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Synoptic-scale atmospheric cyclones in the South-East 
Tropical Indian Ocean (SETIO) and their relation to IOD 
variability 
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ABSTRACT 

This study focuses on the regional wind variability that controls the intensity of cold-water 
upwelling off Sumatra – a key feature of the Indian Ocean Dipole (IOD). Our analysis of daily 
atmospheric data reveals the existence of convectively triggered synoptic-scale atmospheric 
cyclones in the South-East Tropical Indian Ocean (SETIO). The northern branch of the cyclones 
corresponds to westerly equatorial wind events, whereas the eastern branch involves north- 
westerly winds that operate to suppress cold-water upwelling off Sumatra’s west coast. Data for 
the period 1988–2022 show that 5–9 SETIO cyclones normally form each year during the boreal 
summer–autumn season, effectively suppressing upwelling in the region. In contrast, there are 
only few (1–2) cyclone events in years identified as positive phases of the IOD, when the absence 
of cyclones concurs with the development of strong coastal upwelling off Sumatra. Our findings 
suggest that the absence or presence of SETIO cyclones contributes to IOD variability.  

Keywords: atmospheric cyclones, atmosphere–ocean interactions, cyclogenesis, daily variability, 
equatorial wind events, Indian Ocean Dipole, interannual climate variability, tropical convection. 

1. Introduction

The Indian Ocean Dipole (IOD) is a unique coupled ocean–atmosphere mode of climate 
variability in the tropics of the Indian Ocean that affects the regional and global climatic 
conditions at interannual time scales (e.g. Saji et al. 1999; Vinayachandran et al. 1999,  
2009; Webster et al. 1999; Ashok et al. 2001; Rao et al. 2002; Black et al. 2003;  
Clark et al. 2003; Saji and Yamagata 2003; Yamagata et al. 2004; Meyers et al. 2007;  
Chan et al. 2008; Yuan et al. 2008; Cai et al. 2009, 2014; Ummenhofer et al. 2009;  
Kripalani et al. 2010). 

The IOD, first described by Saji et al. (1999), is a pattern of sea surface temperature 
(SST) fluctuations between the eastern and western intertropical Indian Ocean. The 
common perception according to previous studies (Saji et al. 1999; Webster et al. 
1999; Feng and Meyers 2003; Cai et al. 2014, 2018) is that IOD events develop through 
the Bjerknes-coupled feedback, wherein an initial cooling off the coast of Sumatra–Java 
suppresses local atmospheric convection, leading to anomalous easterly equatorial wind, 
a shoaling thermocline and stronger upwelling which in turn reinforce the initial cooling. 
Phases of the IOD are described by the Dipole Mode Index (DMI) as the differences of 
SSTs between defined areas displayed in Fig. 1a. 

Occasionally, coastal waters off south-western Sumatra experience widespread cooling 
during late austral winter months (July–September), henceforth classified as ‘IOD sea-
son’. Seasonal south-easterly winds regularly create upwelling in the ocean along the 
coastlines of southern Sumatra and Java during the IOD season, but the intensity and 
spatial extent of negative SST anomalies off the coast of south-western Sumatra increases 
dramatically during the positive phase of the IOD, known as positive IOD (pIOD) events 
(Saji et al. 1999; Webster et al. 1999; Susanto et al. 2001; Du et al. 2008; Chen et al. 2015;  
Delman et al. 2016; Kämpf and Kavi 2019). The pIOD events are traditionally defined by 
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DMI values above 1°C for a continuous period exceeding 
12 weeks. After this definition, only three significant cooling 
events can be identified in the years 1994, 1997 and 2006 
during the period 1988–2017 (Fig. 1b). A strong pIOD event 
also occurred more recently in 2019 (not shown). Note 
that SST anomalies during such cooling phases are com-
parable to those triggered by the El Niño–Southern 
Oscillation in the eastern equatorial Pacific in terms of 
magnitude (>2°C), spatial extent (600 km by 200 km) and 
duration (>3 months). 

This study focuses on the South-East Tropical Indian 
Ocean (SETIO), defined by 80°–110°E and 0–10°S, which 
comprises the eastern region used in the calculation of the 
DMI. Previous studies suggest that the variability of surface 
winds in the SETIO region play an active role in the creation 
and suppression of positive IOD events (e.g. Saji et al. 1999;  
Feng and Meyers 2003; Meyers et al. 2007; Vinayachandran 
et al. 2009; Chen et al. 2015; Delman et al. 2016), but 
the details of mechanisms triggering this variability 
remain unclear. The Madden–Julian Oscillation (MJO) is a 
prominent mode of intraseasonal atmospheric variability in 
the equatorial Indian Ocean (Madden and Julian 1971;  
Hendon and Glick 1997; Webster et al. 2002; Shinoda et al. 
2013). The MJO dominates the intraseasonal variability 
of rainfall and wind over South Asia during the months 
of October–May (Zhang 2005). However, the MJO usually 
weakens substantially during the IOD season (Madden and 

Julian 1971, 1972; Webster et al. 2002; Wheeler and 
Hendon 2004; Chen et al. 2015) and therefore is unlikely 
to be involved in development of IOD events. Instead, Rao and 
Yamagata (2004) found that the zonal wind variability in the 
eastern equatorial Indian Ocean in this season is directly 
linked to the convective activities over the same region. 

According to previous research, two different wind phe-
nomena play a role in the SST variability in the SETIO: (1) 
westerly equatorial wind events and (2) alongshore winds 
along the west coast of Sumatra. Westerly equatorial wind 
events are deemed responsible for the creation of down-
welling Kelvin waves transiently deepening the thermocline 
in the SETIO (Murtugudde et al. 2000; Sprintall et al. 2000;  
Susanto et al. 2001; Senan et al. 2003; Rao and Yamagata 
2004; Iskandar et al. 2005, 2006; Chen et al. 2015; Delman 
et al. 2016). However, regional winds along the coastline of 
Sumatra and Java can modify the thermocline depth via the 
process of coastal upwelling or downwelling (Susanto et al. 
2001; see Kämpf and Chapman 2016). Mechanisms that 
explain the relation between both phenomena and their 
causes remain unclear. 

Recent findings by Kämpf and Kavi (2019) suggest that 
the coastal wind variability off Sumatra between the equator 
and 6°S controls the upwelling intensity of SST anomalies 
establishing farther in the south along the south-west 
coast of Sumatra. Here we reveal the existence of synoptic- 
scale atmospheric cyclones as the agent of this coastal wind 
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Fig. 1. (a) Definition of the surface areas used to calculate the Dipole Mode Index (DMI). The western region spans 
50–70°E and 10°S–10°N. The eastern region spans 90–110°E and 10°S–0°N. (b) Time series (1988–2017) of SST 
anomalies in the areas shown in (a) and the corresponding DMI traditionally defined as DMI = SSTwest − SSTeast. 
The arrows highlight three pIOD events (1994, 1997 and 2006). Source: Reynolds SST data.    

192 

A. Kavi and J. Kämpf Journal of Southern Hemisphere Earth Systems Science 



variability. We also show that the years of low cyclone activity 
correspond to the development of positive IOD events. 

2. Data and methods

Satellite-derived outgoing longwave radiation (OLR) can be 
used as proxy of atmospheric convective activity in the 
tropics, where lower OLR values represent deep atmospheric 
convection and higher OLR values represent suppressed 
atmospheric convection and open sky conditions. This 
study employs interpolated OLR data provided by NOAA/ 
OAR/ESRL PSD for the period 1988–2016 to investigate 
tropical convective activity (Lee 2014; Lee et al. 2014). 
The surface wind analysis for the period 1988–2022 is per-
formed using daily cross-calibrated multiplatform (CCMP) 
satellite ocean surface wind vectors derived from CCMP 
V-2.0 vector wind analyses, produced by Remote Sensing
Systems (Atlas et al. 2011). The ERA5 hourly equatorial 
wind data (Hersbach et al. 2020) are used for comparison 
with the CCMP product. The horizontal wind streamfunction 
(ψ) is calculated from V = ∂ψ ÷ ∂x and U = −∂ψ ÷ ∂y, not-
ing that positive anomalies of ψ correspond to negative pres-
sure anomalies under geostrophic conditions. Zonal equatorial 
winds in the SETIO are characterised by their average over the 
area defined by 1°N–1°S and 80–90°E, which is within the 
region of highest wind variability (see Fig. 2c). Upwelling- 
favourable winds along the coast of Sumatra are characterised 
by the average of the coast-parallel wind component from 4°S 
to the equator and within 100 km of the coast. In analogue to 
the common definition of westerly wind bursts in the Pacific 
Ocean (see Eisenman et al. 2005), wind events (either along 
the equator or along the Sumatra coast) are defined here as 
situations in which the wind speed exceeds a threshold value 
of 4 m s–1 for more than 5 days. To this end, we also calculated 
the contribution of such events to the seasonal-averaged 
value. Anomalies are obtained by subtracting the monthly 
climatology from the original data and the standard deviation 
is derived using variation from the long-term mean. 
Composite maps are prepared by merging daily data based 
on different criteria described in the text. 

3. Results and discussion

3.1. Climatology 

It is well known that the centre of deep atmospheric con-
vection is located over the eastern equatorial tropical Indian 
Ocean region during the periods of January–May and 
October–December (Hendon and Glick 1997; Ashok et al. 
2001; Schott and McCreary 2001; Webster et al. 2002; Li 
et al. 2003; Shinoda et al. 2013). However, during the 
months of boreal summer and autumn (i.e. the IOD season), 
the centre of deep tropical convection shifts northward to 
the Bay of Bengal (Shukla 2014), as also seen in our OLR 

distribution (Fig. 2a), where a local OLR minimum estab-
lishes over the Bay of Bengal. This is also consistent with the 
notion that surface winds tend to blow towards the centre of 
deep convection. Meehl (1987) concluded that synoptic- 
scale deep convective activity is characterised by an OLR 
value below a threshold of 220 W m–2. Applying this identi-
fier to the eastern tropical Indian Ocean shows that a large 
portion the SETIO region still exhibits deep atmospheric 
convection during the IOD season (Fig. 2a), noting that 
the climatological mean surface winds are characterised 
by a south-easterly direction during this period (Fig. 1a). 

3.2. Intraseasonal variability 

Atmospheric tropical convection is a highly unstable and 
irregular phenomenon that exhibits pronounced intraseaso-
nal variability. During the IOD season, the strongest OLR 
variability develops in two regions: (1) in the Bay of Bengal 
and (2) over the SETIO region (Fig. 2b). The large variability 
of zonal surface winds (Fig. 2c) confirms that deep tropical 
convection is a regular feature of the SETIO region during 
this season. 
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Fig. 2. Horizontal distributions for the IOD season (June– 
September) for the years 1988–2016 of (a) climatological values of 
OLR (W m–2), arrows show average the surface-wind distribution; 
(b) the standard deviation of daily OLR (W m–2); and (c) the standard
deviation of daily zonal wind speed (m s–1). Rectangles show the
SETIO region (80–110°E, 0–10°S).
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Using daily data, deep tropical convection events during 
the IOD season are further analysed by defining such events 
by OLR anomalies <−20 W m–2 (Fig. 3). The distribution of 
composite OLR anomalies falling within this criterion con-
firms that the centre of convective activity is located within 
the SETIO region (Fig. 4a), consistent with the OLR varia-
bility displayed in Fig. 2b. The corresponding composite 
field of surface winds (Fig. 5a) shows that such deep 
convection events relate to westerly wind anomalies along 
the equator in conjunction with north-westerly wind 
anomalies along Sumatra’s western coastline. Note that the 
remainder days of the OLR time-series with OLR anomalies 
>−20 W m–2 yield a composite distribution (results not 
shown) very similar to that corresponding the climatological 
average that is characterised by south-easterly winds along 
Sumatra’s western coastline. 

The tropical convection within the SETIO region weakens 
substantially during pIOD events, whereas enhanced tropical 
convection develops in the western equatorial Indian Ocean 
(e.g. Ashok et al. 2001; Schott and McCreary 2001; Li et al. 
2003). This is consistent with our composite map of OLR 

anomalies for pIOD events of 1994, 1997 and 2006 (Fig. 4b). 
In these years, atmospheric convection in the SETIO region is 
largely suppressed, characterised by positive OLR anomalies 
with values >20 W m–2 and weak atmospheric convection 
with OLR anomalies in a range between −10 and −5 W m–2 

occurs in the western equatorial Indian Ocean (40–60°E). 
The corresponding spatial distribution of wind anomalies 
shows the existence of easterly wind anomalies along the 
equator together with south-easterly wind anomalies form-
ing along Sumatra’s western coastline (Fig. 5b). 

3.3. SETIO cyclones 

A closer analysis of daily atmospheric data reveals that 
strong events of deep atmospheric convection in the SETIO 
region coincide with the creation of relatively short-lived 
cyclonic wind patterns (Fig. 6 shows examples). Many 
cyclones, henceforth referred to as ‘SETIO cyclones’, consist 
of westerly wind along the equator and north-westerly wind 
along Sumatra’s west coast, which is consistent with the 
wind distribution shown in Fig. 5a. To derive the statistics 
for SETIO cyclones, we employed the same methodology 
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years 1988–2016. The thick black line is a 21-day running mean. The dashed red line shows a threshold of −20 W m–2, used in this work as an 
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that is used for the identification of westerly wind bursts in 
the equatorial Pacific (see Eisenman et al. 2005). Based on 
this methodology, SETIO cyclones were defined as westerly 
equatorial wind events with wind speeds exceeding a thresh-
old value of 4 m s–1 for more than 5 days. With this method, 
we could identify a total of 162 SETIO cyclones, yielding an 
average number of 5.7 cyclones per IOD season. The identi-
fied cyclones are characterised by westerly equatorial winds 
(Fig. 7a) in conjunction with north-westerly wind anomalies 
along Sumatra’s west coast (Fig. 7c). Note that most of 
the identified cyclones coincide with OLR anomalies 
<−20 W m–2, which is indicative of the presence of deep 
atmospheric convection events. 

Based on the identified cyclone events, we reconstructed 
the typical lifecycle of a SETIO cyclone in the form of daily 
sequences of the anomalies of OLR, wind speed and hori-
zontal streamfunction (Fig. 8, 9). A few days before the 
event peak, defined as a westerly equatorial wind burst, a 
region of negative OLR anomalies starts to form along ~5°S 
in the SETIO region (Fig. 8). This OLR anomaly intensifies to 
large values of −50 W m–2 in a longitude range of 80–90°E, 
indicative of enhanced tropical convection. Concurrently, 
westerly wind anomalies develop along the equator between 
90 and 100°E that rapidly intensify into a strong westerly 
wind burst. During this development, the streamfunction indi-
cates the formation of cyclone centred in the SETIO region. 
This cyclogenesis leads to the intensification of north-westerly 
wind anomalies by ~3 m s–1 along Sumatra’s west coast 
within 2 days after the peak (Fig. 9). Four days after the 
peak, both OLR and equatorial wind anomalies have weak-
ened substantially, while strong north-westerly winds along 
Sumatra’s west coast persist. The latter disappear after 

another couple of days, and the streamfunction indicates 
a southward trajectory of the cyclone. Sumatra’s wind 
anomalies tend to follow equatorial wind anomalies with 
a correlation coefficient of 0.69 for a lag of 2 days. 

Several previous studies (Senan et al. 2003; Rao and 
Yamagata 2004; Iskandar et al. 2005; Chen et al. 2015;  
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Delman et al. 2016) noted abruptly triggered westerly wind 
events over the eastern equatorial Indian Ocean. Our analysis 
indicates that SETIO cyclones have a characteristic timescale 
of 10 days, which is within the range of previously reported 
synoptic-scale summertime tropical disturbances of periods 
3–8 days over the Bay of Bengal (Lau and Lau 1990) and 
quasi-biweekly oscillations of periods 10–20 days observed 
around Sumatra during boreal spring (May–March) (Wen 
and Zhang 2008). 

3.4. Interannual variability of cyclone events 

Our wind analysis reveals that SETIO cyclones are a common 
feature in the SETIO region (Fig. 10). On average, ~5 cyclone 
events form during an IOD season with a cumulative duration 
of ~50 days (Fig. 10b, c). The number of cyclone events during 

the IOD season varies interannually between 1 and 9 events, 
and so does their cumulative duration, varying between 10 and 
90 days. Few cyclones are formed during pIOD events (1994, 
1997, 2006 and 2019), and more cyclones than average are 
formed during negative phases of the IOD. The CCMP and ERA5 
wind data indicate the same minimum and maximum numbers 
of cyclone events, but CCMP data indicate more cyclones 
during the period 2011–2018 than do the ERA data. The 
analysis of this discrepancy is beyond the scope of this paper. 

For completeness, it should be noted that the IOD season 
of 2003 had relatively few (3) cyclones (Fig. 10b, c), indicative 
of a pIOD event. However, anomalous atmospheric convective 
activity in August 2003 altered the upwelling-favourable 
winds of the region and suspended the progress of a develop-
ing positive IOD event (Rao and Yamagata 2004). Further 
studies are required to explore the timing of individual cyclone 
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events and their effect on SST anomalies in such years in more 
detail. 

Normally, SETIO cyclones are effective over a cumulative 
period of 2 months, corresponding to half the IOD season. 
This frequent occurrence of SETIO cyclones explains their 
control on average equatorial zonal winds in the eastern 
Indian Ocean, which are almost absent otherwise (Fig. 11). 
Cyclones make up most of the average wind-stress magni-
tude of equatorial winds, and the number of cyclones deter-
mines the average wind stress, with is always westerly at 
longitudes of 80–90°E. The pIOD seasons of 1994, 1997, 
2006 and 2019 are characterised by the lowest westerly 
wind stress on record within longitudes of 80–90°E, noting 
easterly winds develop closer to Sumatra (not shown). Note 
that equatorial wind stresses derived from ERA5 data gener-
ally exceed CCMP wind stresses by ~30%, but the interann-
ual variability derived from both datasets is almost identical. 

In addition, SETIO cyclones also control the magnitude of 
upwelling-favourable winds along Sumatra’s west coast within 
4° of the equator (Fig. 12). On average, this region experiences 

mild south-easterly winds with a wind stress of 0.02–0.03 Pa. 
The SETIO cyclones operate to weaken this wind stress by 
0.01–0.02 Pa. The strongest winds occur during pIOD sea-
sons, which is explained by the absence of SETIO cyclones, 
consistent with previous findings (Kämpf and Kavi 2019). 

3.5. Discussion 

Although the existence of westerly equatorial winds in the 
eastern Indian Ocean is a well-known feature (e.g. Senan 
et al. 2003; Rao and Yamagata 2004; Iskandar et al. 2005;  
Chen et al. 2015; Delman et al. 2016), occasional synoptic- 
scale wind reversals along Sumatra’s coastline, identified 
here, have not been explicitly discussed in previous studies. 

The periodicity of SETIO cyclones is markedly different 
from the well-known Boreal Summer Intra-Seasonal Oscillation 
(BSISO) (Lawrence and Webster 2002). These authors applied 
a band-pass filter to explicitly remove the higher-frequency 
modes that occur during the boreal summer with explicit 
references to periodicities of 7–9 days earlier identified 
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by Lau and Lau (1990) and 10–20 days identified by  
Krishnamurti and Ardanuy (1980). This filter also removed 
the periodicity of SETIO cyclones. However, the analysis of  

Lau and Lau (1990) considered a much larger domain and 
returned dominant modes of synoptic variability in the Bay of 
Bengal and the East and South China Seas. This larger-scale 
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Fig. 10. Time series only showing IOD seasons 
(June–September) of (a) DMI and contributing 
SST anomalies, and number and cumulative 
duration (days) of SETIO cyclones derived from 
(b) CCMP wind data and (c) ERA5 wind data.
Arrows highlight the pIOD events of 1994, 1997,
2006 and 2019.
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Fig. 11. Time series only showing IOD seasons 
(June–September) of (a) season-averaged zonal equa-
torial wind stress (black line) averaged over the 
region 1°N–1°S, 80–90°E derived from (a) CCMP 
wind data and (b) ERA5 wind data. Red lines show 
the contribution that SETIO cyclone events make to 
the total value; dashed lines show the residual value. 
Arrows highlight pIOD events of 1994, 1997, 2006 
and 2019.    
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variability overshadowed the less pronounced variability asso-
ciated with SETIO cyclones. Krishnamurti and Ardanuy (1980) 
identified ‘monsoon breaks’ with a period of 10–20 days from 
atmospheric pressure data at 5° spatial resolution, which is too 
coarse to resolve SETIO cyclones. 

For completeness, it is worthwhile to compare the equa-
torial dynamics of the Indian Ocean with that of the Pacific 
Ocean. The normal situation in the eastern intertropical 
Pacific Ocean is characterised by easterly equatorial trade 
winds together with south-easterly winds along Peru’s coast, 
where it usually creates excessive cold-water upwelling 
(see Kämpf and Chapman 2016). Occasionally, westerly 
wind bursts initiated over the oceanic Warm Pool in the 
western equatorial Pacific trigger an El Niño event that oper-
ates to suppress the Peru upwelling (e.g. McPhaden 1999). 
Conversely, westerly wind bursts and the suppression of 
upwelling is the normal situation in the eastern intertropical 
Pacific Ocean, and the intensification of cold-water upwelling 
is related to the absence of equatorial wind bursts. Hence, 
wind-disturbances strongly modulate the intensity of coastal 
upwelling and associated SST anomalies in both oceans. 
However, the intensity of equatorial upwelling is markedly 
different. In the Pacific Ocean, easterly trade winds induce 
continuous equatorial upwelling which is enhanced near the 
Peruvian coast. Due to the effect of SETIO cyclones, equatorial 
winds in the eastern Indian Ocean tend to be generally west-
erly and hence operate to suppress equatorial upwelling. 

4. Conclusions

This work reveals the existence of a new type of atmospheric 
cyclone, called a SETIO cyclone, that frequently forms in the 
south-east tropical Indian Ocean during late austral winter 
months (June–September). The special feature of SETIO 
cyclones is that their northern flank constitutes westerly equa-
torial wind events, whereas their eastern flank of north- 
easterly wind anomalies operates to weaken upwelling along 
Sumatra’s west coast. Overwhelming scientific evidence from 
previous studies suggests that the wind variability in the 
SETIO region controls the IOD. Hence, it is reasonable 
to postulate that SETIO cyclones play a central role in the 
dynamics of the IOD. Future studies should explore which 
atmospheric or oceanic conditions support or suppress the 

formation of SETIO cyclones. For instance, Sumatra’s Barisan 
Mountains reach heights of up to 3.8 km and therefore pose a 
topographical barrier for tropospheric disturbances. Future 
studies should investigate how much topographic interactions 
with this mountain range can lead to the spin-up of westerly 
equatorial wind disturbances into mature SETIO cyclones. 
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