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SUMMARY 
 

Many opencast mines inhabit thousands of square km area, which are productive and commercial Australia wide. Hundreds of volumes 

and varieties of data dimensions and facts exist in the opencast mining areas. The data sources linked with various opencast mines are 

often heterogeneous and multidimensional. Data modelling is challenging in a Big Data scale, at times precluding the data integration 

process. The mineralization connected to opencast mines occurs in shafts, pit slopes, ramps and benches with varying geometries and 

configurations in large-scale geographic and periodic dimensions. The limits of the mineralization at places are either unknown and or 

ambiguously interpreted. The Big Data, in the context of the Australian mining industry, are due to the explosive growth of data sources 

and their uncontrolled management in many national and multinational companies. New knowledge is required for interpreting new 

opencast mining areas and their mineralization. For sustainable production, the knowledge of the connectivity between mineralization 

and its associated opencast mines is constrained. We propose an empirical modelling, analysing hundreds of attribute dimensions and 

fact instances of geological and geophysical vintages in the mining areas. Different data constructs and models are built for logical 

metadata, accommodating it in a multidimensional warehouse repository, as a DOME solution. It is an innovative solution to the mining 

industry's Big Data problem including the opencast mine planning and design, adding values to the existing domain knowledge with 

new interpretations. Various geological events attributed to the interpretation and distribution of mineralization are useful for the 

opencast mine managers. 
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INTRODUCTION 
 

Lack of knowledge on the opencast mines, skilful interpretation of their boundaries and the connectivity between opencast benches 

and mine mineralization (Aitken and Reid, 2000) including the absence of mining boom, the exploration and production of many mines 

have been held up in various regions in Australia. Besides, large volumes and varieties of data associated with opencast systems are 

underutilized and the way explorers interpret, perceive and extract knowledge from various events of mining geology and geophysics 

(Catchpole and Robins, 2013) has not been tactical.  Innovative database approaches, such as data warehousing and mining (Anahory 

and Murray, 1997) are proposed to address the data integration, interoperability and the systems’ connectivity with a quest to improve 

the mine mineralization. The existing data management practices (Berson and Smith, 2004 and Nimmagadda et al. 2014) and other 

application scenarios are not compatible in the prevailing in opencast mine contexts. We articulate various new data schemas and 

integrated frameworks as a measure of systems’ development process (Damiani, 2008 and Dhar et al. 2014) for mineral exploration 

and reenergizing the mining industries (Catchpole and Robins, 2013). As illustrated in Fig. 1, there may be many bench systems 

associated with opencast and geomorphic systems, in which a sustainable management is needed through increased understanding of 

the systems’ connectivity in geographically spread unstructured data sources. 

 

 
Fig. 1: Sustainable ecosystems research – Opencast mining – building a case for DOME 

 

For exploring the systems’ connectivity, the domain ontologies (Aitken and Reid, 2000 and Nimmagadda and Dreher, 2012) are built 

with likely development of an ontology-based data warehouse repository, an integrated approach.  Various surveys-mines-permits’ 

data sources are considered in the multidimensional modelling process. Hundreds of dimensions and attribute instances are identified 
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and at places conceptualized and contextualized because of the existence of unknown mine attributes and inherent data quality 

challenges. Besides, geological and geophysical (G & G) survey domains comprise of millions of geographic point, line and areal 

contour dimensions and fact data instances that vary with space and time, including data instances pertained to many associated 

opencast mining data entities. The goal of the research is to build constructs and models for simulating a digital opencast mining 

ecosystem (DOME) articulations representing computer simulated opencast mining areas and generate attribute cubes for visualization 

and interpretation. The motivation is the existence volumes and varieties of hugely spread and geologically complex mining areas, 

interpreted in Big Data size and scale. To implement the DOME solutions in various application scenarios of mining industry novel 

and holistic data modelling methodologies are needed including strategies of data integration from multiple domains of opencast mines. 

 

METHOD AND RESULTS 

 
We introduce a design science information system (DSIS) a proven information system (IS), an analytical approach by staging 

purposeful artefacts, addressing the ecosystems’ issues and evaluating them through a variety of utility data properties (Venable et al. 

2016). We relate to the ontological descriptions and their role in the digital ecosystems’ modelling. We aim at evolving artefacts in the 

DSIS driven Multidimensional Warehouse Repository for data mining, visualization and data interpretation for new knowledge 

discovery. Data mining and interpretation of cognitive patterns hidden in trillions of exploration data that combined with geospatial 

Big Data are critical goals of the geo-informatics. Extracting useful knowledge on favorable geological-structures that trap the mine 

mineralization and commercial ores of the opencast mining ecosystems has implications on the application of Big Data technology in 

the mining business.   

 

Further, we reiterate the DSIS is a simulation of the digital opencast mining ecosystem (DOME) for which various domain ontologies 

and their descriptions are made for opencast mining multidimensional data sources in different geographic dimensions. There are many 

productive mines worldwide, each with thousands of sq. km. of areal extents with complex topographies and geographies. Many 

minerals and mines are under active exploration for many decades in Western Australia, and more than 50 percent contribute to the 

Australian economy. Extracting new knowledge and information from volumes and varieties of data sources is crucial for sustainable 

opencast mining management and investigating the connectivity among opencast benches and mineralization. With the advent of new 

concepts and technologies, innovative ideas emerge in documenting and managing mines’ databases, especially in areas, where 

thousands of mining pits, G & G vintages coexist, and their logical integrated interpretation becomes necessitated. Integration of Big 

Data tools (Chen et al. 2012) with the proposed framework, from which we explore usefulness in connecting various systems in the 

DOME contexts. The holistic DSIS approach and their artefacts that guide the DOME ensure exploring connections among various 

mining pits, benches and making the opencast systems more sustainable and productive (Chatpole and Robins, 2013). A star schema 

modelled in Fig. 2, demonstrates the connectivity between open pit data dimensions and other associated attributes of the mining areas. 

In database perspective, there are several such schemas based on the size of opencast mining provinces and connectable dimension 

attributes with fact tables with one-to-many data relationships. Other possible data relationships can also be explored based on business 

rules and constraints set in the modelling process. 

 

 
Fig. 2: A schema drawn for making connections between attribute dimensions 

 

Big Data Role in the Mining Operations 

 

As we identify various features of the Big Data “volume, variability, velocity, visualization, veracity and value” (Agarwal 

et al. 2014 and Chandrashekaran et al. 1999) from multiple data sources, hundreds of attribute dimensions including 

conceptualized and contextualized attributes emerge from large volumes in the star-schema dimensional modelling.  For 

the systems dealing with the Big Data of the opencast mining exploration industries, the field of geo-informatics plays an 

inclusive role in the study of fundamental geological problems owing to the exponential explosion of sequence and 

structural information with time and geography (Nimmagadda, 2015). There are two major challenging areas in geo-

informatics: data management and knowledge discovery. 

 

Extracting new knowledge on favorable geological-structures that hold mineralization and commercial ores of the 

opencast mining ecosystems have implications on the feasibility and applicability of Big Data analytics in the mining 
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business. To substantiate the reasoning of Big Data, we demonstrate the existence of multiple systems (Fig. 1) within a 

single ecosystem. As shown in Fig. 3, data from multiple domains and systems link with bench geometries of the opencast 

mining and associated geomorphic ecosystems. The economic viability and the sustainability of the mineralization in the 

mining areas are assessed with the systems connectivity. Sustainability in which case may depend on the production of 

mineralization with periodic time dimension (Downes et al. 2014), each mining district of a particular system or systems 

can produce minerals for longer periods without any interruption. But commercially, the sustainable exploration and 

subsequent drilling campaigns can help make discoveries or continue to know the limits of the existing opencast mining 

systems or add new mineral reserves to the existing ones (Mineral and Energy Resource Exploration, 2012). 

 

 

Fig. 3: Data warehouse architecture for integrating opencast ecosystems 

 

Big Data Implementation 

 

Once the warehoused metadata is ready, the data storage and computed data views for visualization and interpretation of new 

knowledge and its management are assessed. Onsite workstations use various real time high-performance computing and data 

processing capabilities. For implementing the integrated framework in the current contexts, we evaluate again the Big Data tools, 

regarding the storage, data processing, and other computing requirements. The Big Data storages (for volumes and varieties) and their 

requirements in mining industries are different, compared with conventional resources’ business storage systems. The data structures 

continuously evolve in mining areas with data varieties, multiple data types, and their data relationships. Based on the types of 

structuring, data storage, and retrieval methods, we consider the scalability, extensibility and compatibility criteria. Onsite workstations 

use various computing and data processing capabilities. The grids are computed, and map views are extracted from digital ecosystems’ 

metadata that may consist of several opencast mining data views and mineralization areas. In this context, the cloud clusters capture 

the required data from multiple opencast mines in large-scale geographic dimensions. The clouds, categorizing the specific clusters are 

migrated to our workstations to build models and integrate them into warehouse metadata structures. We uninterruptedly monitor the 

G & G data qualities and their veracity on workstations, for better visualization and metadata interpretation, ensuring that the new 

knowledge obtained in various DOME contexts is implementable in various geographic contexts. An implementation of such digital 

ecosystem is demonstrated through the data integration process flowchart as shown in Fig. 4. The Big Data volumes and varieties are 

extracted from the opencast mining ecosystem as demonstrated in Fig. 4. The G & G and mining data sources are integrated into the 

warehouse environment to generate metadata cubes (Pujari, 2002 and Zhong et al. 1996). These data cubes are further explored for 

mineralization connections through visualization, interpretation and multiple opencast mining systems in real time. Data schemas 

ensure representing bench geometries (BG), mineral occurrence (MO) areas and mining logistics (ML) from the Australian situations 

and integrate them in a MO-BG-ML data instances’ warehouse (Fig. 4). Data mining (Pujari, 2002), visualization and interpretation 

are performed on interactive interpretation workstations in real time. 

 

 
Fig. 4: DOME implementation framework  
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In the opencast provinces, data schemas are generated from bench geometries (BG), mineral occurrence (MO) areas and mining 

logistics (ML) from the Australian situations and integrate them in a MO-BG-ML data instances’ warehouse. The third application 

domain is geomorphic information system and its management (Nimmagadda and Dreher, 2009) for interpreting the areal extents and 

overburden rock properties of the earth's surface. The issue of controlling large-scale opencast mining through ripping of overburdened 

host rocks is another challenging application. The Big Data integration, modelling semantics base conceptualized data relationships 

among multiple attribute dimensions, and mining of several interpretable data views of quality geological and geomorphic structures, 

effective for holding the mineralisation are key areas of the current DOME research applications. Several large bubbles, having Cu 

grades of large pits, the structural topography of mining pits, bench grades, and bench frequency attributes exhibit several clusters, as 

interpreted in the mining areas (Zhong et al. 1996). As shown in Fig. 5 the bubble plot views are immensely useful for mining 

professionals and mineral asset managers. 

 

 
 

Fig. 5: The bubble plot views (extracted from DOME metadata) of mineral grades and between mineral pricing with periodic 

dimension attribute 

 

CONCLUSIONS 
 

The methodology is effective in integrating and connecting dimensions and their attributes, associated with the structure, mineralization 

and other elements and processes of the opencast mining systems. The DOME methodology ensures a sustainable exploration and 

production of mineralization in Australian contexts. The fine-grained data structuring, data mining, visualization and interpretation 

artefacts deduced for the DOME metadata demonstrate their implementation in the opencast mining field areas. Several constructs and 

models are designed with the Australian contexts with a quest obtaining new knowledge on the connectivity of opencast mines through 

DOME approach including knowledge of geological structuring associated with the mineralization.  
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