video

application. Scanning the QR code will link to the demonstration video. Video is available via https://s3-ap-

southeast-2.amazonaws.com/machinelogic.info/AR/ARimage2vid_480.mp4.

Reference image
Recognition

AR
Real-world anchors

Augmented reality
Asset embedded in real-world

QR code
Video

Fig. 2. Astaticweather forecast image is recognised by the application, and additional, related information

is displayedwithin the augmented reality overlay, shown to left of themobile device. The augmented reality

overlay displays the temperature and rainfall forecast for the next 48 hours. Scanning the QR code will link

to the demonstration video. This is also available via https://s3-ap-southeast-2.amazonaws.com/machine-

logic.info/AR/img2info_480.mp4.
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Within theapplication, thedetectionof anyof the six reference

imageswithin the real-world environment triggers an augmented
realityoverlayon topof the locationof the static asset, as shownin
the application architecture diagram in Fig. 1. Within this

augmented reality tracked overlay, the animation asset that is
linked with the real-world reference image is dynamically
embedded and played. As in the image2info application, device
translations and rotations are tracked relative to the real world

environment to ensure that the augmented reality content remains
aligned with the location and orientation of the physical asset.
Each augmented asset is independently tracked, and the animated

overlay is tightly coupled to the real world asset. Although this
applicationdemonstrated the independentplaybackof eachvideo
asset, the application may be configured to deliver simultaneous

playback and playback tracking across all video assets.
When delivering environmental forecast information, the

temporal evolution of the forecast provides additional details

about how the forecastwill evolve over time.This level of detail

is challenging to effectively communicate with static images.

Commonapproaches employdiscrete interval timelines such as

textual descriptions that describe the future expected state, or a

series of two-dimensional images that represent the temporal

evolution of a forecast. Examples include weather forecasts

describing the predicted conditions over a future time period, or

the use of graphics and data visualisations showing the spatial

distribution of environmental predictions. These representa-

tions are commonly employed in print media and electronic

displays.

2.3 App 3: image recognition and machine translation –
image2translate

An extension to the image2information and image2video sam-
ples, extends the concepts demonstrated therebynow includinga
remote machine learning model to perform real time language

translation (Fig. 4). As in the previous samples, a static reference
image is embedded in the application, and detection of this static
asset within the real-world environment triggers the workflow

represented by the blue pathway in Fig. 1.
The static reference image in this case is a website which

contains a seven day weather forecast for Melbourne, Australia.
Post detectionof the static asset, a cloudhostedprocess extracts the

textual forecast elements formthewebpage, and foreachelementa
language translation neural network is employed to translate the
originalEnglishtexttosimplifiedChinese.Machinetranslationwas

provided by a cloud hosted language-to-language translation deep
neural network (https://aws.amazon.com/translate/). This service
providesmultiplelanguagetranslationmodelsthatcanbeleveraged

to expand the accessibility of environmental forecast information.
The translated elements are then used to generate a new

webpage and this content is delivered back to the application.

Within the application, a virtual overlay region is created and

offset relative to the augmented reality tracked reference image

anchors. A web view is created within this region and the

translatedwebpage is displayed.As in the previous applications,

the realworldpositionof the augmented reality content is tracked

relative to the generated anchor points and the virtual content

responds to view translations and rotations.

Reference image
Recognition

Augmented reality
Asset embedded in real-world

QR code
Video

Fig. 4. Language to language translation showing the static reference image displayed on a mobile device

and associated augmented reality display. In this example, the original English language webpage is translated

to simplified Chinese. Scanning the QR code will link to the demonstration video. This is also available via

https://s3-ap-southeast-2.amazonaws.com/machinelogic.info/AR/AR_webTranslate_480.mp4.
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This sample application introduces an additional user interac-
tion pathway in that the augmented reality display containing the

translated webpage responds to user interactions. The content
within this view behaves as a web browser, and responds to
familiar user interactions such as drag to scroll as well as touch

events to follow links. This was achieved through hit testing,
where touches on themobile device screen are translated into the
augmented reality tracked world coordinate system (https://

developer.apple.com/documentation/arkit/world_tracking/ray-
casting_and_hit-testing). Intersection testing is then conducted
to determine if the intent of the touch event was to interact with
the augmented reality content.

2.4 App4: location aware augmented reality environmental
overlays

Within this sample application, the delivery of accurate forecast
information that is location and user aware is enabled through the

combination of mobile device sensor data, a machine learning
environmental prediction system and augmented reality overlays.
The workflow of this application differs from the previous exam-

ples, in that a neural network model is developed to provide short
term forecast predictions of rainfall locations and intensity. The
application architecture is given in Fig. 1 by the orange workflow.

The machine learning model ingests radar reflectivity data
that has been processed into rain rate estimates, and produces a
1 hour future forecast of how this data will evolve. The neural

network was implemented using a Generative Adversarial
Network (GAN) architecture (Goodfellow et al. 2014). Training
off the GAN was performed using three months off radar
observations for theMelbourne region. The associated generator

and discriminator models within the GAN architecture are
multi-scale fullyconvolutionalneuralnetworks. In thisapproach,
the discriminator model aims to discern whether inputs to the

network are members of the dataset as opposed to an instance
that was output from the generator network. Each network is
simultaneously trained such that the generator model learns to

produceradar frames thataredifficult for thediscriminatormodel
to classify, whilst the discriminator model learns to discriminate
radar frames generated by the generator model.

Training of the GAN model followed the method given in

Mathieu et al. (2016). The training and testing data contains the
rainfall intensity, derived from radar reflectance observations
and includes examples with and without rain presence. The

datawas split into 21 865 training samples and2000 test samples.
The dataset spanned observations from 19 August 2008 to 24
November 2018, with a temporal resolution of 6 minutes. The

GAN model was trained for 600 000 steps. Following the GAN
implementation of Mathieu et al. (2016), model assessment was
made using a ‘sharpness’ measure which is based on the

difference of gradients between the true frame and the predicted
frame. Over the final 100 000 steps if the model training, the
sharpness metric ranged between 11.4 and 16.5, suggesting that
there is scope to improve the generator network performance.

The trained generator model was employed to produce rainfall
location and intensity forecasts out to 1 hour from the last radar
observation.Theinputforeachprediction,generatedbythenetwork,

was the previous four frames. For the first predicted frame, at

t¼ tbþ1, the input was four observations located at tb�3, tb�2, tb�1

and tb. Subsequent predictions at t. tbþ1 combine neural network

generatedoutputs into the input sequence.Comparisonbetween the
neuralnetworkmodelandthegroundtruthradarobservations,out to
30min from the last observation, is shown in Fig. 5.

The neural network generated rain location and intensity
predictions are incorporated into the sample application. The
direction and intensity of rain, if present, is determined relative to

the user’s current location, and the user is presented with rain
presence, intensity and predicted time of arrival at their location
as a series of augmented reality embedded information overlays.
Mobile device sensors provide location services as well as

accurate information describing the orientation of the device
within the realworld.These featureswere thencombinedwith the
GAN forecasts to deliver augmented reality assets that contain

environmental information that is dynamically generated in
response to the location of the device and the direction in which
the device is oriented within the real-world.

Withintheseaugmentedrealityoverlays,weather information
isdisplayedwith the intent of informing theuser about conditions
which are currently active at locations near them, to provide
information about weather conditions which are developing and

to deliver information about changes in conditions that will
impact the user in the near future at their current location. An
example of the application showing the augmented reality over-

lays and samples of the generated forecast information is given in
Fig. 6. In this example, the mobile device is facing in a westerly
direction, and the augmented reality content alerts the user that

there is currently light rain 3 km away from their current location
andmoderate rain20 kmaway.For thesecases, theGANmodel is
predicting that these conditions will intersect with the user’s

location in 5 and 20min respectively.
This demonstration application may be extended to deliver

environmental alerts that are relevant to the user’s current
location, such as severeweatherwarnings, changes in conditions

which may impact the user as well as general forecast alerts and
information (Fig. 6).

3 Discussion

The embedding of environmental informationwithin augmented

reality displays enables enhanced content delivery that leverages
the local, real-world surroundings and preferences of the user.
The sample applications demonstrate four approaches to enhanc-
ing content with augmented reality overlays and embeddings.

Continued development of these concepts coupled with the
ongoing developments in user localised environmental forecast-
ing and information services will provide a feature rich and

user-centric platform from which enhanced content delivery
services can be developed. The conveniences of augmented
reality approaches to information delivery and display have the

potential to radically alter the ways in which environmental
information are delivered and presented to data consumers.

The sample applications were created to demonstrate infor-

mation delivery streams that are tightly integrated with the
real-world environment of the user. Through augmented reality,
localisedandpersonalised information isdelivered inanefficient
and intuitive manner, enhancing the delivery of contextual,
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user-centric information. Augmented reality, coupled with
machine learning enables systems to understand, interpret and

respond appropriately to the real-world environment.

Although the applications developedhereperformwell on the
example tasks, the performance of these models will degrade as

more features are inserted into the detection and recognition
pipeline. The image2info, image2video and image2translate

applications rely on the recognition of a small number of

reference images to trigger the augmented reality workflows.
These images are unique and no incorrect or failed detections
were encountered during development and testing. However, as

thenumberofreferenceimagesincreasesor thediversityamongst
the reference images decreases, recognition performance will
degrade. This can be addressed through the direct deployment of
customised, fine-tuned and bespoke machine learning models

within the mobile application.
To demonstrate this, the pre-trained Inception v3 network

(Szegedy 2016) was deployed within a mobile application and

image recognition performance testing was undertaken. The
ImageNet (Russakovsky et al. 2015) pre-trained Inception v3
model was converted to CoreML (https://developer.apple.com/

documentation/coreml) format,which is amobile readymachine
learning model framework, and implemented within a sample
application. Frames from the real-time camera stream of the
mobile device were fed into the Inception v3 model, which

performeda classificationoperationon the image contents. From
theseclassifications, thereference imagecanbeidentifiedandthe
augmented realityworkflowof theapplicationmay thenproceed.

One challenge with this approach is the large memory
footprint of deep neural network models, such as Inception v3.
To reduce the application deployment size, the precision of the

weights was systematically reduced from 32 bit floating point
precision to 4 bit floating point precision using a linear quantisa-
tionmethod. Linear quantisation discretises the networkweights

into the range[a,b]wherea¼min(w)andb¼max(w)andw is the
full precisionweight values of the trained network (https://apple.
github.io/coremltools/generated/coremltools.models.neural_
network.quantization_utils.html). The full precision weights

consume 82 MB of memory, and through linear quantisation,
this was reduced to 41MB for 16 bit precision, 21MB for 8 bit
precision and 10 MB for 4 bit precision.

To investigate the performance of each of these precision
representations of the Inception v3 weights, the output from
the final Inception module was dimensionally reduced to a vector

of length 2048 by applying a global average pooling operation
and the L2 norm of this vector was calculated, where
L2 ¼ xk k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ � � � þ x2n

p

. The resulting model size and L2

norm is shown in Fig. 7. Quantisation of the model weights to 8

bit precision results in amodel that is 3.9 times smaller in size and
performs at a comparable accuracy to the full precision model.
Further quantisation of the precision below 8 bit results in

significant model performance degradation. Other mobile opti-
mised machine learning models are available such as MobileNet
(Howardetal.2017)orYOLO(RedmonandFarhadi2017),which

exhibit fast and accurate performance on mobile devices. The
incorporationof themachinelearningmodelwithintheapplication
provides several advantages including faster model response

times and delivers a strong user privacy environment. Sensitive
user-centric information, such as location or details about their
local environment, such as camera image information, are neither
stored nor transmitted over a network to a remote server.

Ground truth +06 minutes(a) Generated +06 minutes(b)

Ground truth +12 minutes(c) Generated +12 minutes(d)

Ground truth +18 minutes(e) Generated +18 minutes(f )

Ground truth +24 minutes(g) Generated +24 minutes(h)

Ground truth +30 minutes(i ) Generated +30 minutes(j)

Rain rate

Light Moderate Heavy

Fig. 5. Generative neural network rainfall nowcast. Images on left are

observations, images on right are neural network predictions. This series of

snapshots shows rainfall location and intensity estimates out toþ30minutes.
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Current mobile device warning and alerting services take

advantage of many of the same hardware features as leveraged
by the four demonstration applications. A common user alerting
mechanism is the pushing of notifications to the user’s mobile

device. Whilst push-notifications provide user-centric informa-
tion channels, the augmented reality demonstration applications
here extend this notion by taking into consideration the current
environment of the user, such as the direction inwhich the user’s

device is facing, as well as information about what objects and

features are within view of the user.
The demonstration applications show the potential applica-

tions of augmented reality and machine learning in delivering

environmental information in a seamless, interactive and user
focussed manner. As augmented reality hardware and services
develop, limitations, such as the need for user initiation of

the application on a mobile device and interactions with the
augmented reality displays through screens will improve.
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