
Supplementary material

Table S1. Primer sequences used to amplify gene-specific regions

For each gene the accession number and reference are given

cDNA	Primer sequence	Accession number	References
<u> </u>		1042455	
CycB2	Forward ATTCAATCTTGGAGAGGATTAAAG	AJ243455	Joubès et al. 2000
	Reverse GTAGCCATTTCAGCCCTATC		
CycD3	Forward CAAGGAGAAGGTGGAGAGGATG	AJ002590	Kvarnheden et al. 2000
	Reverse GGTGATGAAGTAACTGATGTAGC		
CDKB1	Forward ATGGAGAAATACGAGAAATTGGAG	AJ297916	Joubès et al. 2001
	Reverse ACGATGTAGAGAGAATGAGATAGC		
TIP41	Forward GCTGCGTTTCTGGCTTAGG	SGN-	Exposito-Rodriguez et
	Reverse ATGGAGTTTTTGAGTCTTCTGC	U321250	al. 2008

Fig. S1. Relationships between (*a*) pericarp volume and cell number, (*b*) pericarp volume and cell volume, and (*c*) cell number and cell volume. Each point is an individual fruit at the breaker stage of genotypes g36 (square), Moneyberg (circle) and g49 (diamond) measured in 5&5F (opened symbols and dash-dot lines), 5&2F (small symbols and continuous lines) and 2&2F (filled symbols and dashed lines) fruit load treatments. Slope (*a*) of regression is (*a*) $\alpha = 15.8$, R² = 0.48, P = 0.006 (5&5F); $\alpha = 20.0$; R² = 0.71, P < 0.001 (5&2F) and $\alpha = 18.2$, R² = 0.79, P < 0.001 (2&2F); (*b*) $\alpha = 1.08$; R² = 0.31, P = 0.04 (5&5F); $\alpha = 0.50$; R² = 0.05, P = 0.43 (5&2F), and $\alpha = 1.19$; R² = 0.12, P = 0.23 (2&2F), (*c*) $\alpha = -0.006$; R² = 0.006, P = 0.80 (5&5F), $\alpha = -0.017$; R² = 0.04, P = 0.50 (5&2F), $\alpha = -0.007$; R² = 0.002, P = 0.89 (2&2F).