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SUMMARY 
 

We have developed an algorithm and released open-source code for the 1D inversion of magnetotelluric data. The algorithm 

uses trans-dimensional Markov chain Monte Carlo techniques to solve for a probabilistic conductivity-depth model. 

 

The inversion of each station employs multiple Markov Chains in parallel to generate an ensemble of millions of 

conductivity models that adequately fit the data given the assigned noise levels. The trans-dimensional aspect of the 

inversion means that the number of layers in the conductivity model is solved for rather than being predetermined and kept 

fixed. Each Markov chain increases and decrease the number of layers in the model and the depths of the interfaces as it 

samples. 

 

Once the ensemble of models is generated, its statistics are analysed to assess the posterior probability distribution of the 

conductivity at any particular depth, as well as the number of layers and the depths of the interfaces. This stochastic 

approach gives a thorough exploration of model space and a more robust estimation of uncertainty than deterministic 

methods allow. 

 

The method’s application to cover thickness estimation is discussed with synthetic and real examples. Inversion of complex 

impedance tensor and also derived apparent resistivity/phase data are both demonstrated. It is found that the more 

pronounced layer boundaries allow more straightforward interpretation of cover thickness than that from deterministic 

smooth model inversions. It is concluded that thickness estimates compare favourably with borehole stratigraphic logs in 

most cases, and that the method is a useful addition to a range of cover thickness estimation tools. 
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INTRODUCTION 
 

Conventional methods for 1D inversion of magnetotelluric data are usually based on deterministic optimization techniques 

(Constable et al., 1987). The solution is a single model, which fits the data within the assigned noise levels and conforms as 

closely as possible to the constraints imposed by some form of regularization. (Brodie and Sambridge, 2012) pointed out that 

due to non-uniqueness and data errors, the single model is just one of an infinite suite of models that could possibly fit the 

data within the noise levels. On its own, the single solution provides no information about the non-uniqueness or uncertainty 

in the solution. This lack of uncertainty information is recognized as a drawback of single-solution deterministic inversions. 

Some methods make use of the posterior model covariance matrix to estimate model parameter uncertainties. However, 

strictly speaking, such estimates are accurate only for linear problems and they cannot take account of the non-linearity or 

non-uniqueness of the electromagnetic inverse problem. They also often reflect the particular choice of regularization 

parameters. 

 

To tackle the problem of non-uniqueness and uncertainty we present a trans-dimensional (often called reversible jump) 

Markov Chain Monte Carlo method to perform 1D magnetotelluric inversion via Bayesian inference. The algorithm provides 

not only a best fit model, but also a wealth of information about the uncertainty and non-uniqueness of the problem. The 

trans-dimensional aspect of the algorithm allows the number of layers in the resistivity model to be a parameter to be solved 

for in the inversion itself, meaning the number of layers does not need to be fixed in advance. 

 

Transdimensional inversion has gained increasing traction in geophysics in the last decade, having being applied to 

resistivity data (Malinverno, 2002), seismic tomography and receiver function data (Bodin and Sambridge, 2009; Bodin et 

al., 2012), airborne electromagnetics data (Minsley, 2011; Brodie and Sambridge, 2012) and marine controlled source 

electromagnetic data (Ray and Key, 2012). 
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Our paper describes our trans-dimensional inversion algorithm, the required input data and settings, the resultant uncertainty 

information and how to access the open source code. In principal the method can be applied to any range of frequencies, 

however we consider audio-frequency magnetotelluric (AMT) data because of its particular relevance to cover thickness 

estimation. Our algorithm is demonstrated with synthetic and real AMT data. The synthetic example demonstrates the extent 

of uncertainty information than can be gleaned from the method. The real example shows how the method has been 

successfully used to estimate cover thickness to within ten percent. 

 

METHOD AND RESULTS 

 
Inversion Algorithm 

 
Our inversion program, which we call rjmcmcmt, is built upon an open-source library, developed at the Research School of 

Earth Sciences, Australian National University, called rj-McMC Hawkins (2013). The C library provides low-level routines 

for running reversible jump Monte-Carlo Markov chains for 1D and 2D spatial regression problems and also allows 

generalization to any spatial 1D and 2D problem through a user supplied data misfit function. Specifically, our program 

makes use of the library’s 1D forward model functionality through the sampling routine MPI_part1d_forwardmodel. 

 

Our program uses a 1D forward model function that generates magnetotelluric data, at a specified list of frequencies, for an 

isotropic layered resistivity model. The program has options to invert data in the form of either real and imaginary 

impedance, or apparent resistivity and phase, directly from Electrical Data Interchange (EDI) format files. When inverting 

impedance data we use the determinant of the impedance tensor (𝑧 = √𝑧𝑥𝑥𝑧𝑦𝑦 − 𝑧𝑥𝑦 𝑧𝑦𝑥). When inverting apparent 

resistivity and phase data, we use the geometric mean of the apparent resistivity (𝜌 = √𝜌𝑥𝑦𝜌𝑦𝑥) and the arithmetic mean of 

the apparent phase (𝜃 = [𝜃𝑥𝑦 + 𝜃𝑦𝑥] 2⁄ ). 

 

Relative and absolute noise standard deviation estimates for the data to be inverted are specified and combined (assuming 

independence) to generate the total noise estimate that is used in the inversion to calculate the error normalized (L2-norm) 

data misfit. 

 

The user specifies the maximum number of layers allowed in the resistivity model, and the maximum allowed depth of the 

layer interfaces. The algorithm assumes uniform prior probability for the number of layers in the model and a log-uniform 

prior on the depths of the layer interfaces. The latter is because in the model depth is parameterized in terms of log-depth.  

The user also specifies a minimum and maximum resistivity range that is allowed, and the prior probability is assumed log-

uniform over this interval, again this is because resistivity is parameterized in terms of log-resistivity. 

 

The number of samples (models) for the burn-in period of the Markov chain is specified, which allows the data misfit to 

converge to an acceptable level before any samples are accepted into the ensemble. The total number of samples for each 

chain is also specified by the user. Since, the program is parallelized using the Message Passing Interface (MPI) paradigm, 

multiple Markov chains can be set running in parallel on a cluster computer or multi-core workstation, and the generated 

samples are transparently combined into a single ensemble. 

 

The sampling routine (MPI_part1d_forwardmodel) is set running on all chains. Each chain is initialled with a model 

randomly drawn from the prior distribution. As the chain samples new models the algorithm is allowed to make one of four 

types of perturbations to the current model: (a) change the resistivity of a layer (value-change); (b) move an interface up or 

down (move); (c) create a new interface (birth); or (d) remove an interface (death). The new model is proposed by drawing 

random perturbations from a Gaussian proposal distribution. The proposed model is either accepted or rejected from 

inclusion onto the end of the chain based on an acceptance criterion ratio. 

 

The acceptance criterion ratio is theoretically derived such that the Markov chain will eventually converge to an ensemble 

that is a good approximation of the posterior probability density (PPD) of the model given the data for the supplied noise 

estimates. Details of the derivation of the acceptance ratio are given in (Bodin et al., 2012). 

 

For the value-change and move propositions, the sampling algorithm favours accepting models with high likelihoods (low 

data misfits) and high prior likelihoods. For the birth and death propositions the acceptance probability is also a balance 

between the proposal probability, which encourages resistivity changes between adjacent layers, and the difference in data 

misfit, which penalizes resistivity changes if they degrade data fit. Also, given similar data fits, a proposed model has more 

chance of being accepted if the proposed model has fewer layers than the current model. This gives the algorithm a form of 

natural parsimony (Malinverno, 2002; Bodin and Sambridge, 2009). 

 

During the sampling, after the burn-in period, new models are added into a discretized 2D PPD posterior probability 

histogram. That is, for each discrete histogram depth-bin, the model resistivity is determined and the corresponding 

histogram resistivity-bin count is incremented. This progressively builds up an image representation of the desired posterior 
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probability. Similarly, a 1D changepoint histogram is built up by incrementing all depth-bins of the 1D histogram in which a 

layer interface falls. 

 

At the conclusion of the sampling the 2D PPD histograms and the changepoint histograms from the parallel chains are 

merged.  Several statistics are then extracted from the histograms including the mean, mode, 10th, 50th (median), and 90th 

percentile log-resistivity values in each depth-bin.  Also the single most probable (highest likelihood) and lowest misfit 

models from all chains are saved. It is the distance or spread between the 10th and 90th percentile models that we may use to 

make assessments about model uncertainty - the narrower the spread the lower the uncertainty. The 1D changepoint 

histogram gives us insight into where the layer interfaces are most likely to occur. 

 

Synthetic Data Example 
 

In this and the following section we present results from testing the rjmcmcmt program on synthetic and real data. All 

examples were run on 128 parallel MPI chains using the high-performance cluster computer hosted by the National 

Computational Infrastructure (NCI). For the synthetic example we constructed the four-layer 1D resistivity model shown in 

Error! Reference source not found.. The model is a proxy for a for cover thickness estimation in some regions of 

Australia.  

 

The top layer represents moderately conductive unsaturated near-

surface transported regolith. The second layer represents highly 

conductive regolith material, typically saline or highly weathered 

clay rich sedimentary rocks. The third layer represents 

moderately conductive partially weathered rocks. The bottom 

layer represents resistive unweathered igneous and metamorphic 

crystalline basement rocks. 

 

Synthetic data, in the form of apparent resistivity and phase, were 

generated at 40 frequencies over the AMT frequency band of 

1 Hz to 10 kHz by forward modelling of the synthetic resistivity 

model shown in Error! Reference source not found., We added 

simulated Gaussian noise, which for apparent resistivity 

consisted of 5% relative error and absolute error of 0.01 Ω m, 

and for apparent phase data consisted of 2% relative noise and 

absolute error of 0.5°, 

 

We then inverted the synthetic data using our rjmcmcmt program using 128 independent Markov chains in parallel.  In the 

inversion we assigned data error estimates consistent with the simulated values above (i.e., 5%, 0.01 Ω m, 2% and 0.5°), All 

chains had a burn-in of 10,000 samples and length of 1 million samples, resulting in 128 million samples in total. We set the 

maximum number of layers to 20, the maximum allowable depth for layer interfaces to be 4000 m, and the allowable range 

of layer resistivities to be 0.1 to 100,000 Ω m respectively. 

 

Error! Reference source not found. summarizes the results of the inversion of the synthetic data. Error! Reference source 

not found.a and Error! Reference source not found.b show the synthetic apparent resistivity and phase data, with their 

assigned error bars, and the predicted data from the forward model of the best fitting model in each of the 128 Markov 

chains (which happen to plot almost exactly on top of one another). There is nothing particularly enlightening about the best 

fitting model in each chain, but they are simply plotted to show that that they fit the data. 

 

Error! Reference source not found.c shows the convergence history of each Markov chain (blue traces). The vertical black 

line shows the end of the burn-in period at 10,000 samples, before which the chains are converging from high data misfits 

down to the expected data misfit of 80 (i.e., the total number of data) represented by the horizontal line. After the burn-in the 

chains remain fitting the data at close to the expected value, indicating that they are neither under or overfitting the data. 

 

Error! Reference source not found.d shows the histogram of the number of layers in the models collected into the 

ensemble. It indicates that one or two layers cannot satisfactorily fit the data, and that a three layer model is the most likely. 

Four layers, the true number of layers, are also highly likely, but not as likely as three layers. For more than four layers the 

likelihood rapidly tails off. 

 

Error! Reference source not found.e shows the log of the PPD histogram in pseudo-coloured shading. The higher 

probability areas of model space have the hotter (red) shading, and white areas have practically zero probability. Plotted on 

top of the shading is the true synthetic model (magenta). Also plotted are various summary models that have been extracted 

from the PPD histogram, specifically: the median or 50th percentile model (black); the 10th and 90th percentile models 

(black dashed); the mean model (blue); and the mode model (green). Figure 3 shows slices through the PPD histogram at 

four different depths to provide extra insight and detail. 

 

 
Figure 1: Four layered synthetic resistivity model 

used in the synthetic data inversion example. 
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The PPD indicates that, as expected, the very conductive second layer is well resolved because there is a small spread 

between the 10th and 90th percentiles and the very sharp histogram slice through the 200 m depth-bin (Figure 3). The more 

resistive top layer is also well resolved, but there is some possibility of a higher resistivity than the true (synthetic) value. 

 
Figure 2: Plot summarising the results of the synthetic inversion, showing: (a) & (b) apparent resistivity and phase 

data and error bars (red) and the best fitting model from each Markov chain (blue); (c) data misfit convergence 

history for each Markov chain; (d) histogram of the number of model layers; (e) the true synthetic model, with the 

summary median, 10th and 90th percentile, mean and mode models over lying the pseudo-coloured shaded image of 

the 2D log-PPD histogram; and (f) the changepoint histogram showing the probability of where layers interfaces 

occur. 

 

The 500 m PPD slice on Figure 3 shows that there is a quite small indication of a resistivity equalling the true layer three 

resistivity value (100 Ω.m) at that depth. However it shows that the resistivity of the fourth layer (5000 Ω.m) is actually 

favoured much more. The PPD shows that this is the case throughout the range of the third layer (400 m to 980 m). In the 

fourth layer, at 1200 m depth the maximum probability is more or less aligned with the true resistivity (5000 Ω.m), however 

there is still some possibility of resistivities as low as 100 Ω.m. 

 

This is a good demonstration of how the inversion of the 

synthetic data has not been able to clearly resolve the third and 

fourth more resistive layers into two separate layers. The 

parsimonious nature of the rj-McMC algorithm has preferred the 

simpler three layer models, which still adequately fit the data 

within the assigned noise levels. Only the addition of 

independent constraining information could resolve this non-

uniqueness. 

 

Figure 2f is the 1D changepoint histogram that shows the 

probability of a layer interface occurring within a particular 

depth-bin. The large narrow peak at ~60m shows that the bottom 

of the first interface has been resolved accurately and with low 

uncertainty. The other peak occurs at ~415 m, just below the 

 
Figure 3: Slices through the synthetic inversion’s 

PPD histogram at four different depths. Note the y-

axis is clipped at 0.25 to allow extra detail to be 

shown. 
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interface between the second and third layers in the true model (400 m). This peak is broader, as would be expected, because 

of the diminishing sensitivity to interface position with depth.  Interestingly this second layer interface was resolved quite 

well even though the resistivities of the third and fourth layers were indistinguishable. The interface between the third and 

fourth layers.at 980 m was not resolved at all. 

 

Real Data Example 
 

The real data example is from AMT data collected in the Southern Thomson Orogen located in northern New South Wales 

and southern Queensland. Basement geology in this region is characterised as Palaeozoic rocks that underlie the Jurassic to 

Cretaceous Eromanga Basin sequences (Roach et al., 2015). The data were acquired to estimate cover thickness prior to a 

drilling programme and thereby reduce the uncertainty and risk associated with intersecting the targeted stratigraphy. 

. 

We selected AMT data from a station at the proposed borehole site called Adventure Way (AMT Station Adv1) for the 

example. We inverted real and imaginary components of the impedance tensor determinant for 51 frequencies in the range of 

1 kHz to 10 kHz. On both components we assessed the data errors to be 5% relative noise and 0.025 mV/km/nT noise floor. 

We ran the inversion using the exact same settings as in the synthetic example above (i.e., 128 chains, 10,000 burn-in 

samples, 1 million samples, 20 layers maximum, 4000 m maximum interface depth, and 0.1 to 100,000 Ω m resistivity 

range). 

 

A summary of the results are given in Figure 4 in the same fashion as for the synthetic example in Figure 2, except this time 

we have added the stratigraphy log from the Adventure Way borehole in Figure 4g. The results in Figure 4a-c show that the 

data were fitted successfully well before the burn-in. Figure 4d indicates that a 5 or 6 layer model is the most likely. 

 

The 2D log-PPD histogram shading and the summary models in Figure 4e suggests a high likelihood of a very conductive 

zone in the top 50 m that corresponds well with the Winton Formation (0-48 m) as shown on the borehole stratigraphy log 

Figure 4g.  There is also an indication of the existence of the interface between the Winton and Wallumbilla Formations at 

45-50 m on the 1D changepoint histogram (Figure 4f). 

 

The inversion suggests that the profile remains conductive, with some possibility of resistive zones, until approximately 

250 m where a significant transition from conductive to resistive material occurs.  The broad peak of the transition in the 

changepoint histogram between 225-275 m coincides with the Wyandra Sandstone Member Aquifer or Cadna-owie 

Formation.  Below 275 m the inversion profile is definitively resistive and is within 10% of where the crystalline basement 

greenschist begins at 300 m depth. 

 

 
Figure 4: Plot summarising the results of the real data inversion example: (a) & (b) real and imaginary impedances 

and error bars (red) and the best fitting model from each Markov chain (blue); (c) data misfit convergence history 

(g)
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for each Markov chain; (d) histogram of the number of model layers; (e) the summary median, 10th and 90th 

percentile, mean and mode models over lying the pseudo-coloured shaded image of the 2D log-PPD histogram; (f) the 

changepoint histogram showing the probability of where layers interfaces occur; and (g) the stratigraphy log from 

the adjacent borehole. 

 

OPEN SOURCE CODE 
 

The software is accessible as C++ source code and as executables for 64 bit Windows® PCs. The source code is packaged 

in a Git code repository and may be downloaded from Geoscience Australia’s GitHub® repository 

https://github.com/GeoscienceAustralia/rjmcmcmt. The code can be compiled using most modern C++ compilers on both 

Linux and Windows® based systems. The code is fully parallelized for execution on a high performance cluster computer or 

on a multi-core shared memory workstation via MPI.  In due course we also expect to make the algorithm available as a 

service on the Australian National Virtual Geophysics Laboratory (ANVGL) portal (http://www.anvgl.ga.gov.au). 

 

The source code and binaries are released under the GNU GPL Version 2.0 Licence, making it available for anyone to use at 

no cost, including for academic, government and commercial purposes. All of the programs are command line driven and 

hence do not have graphical user interfaces. The code will be accompanied by basic user documentation and examples. 

However, Geoscience Australia will not be providing user support for the source code installation and/or program usage. 

 

CONCLUSIONS 
 

The program that we have developed for 1D probabilistic inversion of magnetotelluric data is fully parallelized and has been 

made available in open-source form. The program can invert complex impedance tensor data, as well as derived apparent 

resistivity/phase data in EDI file format. 

 

It provides a wealth of information from the inversion of each station. This includes the a histogram of the probable 

conductivity-depth distribution, plus mean, mode, median and 10th and 90th percentile summary models, and a histogram of 

the probable interfaces depths. The algorithm provides more robust estimates of uncertainty than the traditional linearized 

deterministic methods. 

 

The synthetic example demonstrates the degree to which the resulting probabilistic information can be interpreted. It also 

nicely demonstrated the limitation of geophysical data due to non-uniqueness.  The real data example demonstrates how the 

method can be applied to cover thickness estimation and that the results compare favourably with borehole stratigraphy logs. 

An appealing feature of the method is the ability to pick the position of layer interfaces directly from the changepoint 

histogram. This allows a more straightforward and repeatable interpretation of cover thickness, and associated uncertainty, 

than is possible from regularized smooth model inversions. The method will be a valuable addition to a range of other cover 

thickness estimate tools. 

 

ACKNOWLEDGMENTS 
 

We thank Professor Malcolm Sambridge and Dr Rhys Hawkins from the Research School of Earth Sciences, Australian 

National University, for their advice on the method and assistance with their open-source rj-McMC library on iEarth. This 

abstract is published with the permission of the CEO, Geoscience Australia. 

 

REFERENCES 
 

Bodin, T. and Sambridge, M., 2009. Seismic tomography with the reversible jump algorithm. Geophysical Journal 

International 178(3), 1411-1436. 

 

Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K. and Rawlinson, N., 2012. Transdimensional inversion of 

receiver functions and surface wave dispersion. Journal of Geophysical Research 117(B02301).  doi: 

10.1029/2011JB008560. 

 

Brodie, R. C. and Sambridge, M., 2012. Transdimensional Monte Carlo inversion of AEM data. ASEG Extended Abstracts 

2012(1), 4. 

 

Constable, S. C., Parker, R. L. and Constable, C. G., 1987. Occam's inversion; a practical algorithm for generating smooth 

models from electromagnetic sounding data. Geophysics 52(3), 289-300. 

 

Hawkins, R., 2013. iEarth web page for rj-McMC. Online: http://www.iearth.org.au/codes/rj-MCMC. 

 

Malinverno, A., 2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. 

Geophysical Journal International 151(3), 675-688. 

 

https://github.com/GeoscienceAustralia/rjmcmcmt
http://www.anvgl.ga.gov.au/


 

 

 

 

AEGC 2018: Sydney, Australia   7 

 

 

 

 

 

Minsley, B. J., 2011. A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using 

frequency-domain electromagnetic data. Geophysical Journal International 187(1), 252-272. 

 

Ray, A. and Key, K., 2012. Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing algorithm. 

Geophysical Journal International 191(3), 1135-1151.  doi: 10.1111/j.1365-246X.2012.05677.x. 

 

Roach, I. C., McPherson, A. A., Clarke, J. D. A., Brodie, R. C., Doublier, M. P., Armistead, S. E., Skirrow, R. G. and Main, 

P. T. (ed), 2015. Southern Thomson Orogen VTEMplus AEM Survey: Using airborne electromagnetics as an UNCOVER 

aplication. Geoscience Australia. Record 2015/29. Online: https://d28rz98at9flks.cloudfront.net/83844/Rec2015_029.pdf. 


