Supplementary Material

Drought resistance of cotton (*Gossypium hirsutum*) is promoted by early stomatal closure and leaf shedding

Ximeng Li^A, Renee Smith^A, Brendan Choat^A and David T. Tissue^{A,B}

^AHawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.

^BCorresponding author. Email: D.Tissue@westernsydney.edu.au

File S1:

Table S1 Water potential thresholds for 12%, 50% and 88% loss of xylem conductivity (P_{12} , P_{50} and P_{88} , respectively) in different organs.

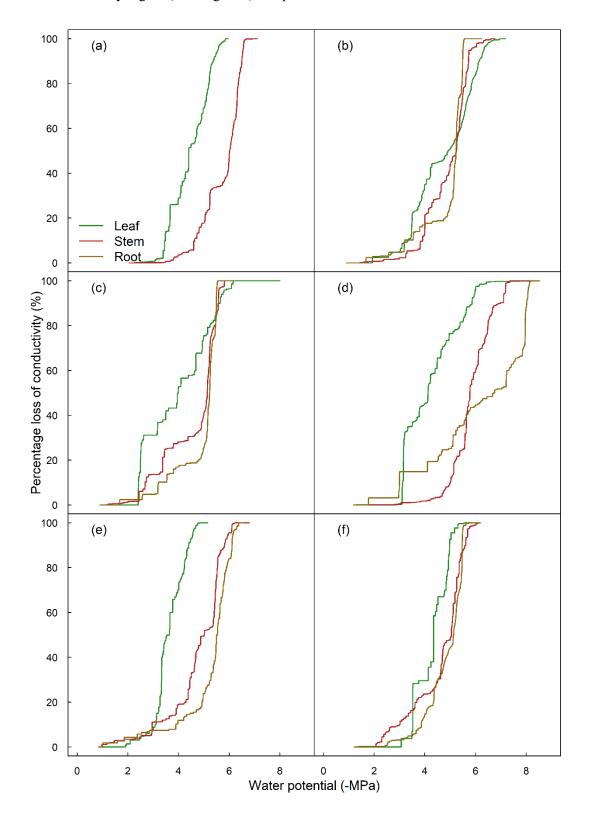
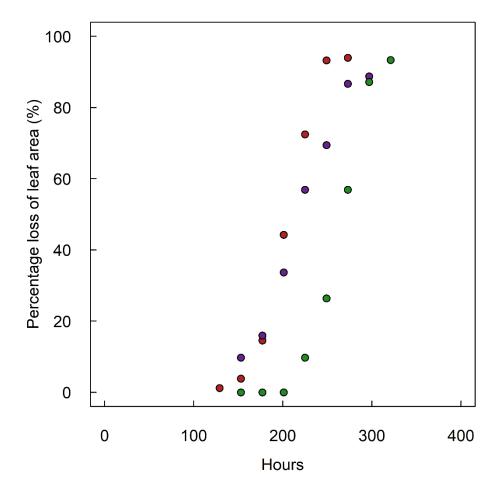

Figure S1 Vulnerability curves (VC) of leaf, stem and root of six cotton plants

Figure S2 Percentage loss of leaf area during in situ dry-down over time


Table S1 Water potential thresholds for 12%, 50% and 88% loss of xylem conductivity (P_{12} , P_{50} and P_{88} , respectively) in different organs. Data are shown as mean \pm standard error of mean (n=5-6 plants). Comparison across organs was performed using one-way ANOVA with Tukey's HSD *post hoc*. Values are significantly different at p \leq 0.05 level if followed by different letters.

Organ	P ₁₂	P ₅₀	P_{88}
Leaf	3.14±0.18a	4.24±0.18b	5.33±0.28a
Stem	$3.64 \pm 0.37a$	5.37±0.17a	$5.84 \pm 0.19a$
Root	3.64±0.2a	5.57±0.3a	6.11±0.49a

Figure S1 Vulnerability curves (VC) of leaf, stem and root of six cotton plants; root VC is missing for one plant. Across individuals, the water potential threshold for 50% xylem embolism (P_{50}) of leaves was consistently higher (less negative) compared to stems and roots.

Figure S2 Percentage loss of leaf area during *in situ* dry-down over time (shown as hours following termination of watering). Colors represent different individual cotton plants (n=3).

