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Abstract. Physiological and developmental traits that vary over time are difficult to phenotype under relevant growing
conditions. In this light, we developed a novel system for phenotyping dynamic traits in the field. System performance was
evaluated on 25 Pima cotton (Gossypium barbadenseL.) cultivars grown in 2011 atMaricopa, Arizona. Field-grown plants
were irrigated underwell watered andwater-limited conditions, withmeasurements taken at different times on 3 days in July
andAugust. The systemcarried four sets of sensors tomeasure canopyheight, reflectance and temperature simultaneously on
four adjacent rows, enabling the collection of phenotypic data at a rate of 0.84 ha h–1. Measurements of canopy height,
normalised difference vegetation index and temperature all showed large differences among cultivars and expected
interactions of cultivars with water regime and time of day. Broad-sense heritabilities (H2)were highest for canopy
height (H2= 0.86–0.96), followed by the more environmentally sensitive normalised difference vegetation index
(H2 = 0.28–0.90) and temperature (H2 = 0.01–0.90) traits. We also found a strong agreement (r2= 0.35–0.82) between
values obtained by the system, and values from aerial imagery and manual phenotyping approaches. Taken together, these
results confirmed the ability of the phenotyping system to measure multiple traits rapidly and accurately.
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Introduction

In order for crop improvement to satisfy the expected demand for
increased yield potential and abiotic stress tolerance, the plant
science community must connect genotype to phenotype with
unprecedented efficiency. Perhaps the greatest challenge for plant
breeding and genetics research in the 21st century is establishing
the capacity for rapidly and accurately phenotyping very large
numbers of field-grown plants (Montes et al. 2007; Houle et al.
2010; Furbank and Tester 2011). To date, the development
of high-throughput phenotyping systems for plants has largely
focussed on measuring traits of individual plants in greenhouses
or growth chambers. However, many phenotypic responses of
interest for crop improvement, especially those related to yield
potential and abiotic stress tolerance, involve suites of traits that
are bestmeasured as expressed among communities of plants that
grow in agronomically relevant edaphic and climatic conditions.
Furthermore, field-based systems are more readily incorporated
into applied plant breeding programs. Thus, there is growing

interest in adapting agricultural machinery and electronic sensors
forfield-based high-throughput phenotyping (Montes et al.2007;
White et al. 2012). Potential applications are mainly envisaged
for genetic research (e.g. in detection of quantitative trait loci,
QTL) and crop improvement but also include monitoring of the
crop response to soil and management variability (i.e. precision
agriculture).

Various vehicle-based high-throughput systems have been
used or proposed for phenotyping plants in the field. Ruixiu et al.
(1989) used a three-wheeled cart to position multiple ultrasonic
proximity sensors around a single row of a crop. Rundquist et al.
(2004) described a tracked vehicle with a boom extendable
to 12m. Montes et al. (2007) proposed collecting spectral data
either from tractor- or harvester-mounted reflectance sensors,
and McCarthy et al. (2010) described a machine vision system
that could measure internode length in cotton (Gossypium spp.)
plants at a speed of 0.2m s–1 along a row. These examples
demonstrate deployment of important single sensor types, but

CSIRO PUBLISHING

Functional Plant Biology, 2014, 41, 68–79
http://dx.doi.org/10.1071/FP13126

Journal compilation � CSIRO 2014 www.publish.csiro.au/journals/fpb

mailto:pandrade@ag.arizona.edu


they are substantially limited when attempting to assessmultiple-
traits, which is needed for crop improvement.

The system of Lan et al. (2009) integrated sensors for
crop canopy height, leaf area index (LAI), normalised
difference vegetation index (NDVI), multispectral imaging
and hyperspectral reflectance, but the system recorded data for
only one crop row per pass. Scotford and Miller (2004) tested a
passive radiometer and one ultrasonic sensor mounted in a
laterally deployed frame attached to the rear three-point hitch
of an agricultural tractor, showing that the combined data
resulted in improved estimation of LAI. Comar et al. (2012)
implemented a rear-mounted platform with a variety of
instruments including a global positioning system (GPS)
antenna, a passive spectrometer, an irradiance probe and a
digital camera. The handcart described by White and Conley
(2013) was capable of positioning multiple sensors over two
crop rows but had clearance limitations and would be restricted
by the labour required to move the cart on a continuous basis,
especially under high field temperatures.

Although most of these systems had elements that would
improve the acquisition of phenotypic data, none appeared
capable of providing the needed throughput for the multiple
data types that are essential for efficient field-based plant
phenotyping. A further concern is that the evaluations, if given,
seldom include estimates of throughput or of the heritability of
the measured traits, both of which are key concerns for adoption in
plant genetics research or crop improvement. Fortunately, current
technologies provide an unprecedented array of hardware and
software solutions that appear capable of providing the requisite
high throughput. Examples for instruments largely relate to the
increasing power of electronic components through greater
integration of functions and reduction in size, with concomitant
reductions in cost and power consumption. Advances in vehicle
function include real-time control mechanisms, such as GPS-
enabled automatic tractor or implement steering, and controllers
for vertical boom position adjustments.

Our approach to sensor deployment falls in the category of
proximal sensing, contrasting with the remote deployment of
sensors using aerial or satellite platforms (Fussell et al. 1986). In
this context, a plant phenotyping systemshould allow for frequent
deployment of replicated sets of different sensors at close
proximity to plants, enabling the simultaneous phenotyping of
several traits on plants from multiple adjacent rows. Enabling a
plant phenotyping system to record multiple types of data in a
single pass would not only increase throughput, but would
also enable more accurate and comprehensive specification of
phenotypes (Scotford and Miller 2004; White et al. 2012). In
addition, the system should adhere to requirements for sensor
deployment, as outlined in Milton’s landmark review of field
spectroscopy (Milton 1987), including the following criteria: (1)
sensors should remain at a fixed geometry to assure repeatability;
(2) sensors should be deployed at least 1m above the top of the
plant canopy; and (3) sensors should view plants close to the solar
principal plane (i.e. parallel with the azimuthal direction of the
sun) regardless of platform orientation.

Herein,wedescribe and evaluate a system that possessesmany
of the functionalities needed for efficient phenotyping of plants
in the field. The evaluations involved measuring morphological
and physiological responses of Pima cotton (Gossypium

barbadense L.) to well watered and water-limited conditions,
and by comparisons of these measurements with aerial imagery
andmanualphenotypingapproaches.The specific traitsmeasured
were canopy height, reflectance and temperature. Although
individual traits such as height have interest for breeding (e.g.
in relation to harvestability and harvest index), we emphasise that
realising the full benefit of a platform capable of simultaneously
measuringmultiple canopy traits will probably require integrated
analysis of the data streams to describe more complex crop traits
such as growth rates and transpiration efficiency (White et al.
2012).

Materials and methods
Experimental design

The field experiment was conducted in the summer of 2011 at
the Maricopa Agricultural Center of the University of Arizona
(33�040N,111�580W,elevation360m) inMaricopa,Arizona.The
location is within an irrigated production area in the low desert
that experiences less than 100mm of rainfall during the April
to September growing season. Meteorological data for the
experimental field site were obtained from the Arizona
Meteorological Network (ag.arizona.edu/azmet/index.html;
Brown 1989) with an automated weather station 270m from
the field. The soil was a Casa Grande sandy loam (fine-loamy,
mixed, superactive, hyperthermic Typic Natrargids).

We evaluated a set of 25 Pima cotton (Gossypium barbadense
L.) cultivars that captured a wide range of genetic variability for
heat anddrought tolerance.The set includedPimacotton cultivars
released over a period of 90 years (1918–2009) by breeding
programs inArizona (OldPima,Amsak, Pima32, PimaS-1, Pima
S-2, PimaS-3, PimaS-4, PimaS-5, PimaS-6, P53, P62, PimaS-7,
P70, P73, P76, 8810, 89590, 93260, 94217, 94220, PSI113 and
PSI425), heat-sensitive Sea Island type cultivars from the
Caribbean (Sea Island St. Vincent V-135 and Monseratt Sea
Island) and a recently released commercial Pima cotton variety
(Deltapine 360). For the set of 25 cultivars, a well watered (WW)
andwater-limited (WL) trialwas arrangedas a5� 5a (0,1) lattice
designwith four replications for a total of 200 plots. Experimental
units were one-row plots 8.8m long with a 1.02-m inter-row
spacing. There was a 0.61m alley at the end of each plot. Plots
were thinned to ~4.1 plantsm�2. To reduce border effects, one-
row plots of the commercial Pima cotton variety PhytoGen
800 (PHY 800) were planted on all sides of each 5� 5
replicate. With the inclusion of border plots, the total field
consisted of 24 rows that had an inter-row spacing of 1.02m
and a length of 109.73m (Figure S1, available as Supplementary
Material to this paper).

Furrow irrigationwas used to germinate the seed and establish
the crop. Subsurface drip irrigation was installed before planting,
and plots were drip-irrigated after crop establishment. A daily
soil water balance model calculated for the cotton root zone was
used to schedule the timing and amount of subsurface drip
irrigation, following the Food and Agriculture Organisation-56
approach (Allen et al. 1998). Soil water balance inputs included
estimated daily evapotranspiration determined from the FAO-56
dual crop coefficient procedures, metered irrigation depths and
meteorological data obtained from the Arizona Meteorological
Network weather station on the research farm. Soil water
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depletion was also monitored through weekly soil moisture
measurements to a depth of 1.5m. These measurements were
used to adjust the modelled soil water balance.

Prior to 8 July, both WW and WL plots received equal
irrigation amounts. Specifically, when plots were at ~35% soil
water depletion, subsurface irrigations was applied to refill the
water content of the cotton root zone to field capacity. To
minimise the interaction of flowering time and drought stress,
we imposed the first WL treatment when more than half of the
plots had reached the first flower stage (i.e. 50% of the plants
within a plot had at least one visibleflower). Starting on 8 July and
continuing until 6 September, the WL plots received one-half
of the irrigation amounts applied to the WW plots. The final
irrigation was on 6 September, 17 days before the cotton plants
were defoliated.

Plant phenotyping system

The plant phenotyping system was built on a LeeAgra 3434 DL
open rider sprayer (LeeAgra, Lubbock, TX,US). The vehicle had
a maximum height clearance of 1.93m, thus providing minimal
disturbance to the plants. A boom was attached to the front end
of the tractor frame to provide mechanical support for sensors,
data loggers and other instrumentation components such as
enclosure boxes and the cables needed for plant phenotyping.
The boom was supported by two lift arms that allowed vertical
movements via rephasing-type hydraulic cylinders. Parallel bars
in the lift arms maintained the boom on a horizontal plane as it
moved vertically. Boom stability was enhanced by the wide
separation (2.31m) between each pair of lift arms. The high
clearance vehicle had an isolated secondary power source to
supply the electronic components with a 12-V direct current
power for plant phenotyping measurements. The four sets of
sensors and accompanying electronic instrumentation had an
average current consumption of 2.38 A.

We deployed three types of sensors (described below) for
measuring plant canopy height, temperature and reflectance.
The sensors were arrayed in four sets on the front boom,
which allowed phenotypic measurements to be collected
simultaneously from four adjacent rows of cotton plants
(Fig. 1). The forward position of the instrumentation boom
allowed measurements with no disruption to the plants caused
by the vehicle platform. Sensor brackets were horizontally and
vertically adjustable, thus allowing the sensors to be positioned
above the crop canopy at the centre of a row and at the desired
height. Sensor positions, along with direction of travel, were
considered when determining the geographical coordinates of
each collected data point.

Plant canopy height (in mm) was measured with a sonar
proximity sensor that used a short-range (125–3000mm)
Pulsar dB3 transducer (Pulsar Process Measurement Ltd,
Malvern, UK) with a resonant frequency of 125 kHz, a 19-mm
diameter radiating face and a <10� beam angle. A Pulsar Black
Box Level 130 controlled the dB3 transducer, applied signal
processing and provided a 0–20mA output proportional to
distance. The current output signal was converted to a
proportional voltage through the use of a 100-W metal foil
high-precision resistor. An empirical calibration procedure was
used to convert the output signal to units of distance.

Sonar and GPS antenna elevation data were combined to
calculate a measure of canopy height (CH). Elevation, or
altitude, is expressed as meters above mean sea level and was
recorded from the GGA string output by the GPS. This string is
one of multiple message formats defined by the National Marine
ElectronicsAssociation (NMEA, Severna Park,MD,USA) in the
serial communications protocol NMEA 0183. The first step was
conducting an elevation survey of field beds immediately after
planting to determine a baseline reference elevation (Eref) for
each plot. Canopy height (mm) was calculated after processing
using the established reference elevations, the sonar transducer
distance output (d, in mm) and the elevation of the sonar
transducer face (Esonar). Esonar was defined by subtracting the
distance between the GPS antenna and the sonar sensor from the
GPS antenna elevation. The position of the sonar sensor with
respect to the GPS antenna was manually set and recorded before
system deployment in the field. Canopy height calculations were
based on the following equation:

CH ¼ Esonar � Eref � d: ð1Þ
Canopy temperature (�C) was measured with two Apogee SI-

121 infrared radiometer (IRT) sensors (Apogee Instruments,
Logan, UT, US) that had a narrow field of view (18� half-
angle). The sensor output was converted to temperature values
after applying polynomial calibration equations supplied by the
manufacturer. IRT sensors were installed in pairs to improve
their discrimination of plant canopy temperatures from bare soil
temperatures. For each pair of IRT sensors, one sensor was
installed in the vertical direction pointing downward (nadir),
and the other sensor was mounted at 30� from the vertical axis
in a forward-facing (down the row) direction. With field
calibration, this dual-view angle configuration can be used to
transform composite IRT temperature data into distinct
vegetation and soil temperatures (Kimes 1981). For 2011, this
calibrationwasnot done,meaning that only thenadir viewing IRT
sensorswere analysed. Thismeant that additional screeningof the
temperature data using statistical methods had to be performed to
remove outlier observations that resulted from passing over large
gaps in vegetation.

Wemeasured the plant canopy reflectance (r) of eachplotwith
a Crop Circle ACS-470 multi-spectral crop canopy sensor
(Holland Scientific, Lincoln, NE, US). The sensor had three
channels for light measurements over visible and near infrared
(NIR) wavelengths. In this study, we chose filters with centre
wavelengths of 670 nm, 720 nm and 820 nm that corresponded to
red, red-edge andNIR light, respectively. Red and red-edgefilters
had a bandwidth of 10 nm, and that of the NIR filter was ~60 nm.
Spectral data were recorded with a Holland Scientific GeoScout
GLS-420 datalogger. Canopy reflectance data in the NIR (rNIR)
and red (rred) regions were used to calculate normalised
difference vegetation index (NDVI) as follows:

NDVI ¼ ðrNIR � rredÞ
ðrNIR þ rredÞ

: ð2Þ

Placing sensors in the vertical direction is of prime importance
to the performance of the phenotyping system. Adjustments to
sensor height were made to restrict the field of view of individual
sensors to avoid cross-contamination with adjacent rows. Plant

70 Functional Plant Biology P. Andrade-Sanchez et al.



height sensors were positioned 30 cm above the tallest plants,
well above the minimum sensing range (blanking distance) of
12.5 cm. IRT sensors were positioned 15 cm above the plant
canopy. Spectral sensors were fixed at 170 cm above the top of
the planting bed.

The sensor platform of the phenotyping system moved at
a constant speed of 0.75m s–1 while simultaneously scanning
four rows of plots. Measurements were georeferenced by
simultaneously recording position and elevation data from a
Global Navigation Satellite System real-time kinematics
(RTK) GPS receiver (A320 Smart Antenna, Hemisphere GPS,
Scottsdale, AZ, US) via the NMEAGGA string. A rover receiver
wasmounted at the centre of the boom and programmed to output
position data at 1Hz. Serial information from the GPS receiver
was sent on a RS-232 network to three data loggers: GeoScout
GLS-420, CR1000 and CR3000 (Campbell Scientific, Logan,

UT, US). A separate receiver (A321 Smart Antenna, Hemisphere
GPS) was used as a base station unit to broadcast high-precision
correction data.

Due to the number of differential and single-ended voltage
channels required for the sensors, data generated by the IRT
sensors were stored on the CR3000, whereas data generated
by the ultrasonic proximity sensors were stored on the
CR1000. CR-Basic (Campbell Scientific) code was written to
read and record analogue sensor signals and GPS serial data at a
sampling frequency of 1Hz.

Field performance of the plant phenotyping system

Field performance of the systemwas evaluated using two criteria.
First,field efficiencywas calculated as the ratio of productive time
under field conditions (phenotyping) to the total time in the field

(a)

(b)

(c)

(d ) (e)

Fig. 1. (a) Front view of the plant phenotyping system during field deployment in Maricopa, Arizona. Close-up views
of instruments include: (b) the sonar proximity sensor, (c) the infrared radiometer sensor, (d) the GPS-RTK receiver-antenna
and (e) the multi-spectral crop canopy sensor.
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(phenotyping plus turning and idle travel). This measure of
efficiency was calculated based on timestamps extracted from
GPS strings collected during deployment. Second, we calculated
the ability of the system to generate data on a time and area basis.
This was calculated by tabulating the size (in MB) of electronic
data files, in their native format, which were generated when
using the system. The systemwas driven over the field on 21 July
(0800–0900 hours and 1300–1400 hours Mountain Standard
Time (MST)), 4 August (0700–0800 hours, 1100–1200 hours
and 1500–1600 hours MST) and 18 August (0700–0800 hours,
1100–1200 hours and 1500–1600 hours MST). Phenotypic data
collection times varied due to instrument preparation constraints
but attempted to assess early morning (low stress), midday
(moderate to severe stress) and midafternoon (maximum
stress) conditions with respect to plant water deficits. Weather
conditions during measurements are summarised in Table 1.

Helicopter flights
For verification in this research context, comparable visible and
near infrared (VNIR) and thermal infrared (TIR) data from an
alternative sensing platform were collected from an externally
mounted, helicopter-based (Hiller UH-12, Palo Alto, CA, USA)
8-kg instrument package containing cameras, power supplies and
electrical connections, all mounted on a 305� 381� 6.35mm
aluminium plate. Data were collected on board with two laptop
computers (T-61 IBM-Thinkpad, Lenovo, Singapore). The
flights were conducted at ~600m above the ground, yielding
image data at a 0.5-m resolution. Two camera systemswere used.
A FLIR SC645 camera (FLIR Systems, Wilsonville, OR, US)
collected 16-bit, 640� 480 pixel thermal images at 1Hz with
a manufacturer-rated accuracy of 2�K. For the VNIR images,
two parallel mounted mEye monochromatic complementary
metal–oxide–semiconductor (CMOS) cameras (IDS Imaging
Development Systems GmbH, Obersulm, Germany) were
used. The cameras collected 8-bit 768� 576 pixel images with
a rolling shutter format at 10Hz. Vegetation index data were
obtained by mounting interference filters on each 14-mm focal
length lens: red (670 nm, 10 nm bandwidth) on one camera and
NIR (760 nm, 10 nm bandwidth) on the other. Both TIR and
VNIR image datasetswere georegistered toUniversal Transverse
Mercator coordinates using United States Geological Survey
(USGS) orthophotographic maps (www.nationalmap.gov/
ortho.html).

Image processing required different procedures for the two
camera systems. TheTIR data collected on 21 July and 18August
were processed using FLIR ExaminIR software (www.flir.com),

converted to public format, and corrected for atmospheric effects.
This latter step used North American temperature–humidity
profile National Centers for Environmental Prediction (NCEP)
data from the National Oceanic and Atmospheric Administration
(NOAA) Earth System Research Laboratory (www.esrl.noaa.
gov), spectral response function data from FLIR Systems and
the radiative transfer modelling software package MODTRAN5
(www.modtran5.com).Aircraft TIRdata collected on 21 July had
to be corrected for diurnal changes, since the overpass time
(1058 hours MST) was significantly different from the plant
phenotyping system data collection times (1300 hours MST).
Aircraft TIR data collected on 18August (1100 hoursMST)were
simultaneous with ground observations. Using a sinusoidal
temperature model (Göttsche and Olesen 2001), TIR data
collected by the plant phenotyping system were reprojected
to 1058 hours MST before calibration analysis. The resulting
outputs were plant canopy temperature images. The VNIR data,
collected on 21 July (1058 hours MST), 4 August (1112 hours
MST) and 18August (1100 hoursMST), were processed with in-
house C++ software built on the Qt framework (www.qt-project.
org).Custom C-language programs were used to convert VNIR
digital counts to spectral reflectances and NDVI. For all three
flights, four 8m� 8m canvas reference tarpaulins with nominal
reflectances of 4%, 8%, 48% and 64%were deployed in the field
for calibration.

Plant phenotyping with hand-held instruments
Plant height (mm)wasmeasured as the distance from the soil line
of the plant to the terminal bud with a calibrated bar-coded ruler.
A single plant of median height was visually selected and
measured in the morning (0900–1000 hours MST) on 22 July,
4 August and 19 August. To reduce the influence of plot edge
effects, only plants within the internal 6.40m of each plot were
considered for measurement.

A subset offive representative cotton cultivarswas selected for
more detailed physiological measurements: Monseratt Sea
Island, Pima S-6, P62, 89590 and PSI 425. The leaf relative
water content (RWC) was determined as previously described
(Carmo-Silva et al. 2012). Samples consisting of two 2-cm2 leaf
discs from a young fully expanded leaf were collected in the
morning (0900–1030 hours MST) on 21 July, 4 August and 18
August. Two plants were sampled from each of the four replicate
plots of each cultivar in theWWand theWLplots. Similar to plant
height, only plants within the internal 6.40m of each plot were
measured for leaf RWC.

Table 1. Ambient conditions at the time of phenotypic data collection in Maricopa, Arizona, in 2011
Values are for means (temperature and humidity) or integrals (radiation) at hourly intervals (Mountain Standard Time (MST))

July 21 August 4 August 18
0800–
0900
hours

1300–
1400
hours

0700–
0800
hours

1100–
1200
hours

1500–
1600
hours

0700–
0800
hours

1100–
1200
hours

1500–
1600
hours

Air temperature (�C) 30.7 37.4 25.3 35.7 39.5 29.6 38.3 42.6
Relative humidity (%) 45.8 19.8 74.7 29.5 22.0 45.2 24.7 15.7
Solar radiation (MJm–2 h–1) 1.11 2.27 0.38 2.88 2.97 0.24 2.81 2.91
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Geospatial data processing
The data storage and transfer limitations of the plant phenotyping
system needed several aspects of data processing to be relegated
to postprocessing. In particular, geospatial tools were required
to locate and summarise data accurately within field plot
boundaries. Because manual geoprocessing was time-
consuming, labour-intensive and prone to error, geoprocessing
tasks were automated with software scripts that would be readily
transferable to other vehicle-based phenotyping systems. To that
end, algorithms and user interfaces were developed as a plug-in
for the open-source Quantum Geographic Information System
(GIS) environment (www.qgis.org). The plug-in incorporated
two main custom tools: the preprocessor and the geoprocessor.

The twomain functions of the preprocessorwere (1) to convert
latitude and longitude coordinates to the Universal Transverse
Mercator coordinate system, and (2) to calculate coordinate
transformations from the GPS-RTK receiver to the sensor
positions depending on the direction of travel. Proper
transformations were important for this high-throughput
phenotyping application, because the sensors at each position
along the boom collected data from different treatment plots.
The preprocessor tool was designed for flexibility and could
accommodate different column orderings for latitude, longitude,
vehicle heading and sensor values. Offsets (in m) from the GPS-
RTK receiver to each sensor positionwere required to be inputted
by the user.

The geoprocessor analysed sensor data within plot boundaries
delimited by rectangular polygons, which required the
availability of an accurate plot boundary map, loaded as a
polygon shapefile within the GIS software. The geoprocessor
calculated summary statistics, such as means and s.d., for sensor
data collected within each plot boundary, and the statistics were
appended to the plot boundary layer as attributes of individual
polygons. In contrast to the default geospatial tools commonly
provided with GIS software, the geoprocessor iteratively
summarised the sensor data independently for each feature in
the plot boundary layer. The geoprocessor also permitted us to
assign a plot identifier to each data point, and the plot identifiers
were appended to the sensor data layer. In this study, the
geoprocessor was used to export raw phenotypic data points
from only within the central 6.40m of each plot to minimise
border effects.

Statistical analyses
We analysed plant canopy height, NDVI and temperature data
from the 25 Pima cotton cultivars. Initially, a mixed linear model
was fitted separately for each trait with the MIXED procedure in
SAS forWindows ver. 9.3 (SAS Institute, Cary, NC, USA). Each
model included one of the traits as the dependent variable. The
cultivar main effect and water regime main effect, and their two-
way interaction were included in the model as fixed effects;
replicates nested within water regime and blocks nested within
replicate were included as random effects. Outliers were detected
by examining the Studentised deleted residuals (Kutner et al.
2004) obtained from these fitted models. We then calculated
means for each plot by averaging the trait values that had been
screened for outliers. The Box–Cox procedure (Box and Cox
1964) was used in SAS ver. 9.3 (SAS Institute) to find the most

appropriate transformation of these means that corrected for non-
normality of the error terms and unequal variances. Data
transformation was implemented if the power parameter was
not equal to1 (i.e.l „ 1).The transformedmeansof each traitwere
then used as the dependent variables in all subsequent statistical
analyses.

For each of the 3 days, a univariate mixed linear model was
fitted with the plot means of one of the three traits (i.e. canopy
height, temperature or NDVI) as the dependent variable. The
main effects of cultivar, water regime and time of day, as well as
their corresponding interaction terms, were fitted as fixed effects.
Additionally, replicates nested within water regime and blocks
nested within replicate were included as random effects. The
REPEATED statement was used in PROCMIXED to model the
correlation structure of repeated measurements of a trait on the
same experimental plots over a period of time. Likelihood ratio
tests were conducted to remove nonsignificant random terms
(a= 0.05) from the final model. Degrees of freedom were
calculated with the Satterthwaite approximation. Least square
means were obtained with the LSMEANS statement in PROC
MIXED. The parameter estimates were back-transformed to
report results in the original scale.

Broad-sense heritability on an entry-mean basis (H2) or
repeatability (Piepho and Möhring et al. 2007) was estimated
with a mixed linear model fitted separately for each trait with
PROC MIXED in SAS ver. 9.3 (SAS Institute). Each univariate
fitted model had the plot mean value of plant canopy height,
temperature or NDVI as the dependent variable. For the
explanatory variables, cultivar (i.e. genotype), replicate and
block nested within replicate were fitted as random effects.
The overall mean was the only fixed effect. Variance
component estimates from each final model were used to
estimate H2 (Holland et al. 2003) as follows:

H2 ¼ s2
g

s2
g þ

s2
e
r

¼ s2
g

s2
p

; ð3Þ

where sg
2 is the genotypic variance, se

2 is the residual error
variance and r is the number of replicates (r= 4) in the field
trial. The denominator of the equation is equal to the phenotypic
variance, sp

2. Standard errors of the heritability estimates were
approximated using the delta method (Holland et al. 2003).

We assessed the validity of data obtained by the plant
phenotyping system through comparisons with canopy
temperature and NDVI data extracted from aerial images and
plant height data collected by a calibrated bar-coded ruler from
900–1000 hours MST. We first calculated mean values for each
plot (n= 200) for these complementary data by averaging
phenotypic measurements that had been screened for outliers
with the statistical procedure described above. The degree of
relationship (r2) between phenotypes scored by two different
methods was estimated using a simple linear model with PROC
GLM in SAS ver. 9.3 (SAS Institute). This model included
phenotype Method 1 as the dependent variable and phenotype
Method 2 as the explanatory variable. Plant height data collected
by the plant phenotyping system at 0700 hours MST on 21 July,
and on 4 and 18 August at 0800 hours MST were used
for the comparative analysis. Canopy temperature and NDVI
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comparisons between aerial imagery (21 July at 1058 hoursMST,
4 August at 1112 hours MST and 18 August at 1100 hours MST)
and the plant phenotyping system (21 July at 1300 hours MST
but with the canopy temperature data reprojected to 1058 hours
MST, 4 August at 1100MST hours and 18 August at 1100 hours
MST) were also conducted. In addition, we compared the
relationship between the canopy temperature data collected by
the phenotyping system on 18August at 1100 hoursMST and the
leaf RWC data collected from leaf discs sampled in the morning
(0900–1030 hours MST) on 18 August.

Results

Field performance of the plant phenotyping system

The phenotyping system required an average of 0.32 h to traverse
the complete set of plots (experimental plots, borders and alleys)
that comprised the 0.27-ha field when measuring plant canopy
height, reflectance and temperature, equivalent to an average
rate of 0.84 ha h–1 with an estimated field efficiency of ~77%.
Thus, the system was in motion and continuously collecting
phenotypic data for more than three-quarters of the time in the
field. Slightly less than a quarter of the field time was attributed
to the unproductive activities of turning and idle travel. The
system recorded an average of 230.3 kB, 112.2 kB and 333.1 kB
of canopy height, reflectance and temperature data, respectively,
for a total of 675.6 kB. These values translate to 258 bytes of data
per m2, collected at a rate of 2.094MBh–1.

We found that the boom – the support structure for sensors –
was very stable when the system was operating in the field.
Plant growth regulators were not applied during the growing
season in order to maximise phenotypic diversity, but even with
the resulting tall and wide cotton plants, the system incurred
minimal damage to plants within the trafficked rows due to
its high clearance, as well as use of tyre shrouds and fenders.
However, a notable limitation was that the ultrasonic proximity
sensor only had a maximum clearance of 1.1m (21 July) and
1.4m (4 August and 18 August) when collecting data, which was
not high enough to clear the tallest cotton plants completely.
Notably, the maximum clearance for all sensors was not allowed
to exceed 1.4m because the field of view for the multispectral
crop canopy and IRT sensors would have been negatively
affected at higher elevations. Therefore, the inter-relationship
of the optimal vertical height for multiple sensors needs to be
further explored when simultaneously phenotyping several traits

on experimental plots that capture a wide range of height
variation.

Phenotypic variability

We investigated the extent to which plant canopy height, NDVI,
and temperature varied at different times on 3 days during the
2011 field season. On the first of the 3 days (21 July), moderate
differences among cotton cultivars (P� 0.0001) were detected
for canopy height and temperature (Table 2). Given that thewater
deficit treatment had been imposed on WL plots for less than
15 days, it is not surprising that treatment differences (P > 0.05)
were not detected for height and NDVI – two traits that are
associatedwith biomass. In contrast,water regimewas significant
for canopy temperature, a physiological trait that is expected to
respond more rapidly to limiting soil moisture levels under high
ambient temperatures. Time of day was also significant for
canopy temperature, as the temperature increased by 29% and
37%, on average, from 0800 to 1300 hoursMST forWWandWL
plots, respectively (Fig. 2). On average, WL plots were ~5�C
warmer than WW plots at 1300 hours MST under hot, sunny
conditions, which is indicative of drought-stressed cotton
plants having decreased leaf cooling capacity from a reduced
transpiration rate (Carmo-Silva et al. 2012). Time of daywas also
significant for NDVI, with a 21% and 7% decrease in NDVI
values from 0800 hours to 1300 hours MST for WL and WW
plots, respectively. These results are consistent with higher leaf
wilting for drought-stressed cotton plants from greater leaf
dehydration as the day progresses (Carmo-Silva et al. 2012),
thus altering leaf orientation, which resulted in higher soil
exposure.

On the second and third phenotyping days (4 and 18 August),
we identified larger differences among cotton cultivars
(P� 0.0001) for canopy height, NDVI and temperature
(Table 2). In addition, cultivars had a highly significant
interaction (P� 0.001 and P� 0.0001) with the water regime
for these three traits on both days.However, time of day andwater
regime were more highly significant (P� 0.0001) for these traits
on 18 August, which can be explained by differences in the
severity of the water deficit. On the second day (4 August), both
WW andWL plots had received equal furrow irrigation amounts
6days earlier inorder tohydrate thefielduniformly after problems
with clogged drip irrigation tape and emitters were eliminated.
As shown in Fig. 2, this less severe water deficit for WL plots
resulted in weak water regime effects for canopy temperature

Table 2. Analysis of variance for canopy height, normalised difference vegetation index (NDVI) and temperature from 25 cotton cultivars at different
times on 3 days in Maricopa, Arizona, in 2011

F-values and significance levels of fixed sources of variation are shown. *, significant at P= 0.05; **, significant at P= 0.01; ***, significant at P= 0.001; ****,
significant at P= 0.0001; C, cultivar; TD, time of day; water regime, WR

Source 21 July 4 August 18 August
Height NDVI Temperature Height NDVI Temperature Height NDVI Temperature

C 34.48**** 8.34 3.93**** 85.28**** 16.74**** 7.96**** 72.87**** 36.54**** 15.45****
TD 1.69 22.91*** 224.45**** 0.83 6.17** 52.39**** 9.03*** 15.91**** 403.98****
WR 2.51 10.16 21.53*** 54.97**** 11.91** 2.56 84.62**** 25.1**** 67.19****
C�WR 1.81* 1.93 2.02** 3.56**** 3.42**** 2.56**** 2.21*** 2.61**** 2.76****
TD�WR 0.55 3.79 0.1 0.18 0.56 0.27 0.65 5.68* 0.58
C�TD�WR 0.46 0.19 0.36 0.15 0.1 0.96 0.39 0.33 2****
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(P > 0.05) and NDVI (P� 0.01). The problem with the drip
irrigation system had been resolved for 2 weeks when the
cotton experimental plots were phenotyped on 18 August, thus
allowing for a more controlled and severe water deficit in WL

plots. In agreement with our expectations, canopy temperature
and NDVI values were more extreme for WL plots on 18 August
relative to 4 August (Fig. 2). Unexpectedly, canopy height
progressively decreased from 0700 hours to 1500 hours MST
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Fig. 2. Box-and-whisker plots of least-squares means for (a) canopy height,(b) normalised difference vegetation index (NDVI)
and (c) temperature based on field evaluation of 25 Pima cotton cultivars at different time intervals (7, 0700–0800 hours;
8, 0800–0900 hours; 11, 1100–1200 hours; 13, 1300–1400 hours; 15, 1500–1600 hoursMountain Standard Time (MST)) for well
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for all plots (time of day, P� 0.0001) on 18 August, which
may have resulted from a high degree of leaf wilting on this
particular day.

Broad-sense heritability (H2) on an entry-mean basis
corresponds to the level of phenotypic variability among
cultivars that can be attributed to genetic effects (Holland et al.
2003), but in the context of our study of cultivars without
estimated genetic relationships, H2 will be conservatively
interpreted as a measure of repeatability for a trait. The
average broad-sense heritability on an entry-mean basis for
canopy height was 0.94 for both WW and WL plots over the
3 days (Fig. 3). This value suggests that height was measured
by our system with very high repeatability. On average, broad-
sense heritability on an entry-mean basis for NDVI was 0.79
and 0.66 for WW and WL plots, respectively, for the 3 days.
However, entry-mean heritabilities of 0.57 and 0.28 – the
lowest for NDVI in this study – were estimated for WL plots
at 0800 hours and 1300 hours MST on 21 July, respectively.
Incomplete cotton canopy closure and vegetation gaps, in
combination with intermittent clogging of the drip tape and
emitters, were nongenetic sources of variation that probably
contributed to the lower heritabilities for NDVI on this day.
The wide range of entry-mean heritabilities for canopy
temperature of WW and WL plots on 21 July (H2 = 0.02–0.74)
and 4 August (H2 = 0.01–0.73) reflects the very high sensitivity
of this trait to ineffective irrigation management practices. With
a repaired drip irrigation system that delivered water more
uniformly and consistently, however, estimates of broad-sense
heritability on an entry-mean basis were larger for canopy
temperature on 18 August, ranging from 0.73 to 0.90 and from
0.73 to 0.79 for WW and WL plots, respectively.

Evaluation of the plant phenotyping system

We evaluated the validity of the data obtained by the plant
phenotyping system through comparisons with data collected
by more expensive and laborious phenotyping methods. To
validate plant canopy temperature and NDVI data collected
by the phenotyping system, VNIR and TIR image data were
collected using helicopter-mounted cameras. As shown in
Table 3, helicopter-acquired canopy temperatures were closely
related to temperature data from the nadir viewing IRTs, with
discrepancies of less than 2�C. Considering the uncertainties in

the FLIR camera calibration, atmospheric corrections and spatial
resolution differences, we were still able to realise strong
agreement (r2 = 0.75–0.82) between the canopy temperature
datasets. Incorporation of IRT data from the forward-pointing
IRT would probably have improved the agreement by reducing
effects from soil temperatures.

Canopy NDVI values from aerial images further confirmed
the reasonableness of the ground-based observations of canopy
NDVI, with a root mean square error of less than 0.10 for all
3 days. Agreement between NDVI data from the two sources
was strongest for 4 and 18 August (r2 = 0.61–0.62). These
NDVI correlations indicate that reflectance data obtained
by the phenotyping system were sensitive to plant canopy
density changes in space and time. The exceptions to this
assessment can be explained by instrumental differences
and acquisition problems. NDVI values from the two systems
resulted from different illumination and viewing angles, leading
to significant discrepancies in apparent reflectances (Qi et al.
1997). The other correlation problem occurred only for 21 July,
where the r2 was 0.35. Considering the historical robustness
of NDVI remote sensing, this relatively poor outcome was
unusual but consistent with acquisition difficulties: images for
this particular day had to be reconstructed from four separate
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Fig. 3. Estimates of broad-sense heritability (H2) on an entry-mean basis with their standard errors for canopy height (HT, black bars), normalised difference
vegetation index (NDVI, red bars) and temperature (TM, blue bars) based on field evaluation of 25 Pima cotton cultivars at different time intervals (7, 0700–0800
hours; 8, 0800–0900hours; 11, 1100–1200hours; 13, 1300–1400hours; 15, 1500–1600 hoursMountainStandardTime (MST)) forwellwatered (WW,solidbars)
and water-limited (WL, striped bars) regimes on 21 July, 4 August and 18 August in Maricopa, Arizona, in 2011.

Table 3. Leaf relativewater content (RWC)of thePimacotton cultivars
Monseratt Sea Island (MS), Pima S-6 (S6), P62, 89590 andPSI425, under

well watered (WW) and water-limited (WL) conditions
Two samples were taken from each of four replicated WW and WL plots on
each of the indicated dates. Values are means� s.e. of the mean (n= 8)

Cultivar Treatment 21 July 4 August 18 August
RWC (%) RWC (%) RWC (%)

MS WW 74.9 ± 1.5 81.3 ± 0.8 82.0 ± 0.6
WL 72.7 ± 0.5 80.6 ± 0.8 74.1 ± 1.0

S6 WW 74.9 ± 1.5 84.8 ± 0.5 83.7 ± 0.5
WL 75.1 ± 1.0 81.3 ± 0.8 79.1 ± 1.3

P62 WW 76.2 ± 1.3 84.0 ± 0.4 84.3 ± 0.6
WL 69.5 ± 1.8 79.6 ± 1.0 74.6 ± 0.8

89590 WW 78.1 ± 0.6 84.9 ± 0.5 84.1 ± 0.3
WL 73.7 ± 0.9 83.5 ± 0.7 76.6 ± 1.0

PSI425 WW 75.9 ± 1.1 82.2 ± 0.7 81.1 ± 0.8
WL 74.3 ± 1.1 81.8 ± 0.6 78.3 ± 1.1
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aircraft passes due to problems with centring the helicopter
directly over the field, which probably introduced radiometric
errors from the compositing process.

We also assessed the relationship between phenotypic data
collected by the plant phenotyping system and manual
phenotyping approaches. Similar to canopy temperature
comparisons, strong agreement (r2 = 0.76–0.79) was detected
between plant canopy height measured by the phenotyping
system and that manually with a calibrated bar-coded ruler
(Table 4). It is possible that these correlations would have
been even stronger if two or more representative plants instead
of one median plant were measured manually for each plot. In
addition, it is possible that stronger agreements could have been
obtained if all measured plants never exceeded the height of the
sonar proximity sensors.

The RWC was determined in plants of five cotton cultivars
(Table 3) as ameasure of leafwater content. On 21 July, the RWC
was below 70% for all cultivars, independent of the irrigation
treatment, indicating that plants from both the WW and the WL
plots were experiencing water deficit. The lowRWC values were
associated with the reduced availability of water caused by the
clogged emitters in the drip irrigation lines. Regardless, plants
from the WL plots, which had received the least amount of
water, still had the lowest RWC values. On 4 August, the
RWC was generally above 80%. On this date, all of the plants
were well hydrated via application of flood irrigation 6 days
beforemeasurement. On 18August, the RWCwas higher inWW
than in WL plants of each cultivar, demonstrating that previous
issues with the drip irrigation system had been resolved and
plants in the WL plots were experiencing higher water deficit
compared with the WW plots. The strong inverse relationship
(r2 = 0.74) between the canopy temperature data collected by the
plant phenotyping system and the RWC values was especially
evident on 18 August (Fig. 4).

Discussion

The tractor-based phenotyping system proved capable of reliably
acquiring and recording data for canopy temperature, height and
reflectance on experimental plots of cotton plants throughout
the growing season at much higher rates than can be achieved
manually. Importantly, the phenotypic data collected were
moderately to highly repeatable when management practices
were optimal. In contrast to manual phenotyping protocols that

require visual selection of a few representative plants, the suite
of georeferenced sensors permitted unbiased collection of
phenotypic data from many plants within a plot. As a powerful
complement, our development of a custom open-source software
package to post-process the collected phenotypic data efficiently
helped to alleviate another significant bottleneck in high-
throughput phenotyping. The strong agreement of these
phenotypic data with the values obtained from aerial images
and manual measurements further supports the conclusion that
the plant phenotyping system is well suited for field-based high-
throughput phenotyping of cotton.

Even though the phenotyping system was effective for
collecting data from plants in the field, there are opportunities to
improve the system further. As an example, the data acquisition
rate of the platform could be enhanced through several
complementary approaches. The number of rows monitored
could be increased by extending the booms laterally and adding
additional sets of sensors. The downsides to this change, however,
are increased platform complexity and a greater likelihood of
inconsistencies among sensor calibrations, as well as data
logger connection problems. In addition, if plots are arranged in
longer runs, the number of turnarounds will be substantially
reduced, saving time and increasing field efficiency.

The spatial resolution of the sensor data was limited by the
speed of operation of the platform through the field and by the
sampling frequency of the data collection system. Data loggers
like the ones used in this platform were designed to perform at
very high sampling frequencies (100Hz) but the response time of
individual sensorswas relatively slow. IRT and sonar transducers
did not update output signals faster than 2Hz. Moreover, current
GPS receivers output serial data at a maximum frequency of
10Hz, but logging and parsing data from more than one GPS
string slowed down the data acquisition process significantly.
Unifying the data collection into a single logging system would

Table 4. Evaluation of canopy height, normalised difference vegetation
index (NDVI) and temperature collectedby theplantphenotyping system

in 2011
Values shown are linear regression statistics relating data acquired from
the plant phenotyping system to data collected manually (plant height) or
via aircraft (NDVI and temperature). All r2 values are significant at the

P= 0.0001 level. RMSE, root mean square error

Date Height (m) NDVI Temperature (�C)
r2 RMSE r2 RMSE r2 RMSE

21 July 0.76 0.04 0.35 0.09 0.82 1.92
4 August 0.79 0.06 0.62 0.05 – –

18 August 0.78 0.07 0.60 0.04 0.75 1.58
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Fig. 4. The relationship between canopy temperature and leaf relative water
content (RWC) for the Pima cotton cultivars Monseratt Sea Island, Pima S-6,
P62, 89590 and PSI425, under well watered (WW) and water-limited (WL)
conditions on 18 July 2011. Canopy temperature data were collected by
the plant phenotyping system (i.e. tractor-mounted infrared radiometer) at
1100 hoursMountain Standard Time (MST) and the RWC values were based
on samples collected from 0900 hours to 1030 hours MST. TheWW andWL
plots are demarcated in blue and red font colours, respectively.
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simplify deployment, increase reliability and help standardise
data collection protocols. Ideally, individual instruments should
output signals that have meaningful values at frequencies up to
20Hz and they should require power in a standard format (e.g.
12V direct current).

Future improvements in electronics and signal processing
will produce sensor technology and data acquisition systems
permitting higher throughput. As an example, a platform
traveling at 1m s–1 and logging sensor and position data at
20Hz would return data points every 5 cm. This will be
important to the application of field-level high-throughput
phenotyping because increasing the data acquisition rate may
allow for better discrimination of within-plot variation. As
pointed out by Scotford and Miller (2004), the coefficient
of variation for height in a different crop, wheat (Triticum
aestivum L.), is related to fine-scale variations in tiller number.
Our observations suggest that within-plot variation in cotton
canopy temperature is partially related to variation in interplant
spacing, and statistical methods are needed to remove this
nongenetic source of variation in the postprocessing of canopy
temperature data.

We recognise, too, that tractor-based systemshave limitations.
Table 5 presents a comparison with alternatives, including hand-
held sensors, manual powered carts, tractors and unmanned
aerial systems. The most serious issues are inherent to entry of
any wheeled vehicle into research field plots. One option to
overcome such a problem is to restrict vehicles to all-weather
traffic lanes along the edge of plots and use a lateral boom to
reach over plots. This strategy would be especially effective if
multiple types of sensors were combined in a single light-weight
instrument head. On the plus side, tractor-based systems provide
greatflexibility in terms ofmounting and powering devices. They
are built onwell understood technologies that are familiar tomost
research farms and they are deployable for a wide range of field
situations.

As acquisition of raw data becomes less of a constraint, more
attention will be need to be paid to other aspects of field-based
high-throughput phenotyping. One issue relates to temporal
scales. Most proximal sensing appears to have emphasised
time series over the crop growing season. Greater insights into
dynamic physiological responses to water deficits or acute heat
stress may require multiple measurements over a diurnal cycle,
including night-time observations, to track potential recovery.
A second issue relates to analytical approaches that maximise the
information content obtained from multiple sensors. Scotford
and Miller (2004) showed that combining canopy reflectance
and height data allowed for a more accurate estimation of LAI
in wheat. White et al. (2012) proposed using inverse modelling
to estimate more biologically fundamental traits such as stem
elongation rates or stomatal responses to humidity. Other options
include analysing the time series as repeatedmeasures, functional
growth curves analysis (Hunt 1979) and using multivariate
statistical methods.

Summary and Perspectives

We showed that the plant phenotyping system can be used to
phenotype plants within specific time intervals needed to capture
the rapid response of plants to environmental stress with high
repeatability under optimal management conditions. This ability
provides a powerful new tool for plant breeding programmes that
seek to develop high-yielding cultivars with enhanced adaptation
to stress-prone environments. In cotton and many other crop
species, phenotypic traits are regularly measured at a fixed time
point that is typically at or near plant maturity. With such an
approach, it is only possible to estimate the accumulated effects
of QTL from the beginning of plant development to the fixed
time of observation (Wu et al. 1999). Our plant phenotyping
system provides an opportunity to measure traits repeatedly
throughout plant development, facilitating the identification of

Table 5. Comparison of four options for field-based, high-throughput phenotyping
Evaluations are subjective assessments that draw frommultiple information sources. VL, very low; L, low; Mo, moderate; Me, medium; H, high; VH, very high

Attribute or issue Hand-held Cart Tractor Unmanned
aerial system

Vehicle cost L L H H
Cost of operation exclusive of operator Mo Mo Mo Mo
Operator training requirements L L Mo H
Ease of manoeuvring the vehicle among field plots H Mo L H
Ease of controlling the height of sensors Mo H H Mo
Ease of simultaneously deploying multiple sensors L H H L
Ease of simultaneously acquiring data over different rows or plots L Mo H H
Ease of providing power for active sensors L Mo H L
Ease of stop-and-go operation H H Mo Mo
Maximum clearance over crop H Mo Mo VH
Potential for the vehicle to interfere with reflectance or thermometric readings L L Mo VL
Ease of acquiring data when soil is wet Me L L H
Ease of continuously acquiring data under high temperatures L L H Me
Ease of acquiring data under high winds Me Me H L
Risk of causing soil compaction L L Mo None
Risk of damaging plants in a closed canopy L Mo H VL
Ease of adjustment for different row spacing H Me L H
Ease of transportation to different locations H Me Me H
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QTL that could be differentially expressed throughout the
developmental program of a trait. The next phase for our field-
based phenotyping systems will be the integration of high-
resolution imaging and spectral technologies to measure an
even wider diversity of traits across larger plant populations.
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