A continuum of stomatal responses to water deficits among 17 wine grape cultivars (Vitis vinifera)

Alexander D. Levin, Larry E. Williams and Mark A. Matthews

Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
Southern Oregon Research and Extension Center, 569 Hanley Road., Central Point, OR 97502, USA.
Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
Kearney Agricultural Research and Extension Center, 9240 S. Riverbend Avenue., Parlier, CA 93648, USA.
Corresponding author. Email: alexander.levin@oregonstate.edu.

Abstract. Vitis vinifera L. cultivars have been previously classified as isohydric, near-isohydric, anisohydric or isohydrodynamic, depending on the study. To test the hypothesis that V. vinifera cultivars’ stomatal behaviour can be separated into distinct classes, 17 cultivars grown in a replicated field trial were subjected to three irrigation treatments to manipulate vine water status across multiple years. Predawn (Ψp) and midday (Ψl) leaf water potential and midday stomatal conductance (gₛ) were measured regularly throughout several seasons. The relationship of gₛ to Ψl was best modelled as a sigmoidal function and maximum stomatal conductance (gₘₐₓ), water status at the onset of stomatal closure (Ψc), sensitivity of closure (gₚₛₑₜ) and water status at the end of closure (Ψcₑₜ) were compared. There were no significant differences in gₘₐₓ among cultivars. Cultivar-specific responses of gₛ to Ψl were broadly distributed along a continuum based on the relationship between Ψc and gₛ. Season-long cultivar mean Ψl values were positively related to Ψcₑₜ. In general, cultivars responded similarly to one another at high and low water status, but their stomatal behaviour differed at moderate water deficits. The results show that V. vinifera cultivars possess both iso- and anisohydric stomatal behaviours that depend on the intensity of water deficits, and call into question previous classifications assuming a single behaviour.

Additional keywords: genotypic variation, grapevine physiology, stomatal conductance, water potential.

Introduction
Increasing demand for fresh water in the face of finite resources is intensifying pressure to improve water use efficiency in agriculture in general, and in crop production in particular. Because regulation of stomatal aperture plays a major role in plant control of water loss in dry environments, it has been the focus of intensive research directed towards improved drought tolerance and water use efficiency. For example, reduced maximum transpiration rate (Sinclair et al. 2005) and early stomatal closure (Martin-St. Paul et al. 2017) have been proposed as traits of drought avoidance. In both cases, the putative benefit in yield stability arises from postponing dehydration. Indeed, the sensitivity of stomata to water deficits could be viewed as a measure of drought avoidance (Jones 1974; Bates and Hall 1981) and is sometimes described in terms of ‘isohydric’ vs ‘anisohydric’ behaviour (Tardieu and Simonneau 1998).

In addition to species variation, it has long been known that genetic variation in stomatal response to water deficits is present within crop species (e.g. in sorghum, Henzell et al. 1976; e.g. in rice, Dingkuhn et al. 1989). Schultz (2003) provided some evidence of such genetic variation within grapevine, Vitis vinifera L., but there have since been contradictory reports of cultivar-specific responses (Chaves et al. 2010; Costa et al. 2012). Ambiguity over the precise definition of what constitutes an iso- vs anisohydric response (Hochberg et al. 2018) has caused difficulties in categorisation of either cultivars within a species (Lavoie-Lamoureux et al. 2017) or across many species (Klein 2014; Martinez-Vilalta and Garcia-Forner 2017). However, in general, isohydric species/cultivars will maintain water status similar between droughted and well-watered plants (Tardieu and Simonneau 1998) or that a measure of plant water status (such as leaf water potential) will not decrease below a minimum value on a diurnal or seasonal basis (Schultz 2003). Such a response by a crop species may minimise the usefulness of assessing plant water status via the measurement of leaf water potential. Cifre et al. (2005) concluded that if grapevine cultivars respond to soil water deficits in an isohydric manner, then midday leaf water potential cannot be used in an irrigation management program or as one would suspect the validation of other means to assess plant water status (Williams 2017).

Based on observed responses of plant water relations and gas exchange, some grapevine cultivars such as Grenache, have been
classified as isohydric (Schultz 2003; Cifre et al. 2005) whereas others, such as Syrah and Thompson Seedless have been classified as anisohydric (Schultz 2003; Soar et al. 2006b; Williams and Baeza 2007; Williams 2012). However, the discrepancy among cultivars is not entirely clear. This has led some researchers to modify the binary categorisation (i.e. isohydric vs anisohydric) and propose that cultivars may modulate their stomatal response (Domec and Johnson 2012) based on changes in soil moisture (Collins et al. 2010), or differences in leaf to air vapour pressure deficit (VPD) (Soar et al. 2006b). In addition, acclimation of stomatal response to water deficits has been shown in grapevine through a modification of leaf hydraulic conductivity and osmotic adjustment (Martorell et al. 2015; Hochberg et al. 2017a). Accordingly, alternative classifications such as ‘near- isohydric’ and ‘isohydrodynamic’ (a relatively constant difference between predawn (Ψpd) and midday leaf water potential (Ψl) throughout seasonal moisture cycles) have been offered to account for differences in stomatal response to drought among cultivars and the resulting effects on plant water status (Schultz 2003; Franks et al. 2007; Chaves et al. 2010; Shellie and Bowen 2014).

Putative cultivar differences in stomatal response would be important for water-conserving vineyard management strategies because gs is highly correlated with daily water use (Williams et al. 2012), and because moderate water deficits have positive effects on fruit quality (Roby et al. 2004). Furthermore, relative to vegetative growth, reproductive growth of irrigated grapevines is less affected when applied water amounts are reduced by up to 40% of crop evapotranspiration (Williams et al. 2010a, 2010b). As such, some water deficit is beneficial in production of horticultural crops like wine grapes in contrast to production of agronomic crops like rice or sorghum.

The relationship between gs and Ψl in grapevine is affected by numerous factors; predominate among them are rootstock and cultivar, accounting for 19 and 16% of the variability in that relationship, respectively (Lavoie-Lamoureux et al. 2017). Presumably, a large proportion of the remaining variation in response would be accounted for by plant-environment interactions (Hochberg et al. 2018). As mentioned above, soil moisture, VPD and plant hydraulic properties have all been shown to influence the relationship between gs and Ψl across grapevine cultivars. However, since the initial classification by Schultz (2003), and numerous subsequent attempts by others – as reviewed by Chaves et al. (2010) – there have been no studies that have directly compared a large set of cultivars grown under the same environment conditions (soil and atmosphere) grafted onto the same rootstock in a replicated field trial.

The goal of this study was 2-fold: to (1) determine if numerous V. vinifera cultivars separate into distinct iso- or anisohydric classes in response to soil water deficits from measurements of predawn (Ψpd) and midday leaf water potential (Ψl); and (2) explore the genetic variation in the relationship of gs to Ψl among these cultivars over several seasons. To accomplish this, the study was designed to maximise the effect of cultivar on the relationships in question by controlling for numerous factors that have all been shown to be influential such as rootstock, environment, instrument operator, and sampling methodology. Several grapevine cultivars evaluated in this study have been previously classified as being isohydric (or near-isohydric) – e.g. Cabernet Sauvignon, Grenache, Tempranillo and Touriga Nacional – while others have been classified as anisohydric – e.g. Cabernet Sauvignon, Grenache, Montepulciano, Syrah (syn. Shiraz) and Touriga Nacional (Schultz 2003; Chouzouri and Schultz 2005; Soar et al. 2006b; Williams and Baeza 2007; Chaves et al. 2010; Lovisolo et al. 2010; Rodrigues et al. 2012). Finally, an additional 11, red wine grape cultivars were evaluated representing a broad range of plant material grown in warmer viticultural regions around the world.

Materials and methods

Vineyard site, design, and plant material

The experimental site used in this study was an existing variety trial that was planted with 1103 Paulsen (1103P) (Vitis berlandieri Planch. × Vitis rupestris Scheele) rootstock in June 2003 at the University of California Kearney Agricultural Research and Extension (KARE) Center near Parlier, California (36°48’N, 119°30’W). The soil was a Hanford fine sandy loam. The total vineyard area was ~0.53 ha. Vine and row spacing was 1.83 and 3.05 m respectively (5.58 m² per vine).

The trellis system consisted of a 0.3 m cross-arm atop a stake, 1.7 m above the vineyard floor. Fixed catch wires were positioned at each end of the cross-arms. Vines were trained to bilateral cordon on a single fruiting wire at a height of 1.2 m, and were pruned to spurs. In early spring, shoots were thinned to a density of ~15 shoots per meter of row. The vineyard was drip-irrigated with two, 2 L h⁻¹ emitters per vine placed 0.5 m on either side of the trunk. The dripline was attached to a wire installed 0.5 m above the vineyard floor.

The vineyard layout consisted of 20 rows with 48 vines per row. In May 2004, 20 different Vitis vinifera L. cultivars were field-budded onto the rootstock. Foundation Plant Services (University of California, Davis, CA, USA) supplied budwood for the scion varieties. The cultivars, clonal selection, and sources of budwood are given in Table 1. Carmenere, Tinta Francisca and Tinta Cão were not included in this study due to foliar symptoms of viral infection.

Irrigation treatments

Three irrigation treatments were imposed beginning in the 2012 growing season as detailed below.

(1) Late deficit (LD) – irrigated at 100% of estimated ETc from berry set until the onset of ripening (veraison); no applied water from veraison until harvest.

(2) Sustained deficit (SD) – irrigated at 50% of estimated ETc throughout the entire growing season.

(3) Early deficit (ED) – no applied water from berry set until veraison; irrigated at 50% of estimated ETc from veraison until harvest.

Prior to berry set, all vines were irrigated at 100% of estimated ETc to maintain midday leaf water potential (Ψl) at or above ~1.0 MPa. After berry set, irrigation treatments were imposed once Ψl reached the threshold value of ~1.0 MPa (averaged across cultivars). Drip emitters were plugged or unplugged to impose the irrigation treatments, and inline water meters were used to
quantify applied water amounts. Veraison timing was averaged across replicates of a cultivar-treatment combination (e.g. separately quantified for Syrah-ED vs Syrah-LD). Therefore, treatment transition (e.g. in the ED and LD treatments) occurred over a period of several weeks across cultivars. After harvest, all vines were irrigated at 50% of estimated ETc until leaf fall.

Vineyard ETc was estimated using the following equation:

\[\text{ET}_c = \text{ET}_o \times K_c \]

where \(\text{ET}_o \) is reference ET and \(K_c \) is the crop coefficient. Prior to the initiation of the experiment, seasonal crop coefficients were developed in this vineyard across seven growing seasons during which vines were kept well watered, so as to not inhibit canopy development (LE Williams, unpubl. data). They were determined by measuring the shade cast on the ground beneath the canopy, and then using the relationship between the percentage of canopy shaded area and \(K_c \) according to Williams and Ayars (2005). Finally, a relationship between \(K_c \) and accumulated growing degree-days (GDD) was established. During the experiment, evolution of the \(K_c \) over the course of the growing season was calculated using accumulated GDD from average budbreak. GDD data were downloaded from the University of California Statewide Integrated Pest Management Project’s website (www.ipm.ucdavis.edu, accessed 12 September 2019). \(\text{ET}_o \) and GDD data were obtained from the CIMIS weather station at the KARE Center (Parlier #39, California Irrigation Management Information System). GDD were calculated using the single sine method with a lower threshold of 10°C.

Vine water status measurements

Vine water status (water potential, \(\Psi \)) was measured according to (Williams and Araujo 2002) using a pressure chamber (Model 1000, PMS Instrument Co.). Specifically, predawn water potential (\(\Psi_{pd} \)) measurements began at ~0400 h Pacific daylight time (PDT) and were completed before sunrise, whereas midday leaf water potential (\(\Psi \)) measurements were generally taken between 12:30 and 13:30 hours PDT. \(\Psi_{pd} \) was only measured in 2012. Leaves chosen at predawn and at midday were fully expanded, mature leaves – and at midday exposed to direct solar radiation. Leaf blades chosen across all times of day were covered with a plastic bag, quickly sealed, and petioles then cut within 1 to 2 s (s). Time between leaf excision and pressurisation was generally between 10 to 15 s.

Stomatal conductance (\(g_s \)) was measured with a steady-state diffusion porometer (LI-1600, LI-COR Biosciences). The porometer was allowed to warm-up to ambient vineyard conditions (placed in the shade) at least 30 min (min) before the first measurement. The null point humidity was set to ambient after warm-up and before first measurements, and subsequently reset every 20 to 30 min. Measurements were recorded after steady-state conditions were reached (10–20 s). Care was taken to reduce sensor head exposure to direct sunlight in between measurements so as not to increase cuvette temperature. Sampled leaves were of same age and position in canopy as for \(\Psi \) measurements described above, thus ensuring light saturation. During the 2012 growing season, the measurements of \(\Psi \) and \(g_s \) were made by LE Williams for all cultivar/irrigation treatment replicates and required two days. In 2013, measurement techniques were refined by AD Levin (data not reported). During the last 2 years of the study, \(g_s \) was measured on the same leaves used for the measurement of \(\Psi \), just before leaf excision. Sample leaves were selected for \(g_s \), which was measured by LE Williams, and \(\Psi \) was measured by AD Levin both years, thus minimising potential operator error (Goldhamer and Fereres 2001). Measurements began at 12:00 hours and were completed by 14:00 hours those 2 years. A single leaf from each three-vine irrigation treatment replicate was measured and used for data analysis (\(n = 3–4 \)). There were two, 16, and four measurement dates for the 2012, 2014 and 2015 growing seasons respectively.

Curve fitting stomatal response to vine water status

Stomatal response to \(\Psi \) was characterised with the following sigmoidal model:

\[g_s = \frac{g_{\text{max}}}{1 + e^{-\frac{\Psi - \Psi_l}{b}}} \]

(1)

where \(\Psi_l \) is midday leaf water potential, \(g_{\text{max}} \) is the asymptote that represents a theoretical maximum stomatal conductance, \(\Psi_l \) is the inflection point of the curve that represents the value of \(\Psi_l \) at which stomatal conductance is half of the maximum, and \(b \) is a scaling parameter that represents the transition width of the function. From the fitted curves, vine water status values were extracted at fixed values of \(g_s \) relative to \(g_{\text{max}} \) (\(\Psi_l = 0.50 \) and \(\Psi_l = 25 \)) represent the estimated \(\Psi_l \) at 95, 75, 50 and 25% of \(g_{\text{max}} \) (data not shown; \(R^2 = 0.99, P < 0.001 \)). The instantaneous slope of the fitted sigmoidal

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Clone</th>
<th>Source of budwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aglianico</td>
<td>03</td>
<td>VCR 2 Rauscedo, Italy</td>
</tr>
<tr>
<td>Carmemere</td>
<td>02</td>
<td>VCR 702 Rauscedo, Italy</td>
</tr>
<tr>
<td>Cabernet Sauvignon</td>
<td>08</td>
<td>#102, Con cannon, CA</td>
</tr>
<tr>
<td>Cinsault</td>
<td>02</td>
<td>Black Malvoisie FPS 02, Sonoma, CA</td>
</tr>
<tr>
<td>Durif</td>
<td>03</td>
<td>Petite Sirah FPS 03</td>
</tr>
<tr>
<td>Freisa</td>
<td>01</td>
<td>Jackson, CA</td>
</tr>
<tr>
<td>Grenache noir</td>
<td>515</td>
<td>ENTAV-INRA 515, (ENTAV, France)</td>
</tr>
<tr>
<td>Malbec</td>
<td>06</td>
<td>VEN, UC Davis, syn. Cot</td>
</tr>
<tr>
<td>Montepulciano</td>
<td>02</td>
<td>VCR 10 Rauscedo, Italy</td>
</tr>
<tr>
<td>Petit Verdot</td>
<td>400</td>
<td>ENTAV-INRA 400 (ENTAV, France)</td>
</tr>
<tr>
<td>Refosco</td>
<td>03</td>
<td>VCR 5 Rauscedo, Italy</td>
</tr>
<tr>
<td>Souzão</td>
<td>01</td>
<td>VEN, UC Davis</td>
</tr>
<tr>
<td>Syrah</td>
<td>07</td>
<td>France 877</td>
</tr>
<tr>
<td>Tannat</td>
<td>474</td>
<td>ENTAV-INRA 474 (ENTAV, France)</td>
</tr>
<tr>
<td>Tempranillo</td>
<td>02</td>
<td>AGRO, Spain</td>
</tr>
<tr>
<td>Tinta Amarela</td>
<td>01</td>
<td>Jackson, CA</td>
</tr>
<tr>
<td>Tinta Francisca</td>
<td>01</td>
<td>Portugal</td>
</tr>
<tr>
<td>Tinta Madeira</td>
<td>01</td>
<td>Lodi, CA</td>
</tr>
<tr>
<td>Tinto Cão</td>
<td>04</td>
<td>Jackson, CA</td>
</tr>
<tr>
<td>Touriga Nacional</td>
<td>02</td>
<td>Portugal, 1981</td>
</tr>
</tbody>
</table>

\(^{A}\)Cultivars were not included in the study.

Table 1. Clone and source of budwood for the 20 cultivars planted at the Kearney Agricultural Research and Extension Centre
Experimental design and data analysis

The experimental design was a randomised complete block with a strip-plot factorial treatment structure and four replications. Experimental blocks were assigned across the rows (i.e. 20 rows per block), and scion cultivars (main plot) were field-budded down the rows in a pattern of 12 vines per cultivar per block (i.e. four cultivars per row). The three irrigation treatments (strip plots) within each block were arranged down the rows in a line-source design (Williams et al. 2010a, 2010b), alternating sequentially among blocks from LD-SD-ED to ED-SD-LD such that vines in adjacent blocks received the same irrigation treatment. One non-irrigated vine was included among irrigation treatments within a block, such that an experimental unit consisted of the three remaining vines in the irrigation treatment.

Statistical analyses and graphics were done using R statistical software (R Core Team 2018). Linear regression, non-linear regression, and ANOVA were conducted using the functions lm, nls and anova, respectively, from R base package stats. For the analyses of Ψ_l and g_s over time, a linear mixed-effects model was fit using the lme4 function from the packages lme4 and lmerTest with cultivar, irrigation treatment, and sample date (and all interactions) as fixed factors, and block (and its interactions with the fixed factors) as a random factor (Bates et al. 2015; Kuznetsova et al. 2017). Calculation of least-squares means and multiple comparisons were conducted using the package lsmeans and the Tukey-Kramer adjustment method for multiplicity (Lenth 2016). Prior to non-linear regression analyses of g_s in response to Ψ_l, g_s values were pooled and means calculated across cultivars at each 0.1 MPa of Ψ_l. Smoothed cubic regression splines were fitted using the gam function from the package mgcv. (Wood 2017). Data were plotted using the package ggplot2 (Wickham 2016).

Results

Relationships between Ψ_l and Ψ_{PD}

Prewave (Ψ_{PD}) and midday leaf water potential (Ψ_l) were measured on vines in each irrigation treatment on numerous dates during the 2012 growing season. Although there were significant differences among irrigation treatments in both measures of vine water status, there were never significant differences among cultivars within an irrigation treatment. On 24 July 2012, just before changing the irrigation treatments that year, mean Ψ_{PD} (±s.d.) of vines in the ED treatment averaged across cultivars was -1.18 ± 0.13 MPa whereas those in the LD treatment averaged -0.13 ± 0.02 MPa. Averaged across cultivars, midday Ψ_l of the ED and LD treatments were -1.78 ± 0.02 and -0.98 ± 0.02 MPa, respectively, whereas that of the SD treatment averaged -1.28 MPa. Ambient temperature and VPD in the vineyard at the time of measurement (midday) was 34.9°C and 4.63 kPa respectively. Notably, mean Ψ_l of Cabernet Sauvignon, Grenache and Syrah on that day was -1.76 ± 0.04, -1.86 ± 0.07 and -1.80 ± 0.05 MPa, respectively. Stomatal conductance for the ED and LD treatments on that day averaged 0.089 and 0.568 mol m$^{-2}$ s$^{-1}$ respectively.

Midday Ψ_l of the LD treatment averaged across cultivars on 29 August (more than 5 weeks after irrigation had ceased for that treatment) was -1.76 ± 0.05 MPa. Midday Ψ_l of two vines of each cultivar (located at the end of the row on the east side of the vineyard) still being irrigated at 100% of estimated ETc, averaged -0.92 ± 0.01 MPa. Midday Ψ_l of vines irrigated at 50% of ETc averaged -1.45 MPa. Ambient temperature and VPD at the time of measurement were 33.9°C and 4.11 kPa, respectively. On the last measurement date in 2012 (5 and 6 September) mean Ψ_{PD} and midday Ψ_l across cultivars were -0.73 ± 0.01 and -1.79 ± 0.02 MPa respectively. Midday Ψ_l of Cabernet Sauvignon, Grenache and Syrah on those dates were -1.84, -1.78 and -1.80 MPa respectively. The slope of the linear relationship between midday Ψ_l and Ψ_{PD} using data from Cabernet Sauvignon, Grenache and Syrah across the 2012 growing season was 0.784 with an R^2 value of 0.73 ($P = 0.001$). Notably, the individual slopes of the three cultivars did not differ significantly from one another.

Ψ_l and g_s seasonal responses to irrigation treatments

In general, seasonal responses of Ψ_l and g_s to irrigation treatments were sensitive and consistent over the course of each growing season. The seasonal pattern of applied water amounts and responses of both water status variables (Ψ_l and g_s) during 2014 is representative of those for the other growing seasons (Fig. 1). Prior to treatment imposition, all vines received 62 and 41 mm of applied water in 2014 and 2015 respectively. Following treatment imposition (12 and 11 May in 2014 and 2015 respectively), vines were irrigated at previously defined rates with applied water amounts illustrated by the curves of each treatment (Fig. 1a). Ψ_l and g_s were significantly affected by the irrigation treatments, with three levels of water stress established after veraison, and two levels of water stress established after veraison in each year of the study (Fig. 1b, c). While Ψ_l and g_s responded similarly to the irrigation treatments, there were small, but notable differences in each variable’s response to an irrigation treatment during each phenological period. Before veraison, Ψ_l and g_s responses were like one another in the ED and LD irrigation treatments, but they responded differently to the SD treatment. Both Ψ_l and g_s values in LD vines remained high early in the season, with Ψ_l closely following the calculated non-stressed baseline Ψ_l value, and g_s increasing slightly from berry set to a maximum near the end of June (just before veraison). Similarly, Ψ_l and g_s values in ED vines both declined immediately following treatment imposition and were significantly lower compared with SD and LD at every measurement date from berry set until veraison (Fig. 1b, c). In contrast, while Ψ_l for SD vines declined after treatment imposition and was significantly different than that of LD vines from the third measurement date after treatment imposition, g_s response was less sensitive compared with Ψ_l, and remained high in SD relative to LD for a longer period before veraison (Fig. 1b, c). Overall, preveraison g_s was less sensitive to the SD irrigation treatment and remained high relative to that of LD vines despite a constantly declining Ψ_l until veraison.
Following veraison, Ψ_l and g_s recovered in ED vines once irrigation water was reapplied, and both variables declined in LD vines when water was withheld (Fig. 1b, c). Ψ_l of LD vines was significantly lower than that of SD and ED beginning with the first measurement postveraison and remained so until harvest. Ψ_l and g_s of ED vines recovered to values like those of SD vines and were not significantly different from SD for the remainder of the season. In general, postveraison Ψ_l was less stable week-to-week compared with postveraison g_s, whereas preveraison Ψ_l was more stable week-to-week compared with preveraison g_s.

The three-parameter logistic function was well fit to all cultivars individually as well (Fig. 3), with adjusted R^2 values ranging from 0.72 (Durif) to 0.94 (Aglianico) (Table 2). From the fit sigmoidal functions, parameter estimates and modelled values at various levels of vine water status were compared across cultivars (Tables 2, 3). Excluding Syrah, the coefficient of variation (CV) in estimates of g_{max} was less than 7% across cultivars, ranging from 0.398 (Grenache) to 0.489 mol m$^{-2}$ s$^{-1}$ (Refosco). The estimate of g_{max} (\pm s.e.) for Syrah is 0.595 ± 0.130
analyses depended upon correct determination of \(g_{\text{max}} \); the estimated \(g_{\text{max}} \) values were regressed on the highest mean measured \(g_{\text{max}} \) (taken at the highest \(\Psi_l \)). There was a statistically significant relationship between estimated and measured \(g_{\text{max}} \) (\(P < 0.05 \)), though there were some notable outliers (e.g. Syrah and Durif) that weakened the relationship (\(R^2 = 0.31 \)). Nevertheless, the estimated slope of the relationship was not significantly different than unity (slope \(\pm 95\% \) confidence interval \(0.599 \pm 0.493 \)). Thus, it was assumed that the estimated \(g_{\text{max}} \) value from the sigmoidal fit was representative of actual \(g_{\text{max}} \) for all subsequent analyses.

The CV was similarly low (6%) across cultivars for estimates of \(\Psi_{l}^{25} \), which ranged 0.32 MPa from \(-1.27 \) (Touriga Nacional) to \(-1.59 \) MPa (Montepulciano) with no differences among cultivars. In contrast, the unitless scalar parameter \(b \) – the transition width of the function related to the slope – varied broadly among cultivars (CV = 29%). Accordingly, there was broad variation in estimates of \(g_{\text{sensitivity}} \) (CV = 32%) among cultivars, with values ranging 3-fold from 0.428 (Petit Verdot) to 1.283 mol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\) (Tannat). Further, \(g_{\text{sensitivity}} \) was 0.562 and 0.525 mol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\) for Grenache and Syrah respectively (Table 3).

When comparing modelled \(\Psi_{l} \) and \(g_{\text{s}} \) values among cultivars at each extracted vine water status value (i.e. \(\Psi_{l}^{25} \), \(\Psi_{l}^{50} \) and \(\Psi_{l}^{95} \)), the across-cultivar CV for modelled \(\Psi_{l} \) decreased with vine water status (i.e. \(\Psi_{l}^{95} > \Psi_{l}^{50} > \Psi_{l}^{25} \)), whereas across-cultivar CV for modelled \(g_{s} \) remained constant at each value (i.e. \(\Psi_{l}^{95} = \Psi_{l}^{50} = \Psi_{l}^{25} \)) (Table 3). This was not surprising given that the model was fit to minimise variation in \(g_{s} \). The across-cultivar mean modelled \(g_{s} \) and \(\Psi_{l} \) at high water status (i.e. \(\Psi_{l}^{25} \)) was more than 0.4 mol m\(^{-2}\) s\(^{-1}\) and \(-0.99 \) MPa, respectively, whereas the across-cultivar mean modelled \(g_{s} \) and \(\Psi_{l} \) at low water status (i.e. \(\Psi_{l}^{25} \)) was near 0.1 mol m\(^{-2}\) s\(^{-1}\) and \(-1.68 \) MPa. Furthermore, the cultivars with high \(g_{s} \) at high vine water status (\(\Psi_{l}^{25} \)) tended to have similarly high \(g_{s} \) at low vine water status. For example, Syrah had the highest \(g_{s} \) among all cultivars at \(\Psi_{l}^{95} \) and at \(\Psi_{l}^{25} \), whereas Grenache had the lowest \(g_{s} \) at both \(\Psi_{l}^{95} \) and \(\Psi_{l}^{25} \) (Table 3). However, their \(g_{\text{sensitivity}} \) values were similar (as stated above).

There was a significant negative relationship between \(g_{\text{sensitivity}} \) and \(\Psi_{l}^{25} \) across all cultivars (Fig. 4). As the water status threshold for the onset of stomatal closure (\(\Psi_{l}^{95} \)) decreased, sensitivity to further closure increased across the entire range of \(\Psi_{l}^{95} \) values. Moreover, all 17 cultivars were broadly distributed along the curve and did not cluster together. Notably, Grenache and Syrah were distributed similarly on the vertical axis (\(g_{\text{sensitivity}} \)) and were separated only on the horizontal axis (\(\Psi_{l}^{95} \)).

Relationship of cultivar mean \(\Psi_{l} \) and \(\Psi_{l}^{25} \)

Overall cultivar mean \(\Psi_{l} \) (averaged across treatments and years) was positively related to \(\Psi_{l}^{25} \) both pre- and post-veraison (Fig. 5). Petit Verdot was removed from the analysis as an outlier due to its large absolute residual value in both phenological periods. There were no significant differences in response between phenological periods (slopes not significantly different), except that cultivar mean \(\Psi_{l} \) values were significantly

Fig. 2. (a) Stomatal conductance \((g_{s}) \) at various leaf water potentials \((\Psi_{l}) \) averaged across all 17 cultivars with data collected in 2014 and 2015. Within a given year, \(g_{s} \) values were pooled and means calculated across cultivars at each 0.1 MPa of \(\Psi_{l} \). Data are means \(\pm 95\% \) confidence intervals. The solid line is a non-linear regression line fit with a sigmoidal function (adjusted \(R^2 = 0.96 \)). (b) The plot of residuals as percent deviation from the fitted curve. Curve is fit using a smoothed cubic regression spline. Vertical dotted lines represent \(\Psi_{l} \) values at \(\Psi_{l}^{25} \) and \(\Psi_{l}^{95} \) according to the sigmoidal function in the top panel.

mol m\(^{-2}\) s\(^{-1}\) was 1.2 times larger than the next greatest estimate (Refosco; \(g_{\text{max}} = 0.489 \pm 0.029 \) mol m\(^{-2}\) s\(^{-1}\)), but with a large standard error (Table 2). Interestingly, the range and standard deviation (s.d.) of measured \(g_{\text{max}} \) values among cultivars – measured range = 0.151 mol m\(^{-2}\) s\(^{-1}\); measured s.d. = 0.0428 mol m\(^{-2}\) s\(^{-1}\) – was smaller than those of estimated \(g_{\text{max}} \) values among cultivars – estimated range = 0.196 mol m\(^{-2}\) s\(^{-1}\); estimated s.d. = 0.0461 mol m\(^{-2}\) s\(^{-1}\). In either case – when comparing estimated or measured values – there were no significant differences in \(g_{\text{max}} \) among cultivars.

For several cultivars, the estimated asymptotic \(g_{\text{max}} \) value from the sigmoidal fit was greater than the highest actual measured mean \(g_{\text{max}} \) value (e.g. Syrah and Tinta Madeira,) or there were few data points near the estimated \(g_{\text{max}} \) (e.g. Tinta Amarela) (Fig. 3). One consequence was that the derived \(\Psi_{l}^{95} \) values fell outside of the measured values for Syrah and Tinta Madeira, or that the estimated \(g_{\text{max}} \) value was a poor representation of a cultivar’s actual \(g_{\text{max}} \). Since subsequent
lower post-veraison by 0.21 MPa (likely due to the lack of a fully irrigated post-veraison treatment). Nevertheless, in both phenological periods a higher Ψ_l resulted in a higher cultivar mean Ψ_l with nearly a 1:1 ratio based on the slopes of the linear regression lines. The linear regression model was highly significant, and Ψ_l explained 83% of the variation in cultivar mean Ψ_l when the model included both phenological periods.

Discussion

Since the paper published by Schultz (2003) suggesting that *V. vinifera* cultivars may differ in their stomatal behaviour in response to water deficits, there has been great interest among researchers in unravelling the causes and underlying mechanisms of the an/isohydric phenomenon across cultivars (Soar *et al.* 2006b; Collins *et al.* 2010; Gerzon *et al.* 2015; Hochberg *et al.* 2015; Coupel-Ledru *et al.* 2017; Charrier *et al.* 2018). However, the obvious experimental difficulty in conducting large, field-scale experiments across many cultivars has limited previous investigations to only a few cultivars at a time or to the comparison of various cultivars grown in different vineyards or locations. As such, much work has been done on potted vines whose responses may not be representative of field performance – particularly in terms of plant water relations (Passioura 2006) – and on cultivars selected based on *a priori* classification as either iso- or anisohydric from few data – notably Grenache and Syrah. Several reviews have been published on the topics of irrigation management and/or water relations of grapevine that have attempted to synthesise the existing literature on across-cultivar stomatal behaviour (Cifre

![Figure 3](image-url)
Table 2. Parameter estimates (Est.), associated standard errors (s.e.), and regression fit statistics (Adj. R^2) from non-linear regression analyses of g_s to Ψ_t

The parameter g_{max} represents the curve asymptote, i.e. a theoretical maximum g_s. The parameter Ψ_t^{50} represents the inflection point of the curve, i.e. the Ψ_t (MPa) at which g_s is 50% of g_{max}. The parameter b characterises the transition width of the function, i.e. the difference in Ψ_t from 25 to 75% of g_{max} and is equal to $(b \times 2.196) + 0.002$. Adj. R^2 is a bias-corrected R^2 accounting for the number of parameters in the non-linear regression model.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>g_{max} (mol m$^{-2}$ s$^{-1}$)</th>
<th>Ψ_t^{50} (MPa)</th>
<th>b (unitless)</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est.</td>
<td>s.e.</td>
<td>Est.</td>
<td>s.e.</td>
</tr>
<tr>
<td>Syrah</td>
<td>0.595</td>
<td>0.130</td>
<td>−1.34</td>
<td>0.15</td>
</tr>
<tr>
<td>Refosco</td>
<td>0.489</td>
<td>0.029</td>
<td>−1.40</td>
<td>0.04</td>
</tr>
<tr>
<td>Tinta Amarela</td>
<td>0.483</td>
<td>0.045</td>
<td>−1.55</td>
<td>0.05</td>
</tr>
<tr>
<td>Touriga Nacional</td>
<td>0.483</td>
<td>0.053</td>
<td>−1.27</td>
<td>0.06</td>
</tr>
<tr>
<td>Tannat</td>
<td>0.480</td>
<td>0.026</td>
<td>−1.53</td>
<td>0.03</td>
</tr>
<tr>
<td>Malbec</td>
<td>0.477</td>
<td>0.043</td>
<td>−1.48</td>
<td>0.06</td>
</tr>
<tr>
<td>Tinta Madeira</td>
<td>0.468</td>
<td>0.055</td>
<td>−1.38</td>
<td>0.07</td>
</tr>
<tr>
<td>Tempranillo</td>
<td>0.466</td>
<td>0.050</td>
<td>−1.54</td>
<td>0.06</td>
</tr>
<tr>
<td>Souzão</td>
<td>0.465</td>
<td>0.038</td>
<td>−1.51</td>
<td>0.05</td>
</tr>
<tr>
<td>Aglianico</td>
<td>0.459</td>
<td>0.031</td>
<td>−1.42</td>
<td>0.04</td>
</tr>
<tr>
<td>Cabernet Sauvignon</td>
<td>0.444</td>
<td>0.033</td>
<td>−1.48</td>
<td>0.05</td>
</tr>
<tr>
<td>Freisa</td>
<td>0.438</td>
<td>0.045</td>
<td>−1.52</td>
<td>0.07</td>
</tr>
<tr>
<td>Montepulciano</td>
<td>0.426</td>
<td>0.024</td>
<td>−1.59</td>
<td>0.03</td>
</tr>
<tr>
<td>Petit Verdot</td>
<td>0.424</td>
<td>0.052</td>
<td>−1.50</td>
<td>0.10</td>
</tr>
<tr>
<td>Durif</td>
<td>0.406</td>
<td>0.036</td>
<td>−1.51</td>
<td>0.05</td>
</tr>
<tr>
<td>Cinsault</td>
<td>0.402</td>
<td>0.031</td>
<td>−1.47</td>
<td>0.04</td>
</tr>
<tr>
<td>Grenache</td>
<td>0.398</td>
<td>0.025</td>
<td>−1.47</td>
<td>0.04</td>
</tr>
<tr>
<td>All cultivars</td>
<td>0.461</td>
<td>0.021</td>
<td>−1.48</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 3. Maximum slope and vine water status values modelling the relation of g_s to Ψ_t for each cultivar

Vine water status values (Ψ_t^{25}, Ψ_t^{50} and Ψ_t^{75}) were extracted from the fitted curves using parameters from Table 2. Maximum slope ($g_{\text{sensitivity}}$) was determined from the first derivative of each fitted curve.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>$g_{\text{sensitivity}}$ (mol m$^{-2}$ s$^{-1}$ MPa$^{-1}$)</th>
<th>Ψ_t^{25} (MPa)</th>
<th>Ψ_t^{50} (MPa)</th>
<th>Ψ_t^{75} (MPa)</th>
<th>g_s (mol m$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannat</td>
<td>1.283</td>
<td>−1.26</td>
<td>0.456</td>
<td>−1.53</td>
<td>0.239</td>
</tr>
<tr>
<td>Montepulciano</td>
<td>0.946</td>
<td>−1.26</td>
<td>0.405</td>
<td>−1.59</td>
<td>0.213</td>
</tr>
<tr>
<td>Durif</td>
<td>0.840</td>
<td>−1.15</td>
<td>0.385</td>
<td>−1.51</td>
<td>0.202</td>
</tr>
<tr>
<td>Refosco</td>
<td>0.835</td>
<td>−0.98</td>
<td>0.462</td>
<td>−1.40</td>
<td>0.243</td>
</tr>
<tr>
<td>Cinsault</td>
<td>0.834</td>
<td>−1.11</td>
<td>0.382</td>
<td>−1.47</td>
<td>0.201</td>
</tr>
<tr>
<td>Tinta Amarela</td>
<td>0.719</td>
<td>−1.07</td>
<td>0.457</td>
<td>−1.55</td>
<td>0.241</td>
</tr>
<tr>
<td>Tempranillo</td>
<td>0.692</td>
<td>−1.06</td>
<td>0.441</td>
<td>−1.54</td>
<td>0.232</td>
</tr>
<tr>
<td>Touriga Nacional</td>
<td>0.642</td>
<td>−0.80</td>
<td>0.446</td>
<td>−1.27</td>
<td>0.235</td>
</tr>
<tr>
<td>Cabernet Sauvignon</td>
<td>0.591</td>
<td>−0.96</td>
<td>0.418</td>
<td>−1.48</td>
<td>0.220</td>
</tr>
<tr>
<td>Aglianico</td>
<td>0.586</td>
<td>−0.90</td>
<td>0.430</td>
<td>−1.42</td>
<td>0.226</td>
</tr>
<tr>
<td>Malbec</td>
<td>0.572</td>
<td>−0.92</td>
<td>0.447</td>
<td>−1.48</td>
<td>0.235</td>
</tr>
<tr>
<td>Syrah</td>
<td>0.562</td>
<td>−0.98</td>
<td>0.376</td>
<td>−1.47</td>
<td>0.198</td>
</tr>
<tr>
<td>Souzão</td>
<td>0.525</td>
<td>−0.76</td>
<td>0.527</td>
<td>−1.34</td>
<td>0.277</td>
</tr>
<tr>
<td>Freisa</td>
<td>0.503</td>
<td>−0.94</td>
<td>0.410</td>
<td>−1.52</td>
<td>0.216</td>
</tr>
<tr>
<td>Tinta Madeira</td>
<td>0.468</td>
<td>−0.80</td>
<td>0.426</td>
<td>−1.38</td>
<td>0.224</td>
</tr>
<tr>
<td>Petit Verdot</td>
<td>0.428</td>
<td>−0.88</td>
<td>0.392</td>
<td>−1.50</td>
<td>0.207</td>
</tr>
<tr>
<td>Range</td>
<td>0.855</td>
<td>0.50</td>
<td>0.151</td>
<td>0.32</td>
<td>0.079</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.215</td>
<td>0.15</td>
<td>0.037</td>
<td>0.08</td>
<td>0.020</td>
</tr>
<tr>
<td>Mean</td>
<td>0.679</td>
<td>−0.99</td>
<td>0.429</td>
<td>−1.47</td>
<td>0.226</td>
</tr>
<tr>
<td>CV (%)</td>
<td>32</td>
<td>15</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>
et al. 2005; Chaves et al. 2010; Lovisolo et al. 2010; Costa et al. 2012; Domec and Johnson 2012). Unfortunately, differences in plant material, environmental conditions, and experimental methodology and techniques have limited the ability of past reviews to characterise various cultivars’ responses and have ultimately resulted in inconsistent classification. In an attempt to resolve these problems, Lavoie-Lamoureux et al. (2017) conducted a meta-analysis of 40 publications across 28 V. vinifera cultivars and hypothesised that rather than separating into two distinct groups, cultivars’ stomatal behaviours were distributed along a continuum. A similar result was found by Klein (2014) in a meta-analysis across 70 plant species.

This study explored genetic variation in vine water status and stomatal behaviour across 17 V. vinifera cultivars (clone wood and source known) grafted onto the same rootstock (1103P), grown in a replicated and source known) grafted onto the same rootstock (1103P), and subjected to three season-long deficit irrigation treatments over the course of multiple seasons. Therefore, soil type, weather conditions and cultural practices were the same for all cultivars. Midday Ψ_l was measured by the same individual on each date in 2014 and 2015 using the technique whereby leaf blades were covered with a plastic bag just before leaf excision therefore minimising potential technique (Williams and Araujo 2002; Williams 2017) and operator errors (Goldhamer and Fereres 2001). Unfortunately, this was not one of the factors considered in the meta-analysis by Lavoie-Lamoureux et al. (2017) and even now the exact method used or a reference provided to describe how Ψ_l was measured is not given (Charrier et al. 2018). The timing interval between the two measurements only had to be within two hours in the meta-analysis of Lavoie-Lamoureux et al. (2017), and it is unknown to what degree this would affect their results. Stomatal conductance was measured with the same LI-COR porometer in each year on the same leaf used for the measurement of Ψ_l just before its excision. Thus, the design and techniques used in this study should have maximised the effect of cultivar on the parameters in question. The hypothesis that cultivars do not separate into clear iso- or anisohydric groups, but rather are distributed along a continuum was tested by (1) establishing a range of plant water deficits using variable amounts and timings of applied water, (2) measuring Ψ_{PPS} and Ψ_l the first year and (3) measuring g_s and Ψ_l on the same leaf samples the third and fourth years, and then comparing response curves among cultivars.

Isohydric, near-isohydric, anisohydric or isohydrodynamic?

In general, an isohydric plant will maintain its water potential value similar between water stressed and well-watered cohorts (Tardieu and Simonneau 1998). The results from the first year of the study clearly demonstrate that none of the cultivars in this study responded to soil water deficits in an isohydric manner but were more anisohydric-like, in agreement with that of (Soar et al. 2006b). Midday Ψ_l of vines in the three irrigation treatments differed significantly from one another – midday Ψ_l of well-watered vines across cultivars were always much greater than the other irrigation treatments and as the water in the soil profile was depleted, midday Ψ_l decreased for all cultivars including that of Grenache. None of the cultivars examined in this study maintained a minimal midday Ψ_l plateau (> −1.5 MPa) as reported previously for near-isohydric grape cultivars (Schultz 2003; Prieto et al. 2010). In addition, the slope of the relationship between midday Ψ_l and Ψ_{PPS} reported here did not differ among cultivars, similar to that observed by Charrier et al. (2018) for...
Grenache and Syrah. Lastly, the cultivars did not appear to respond to soil water deficits in an isohydrodynamic manner (Franks et al. 2007; Shellie and Bowen 2014).

Exploring the curve: cultivar differences in the relation of \(g_s \) to \(\Psi_1 \)

A sigmoidal \(g_s \) relation to \(\Psi_1 \) was present in all 17 cultivars and in a composite analysis. A similar result was found by Charrier et al. (2018). Linear relationships between \(g_s \) and \(\Psi_1 \) (and \(\Psi_{stem} \)) have been commonly reported in grape (Williams and Araujo 2002; Shackel 2007; Williams 2012; Williams et al. 2012). However, nonlinearity may have been overlooked in those studies. The reported ranges of \(\Psi_1 \) or \(\Psi_{stem} \) were narrower (~0.5 to 1.0 MPa) than that reported herein (1.4 MPa), thus may have only represented the linear portion of the entire response curve. Furthermore, there are few data in the aforementioned studies at low vine water status (\(\Psi_1 \) or \(\Psi_{stem} < -1.5 \) MPa), and the
reported data at high vine water status (Ψ_t or $\Psi_{stem} > -1.0$ MPa) show increasing vertical scatter. Indeed, when a broader range of vine water status was evaluated, non-linear relationships between g_s and Ψ_t (and Ψ_{stem}) have been shown for *V. vinifera* cv. Sauvignon blanc (Naor et al. 1994, 1997), and between g_s and Ψ_{PP} across five cultivars (Prieto et al. 2010). Recently, sigmoidal functions were also well fit to data relating grapevine leaf petiole percent loss of conductivity to xylem tension in potted grapevine (cv. Merlot) (Hochberg et al. 2017a). Finally, sigmoidal relations of g_s to Ψ_t has been reported for woody and non-woody crops alike, including: *Populus* spp. (Silim et al. 2009), *Olea europea* (Ennajeh et al. 2008), *Oryza sativa* (Dingkuhn et al. 1989), *Sorghum bicolor* (Henzell et al. 1976); and across a broad range of tree species (Klein 2014). Nevertheless, in this study the nature of the sigmoidal relationship between g_s and Ψ_t depended greatly upon cultivar.

No cultivar differences at high water status

Under well-watered conditions, there were no cultivar differences in g_{max}. While both high g_{max} (Henzell et al. 1976) and low g_{max} (Sinclair et al. 2005) have been proposed means to improve productivity under dry conditions, there was surprisingly little variation in g_{max} under well-watered conditions among cultivars over two years. Measured and estimated g_{max} values in this study (0.4 to 0.6 mol m$^{-2}$ s$^{-1}$ across cultivars) were similar to other reported values for well-watered grapevines (Williams and Baenza 2007; Bota et al. 2016), and there were no significant differences among cultivars. Interestingly, measured g_{max} values among cultivars were more similar than were estimated g_{max} values, further supporting the point that cultivars behave similarly under well-watered conditions. Thus, no prospects were revealed for improved efficiency at either high water status (Price et al. 2002) or at low water status (Silim et al. 2009).

The lone g_{max} outlier – Syrah, who’s estimated g_{max} was more than 0.1 mol m$^{-2}$ s$^{-1}$ greater than measured g_{max} – was likely due a lack of data density in the well-watered range (>-1.0 MPa) that ultimately resulted in a poor estimate of the asymptote by the sigmoidal fit. This was also true for Tinta Madeira, though the difference between measured and estimated g_{max} was smaller. The question remains whether or not higher g_s values would be measured for those cultivars – and a more accurate estimate for g_{max} would be obtained – at higher Ψ_t values. Although it is not biologically impossible – Soar et al. (2009) reported g_s values for Shiraz (syn = Syrah) near 0.8 mol m$^{-2}$ s$^{-1}$ – it is unlikely under field conditions, primarily because those values were obtained through artificial heating and under high relative humidity. Also, significantly higher mid-season Ψ_t values (>-0.7 MPa) would also be difficult to reach under field conditions (Williams and Baenza 2007).

Generally speaking, the role of g_{max} in terms of drought tolerance has been evaluated almost exclusively in the context of crop species that are grown for agronomic purposes (yield/biomass production) – e.g. *Populus* spp., *O. sativa*, and *S. bicolor*. Considering that grapevine water use is highly correlated with g_s (Williams et al. 2012) and canopy percent shaded area/canopy coverage (Williams and Ayars 2005), similar g_{max} across cultivars would suggest that canopy percent shaded area alone – ultimately determined by relative cultivar vigour and canopy training/trellising system – determines total consumptive water use in grapevine. However, understanding the importance of high or low g_{max} in wine grape production is further complicated by the common horticultural purposes (fruit quality) in which water deficits are often beneficial (Roby et al. 2004).

Cultivar differences become apparent at moderate water status

As water deficits increased, differences among cultivars in the onset of stomatal closure (Ψ_{t95}) became apparent, ranging from Syrah at -0.76 MPa to Tannat at -1.26 MPa. There are few reported data regarding the Ψ_t at the onset of closure for grapevines, primarily due to the predominant practice of fitting linear curves through the data (as discussed above), or simply not conducting a regression analysis. Williams and Baenza (2007) suggest a Ψ_t value of -1.2 MPa as signifying when grapevines are no longer responsive to changes in VPD, but rather to changes in soil moisture. In their recent meta-analysis of the literature, Lavioie-Lamoureux et al. (2017) suggest using -1.214 MPa as the water status level at which to compare cultivars. It is likely that this value – $\Psi_{t12} = -1.2$ MPa – varies by cultivar, and indeed falls in the lower end of the across-cultivar Ψ_{t95} range obtained herein. The data of Hochberg et al. (2017b) show that Ψ_{t95} for Chardonnay was closer to $\Psi_t = -0.8$ MPa, and Hochberg et al. (2017a) show a 12% loss of conductivity (i.e. Ψ_{t88}) in Merlot occurring at $\Psi_{stem} = 0.66$ to -0.91 MPa – which would correspond to a $\Psi_{t} = -0.97$ to -1.20 MPa (Williams and Araujo 2002). Finally, a similar range in the onset of stomatal closure has been reported among Poplar clones (Silim et al. 2009) and across 70 other tree species (Klein 2014). Therefore, the cultivar-specific water potential values for the onset of stomatal closure in this study are within the expected range for *V. vinifera*, and moreover seem to be highly conserved across other woody perennial plant species as well.

Like the onset of stomatal closure, $g_{\text{sensitivity}}$ was cultivar-specific, revealing a 3-fold difference in slopes (Fig. 4). Prevailing definitions of iso- and anisohydry state that isohydric plants maintain Ψ_t almost constant as soil dries due to more sensitive stomata, whereas anisohydric plants maintain g_s and allow Ψ_t to decline with soil drying (Tardieu and Simonneau 1998; Jones 2014). Using this definition, cultivars in this study with high $g_{\text{sensitivity}}$ (e.g. Tannat, Durif and Montepulciano) could be categorised as isohydric/near-isohydric, whereas those with low $g_{\text{sensitivity}}$ (e.g. Petit Verdot, Tinta Madeira, Freisa) could be categorised as anisohydric/near-anisohydric.

In the present study, Grenache (often considered the archetypal isohydric cultivar) and Syrah (often considered the archetypal anisohydric cultivar) had almost the same $g_{\text{sensitivity}}$ (maximum slope of the linear part of the curves), and did not segregate based on this criterion. However, simple observation of the sigmoidal functions fit to Grenache and Syrah clearly shows that they behave differently at moderate water status – Grenache is more sigmoidal with a clear asymptotic levelling off of g_s at high Ψ_t values, whereas Syrah is less sigmoidal without a clear
asymptotic levelling off of g_s at high Ψ_l. If $g_{\text{sensitivity}}$ were calculated at moderate water status values (e.g. $\Psi_l^{95} > \Psi_l > \Psi_l^{50}$) instead of in the linear portion (e.g. at Ψ_l^{10}), it is possible that Grenache and Syrah would segregate clearly based on this criterion. Simply looking at this constrained dataset supports some previous classification of these two cultivars. Yet the fact that their behaviour – and ultimate classification – depends on the stomatal sensitivity parameter is defined calls into question its usefulness for classification.

In their comparison of five cultivars, Prieto et al. (2010) reported that a stomatal sensitivity factor, k – calculated using the Ball, Woodrow, and Berry model – significantly differed between Grenache and Syrah, but their level of sensitivity for this parameter was $\alpha = 0.10$. Furthermore, they show regressions of k to predawn water potential for Syrah and Ekygina (as examples of extreme cases), but do not show the comparison data for Grenache. Recent work has also shown that there are no statistically significant differences between Grenache and Syrah with respect to sensitivity of transpiration rate to declining soil water availability under both field and greenhouse conditions (Charrier et al. 2018). Therefore, other factors affecting stomatal behaviour such as leaf hydraulics or environment may be more important to consider for cultivar classification going forward.

It is notable that Grenache and Syrah – the two cultivars first compared by Schultz (2003) – differed in this study only in their Ψ_l^{95} value, but had almost the same $g_{\text{sensitivity}}$ (Fig. 4). Although widely cited as the foundational evidence for the an/isohydric phenomenon within V. vinifera cultivars, it is seldom discussed that Schultz (2003) actually used Grenache and Syrah scions grafted onto different rootstocks, 140 Ruggeri and 110 Richter respectively (Schultz 1996). Viitis spp. rootstocks differ in their effects on vine water relations and gas exchange (Padgett-Johnson et al. 2003), and have also been shown to significantly affect scion gas exchange (Soar et al. 2006a) as well as scion growth and productivity (Williams 2010). Lavoie-Lamoureux et al. (2017) reported that rootstock generally accounts for 19% of the variability in scion g_s response to water deficits. When grafted onto the same rootstock, similar rates of stomatal closure between Grenache and Syrah in response to Ψ_{stem} (ranging from -0.5 to -1.5 MPa) have been reported in a recent three-year field study (Bota et al. 2016). It did appear that Grenache and Syrah behaved differently at moderate water status in this study, in contrast to Schultz (2003) who showed a greater divergence between the two cultivars at lower water status. Well-watered conditions have been shown to increase variation in stomatal response across Grenache-Syrah progeny (Coupel-Ledru et al. 2017). Indeed, it should be noted that Syrah maintained a higher g_s compared with Grenache at all water status levels in this study. Nevertheless, whether considering Grenache and Syrah separately, or all the cultivars together in this study, there were more differences among them in stomatal behaviour at moderate water status relative to low water status.

Few cultivar differences at low water status

Analysis of g_s at Ψ_l^{25} and the similarity of Ψ_l among cultivars at Ψ_l^{25} suggests a common water status limit to low g_s among grapevine cultivars. At Ψ_l^{25}, g_s was already down to 0.08 to 0.1 mol m$^{-2}$ s$^{-1}$ and declined gradually thereafter. Grapevines have been previously classified as severely stressed when $g_s < 0.05$ to 0.1 mol m$^{-2}$ s$^{-1}$ (Cifre et al. 2005; Lovisol and et al. 2010). The lack of apparent cultivar differences at low water status may have been due to the relatively poor fit of the sigmoidal functions at these levels (shown by increasing homoscedasticity in residuals in Fig. 2b). However, all extracted Ψ_l^{25} values were above these poorly fit regions of the dataset. Brodribb and Holbrook (2003) regarded Ψ_l^{25} as the point of stomatal closure in their analysis of stomatal behaviour across four tropical tree species, and Klein (2014) used Ψ_l^{25} as a functional parameter by which to compare stomatal behaviour of 70 woody perennial plant species. Hence, it is reasonable to regard the value of Ψ_l^{25} as the functional lower limit of stomatal contribution to leaf gas exchange and overall vine performance.

Stomata function in part to protect the hydraulic integrity of the xylem (Tyree and Sperry 1988; Brodribb and Holbrook 2003), but also close in response to reduction in leaf turgor (Shackel et al. 1987). Thus, a reduction in g_s is both an impact of and a protective response to declining plant water status. This inherently complicates behavioural interpretation. Choat et al. (2010) showed that xylem cavitation commences at much lower water status than previously accepted, and Hochberg et al. (2017b) recently showed that stomata close well in advance of xylem cavitation in grapevine. In the latter work, g_s was less than 10% of g_{max} before the first embolisms were detected in the xylem ($-1.46 > \Psi_l > -1.75$ MPa). Those Ψ_l values at the appearance of the first embolisms closely correspond to the Ψ_l^{25} values found among cultivars in this study ($-1.5 > \Psi_l > -1.8$ MPa; Fig. 5). Therefore, our data indicate most stomata were closed for all cultivars at or below their Ψ_l^{25} value, and that the cultivar-specific Ψ_l^{25} value may be related to the appearance of first embolisms in the xylem. Thus, each cultivar-specific Ψ_l^{25} value may indicate a hydraulically determined water status limit, which may be governed by cultivar differences in vascular anatomy (Gerzon et al. 2015; Hochberg et al. 2015).

Potential physiological mechanisms to explain cultivar differences

It is likely that the different stomatal behaviours observed among cultivars were mediated by hydraulic or turgor-dependent signals, which are closely associated with incipient stomatal closure (Brodribb and Holbrook 2003). In their modelling work on partitioning stomatal responses to drought, Rodriguez-Dominguez et al. (2016) found that leaf turgor-dependent mechanisms accounted for a large majority of the decline in g_s to soil drought across three woody perennial crop species, including grapevine. Reduced hydraulic conductivity and increased osmotic adjustment made up a large proportion of the overall stomatal response in that study.

In general, differences in stomatal closure among plant species may arise in part from differences in osmotic adjustment (Hsiao 1973), leading to acclimation of stomatal response and leaf hydraulic conductivity to low water status (Matthews and Boyer 1984; Martorell et al. 2015). Differences in osmotic adjustment have also been closely associated with differences in stomatal behaviours between tree species.
Finally, at low water status, onset (\(g_s\)) responded similarly to one another by maintaining a high stomatal sensitivity and the onset \((\Psi_{1}\text{PD})\) of stomatal closure in the face of declining vine water status. Notably, this continuum was well defined at moderate status values, but cultivars behaved similarly at high and low water status.

At high vine water status, cultivars had similar \(g_{\text{max}}\) values, suggesting that overall vine water use would simply be a function of canopy size under well watered and saturating light conditions. As \(\Psi_{1}\) decreased from well-watered conditions, all cultivars responded similarly to one another by maintaining a high \(g_s\) – an anisohydric characteristic. This was despite several of the cultivars having been assigned to the isohydric/near-isohydric category in other studies. However, closer examination of the \(g_s\) vs \(\Psi_{1}\) relationship showed that as vine water status declined from well-watered conditions, stomata of various cultivars responded differently to minimise water loss – an isohydric characteristic. Finally, at low water status, \(g_s\) was the similar for all cultivars \(<0.1\ \text{mol m}^{-2}\ \text{s}^{-1}\), but the water status value at the end of stomatal closure \((\Psi_{1}\text{PD})\) differed among them, indicating that there is a cultivar-dependent water status limit to stomatal functioning.

The large and significant differences in midday \(\Psi_{1}\) values measured as a function of irrigation treatment across all cultivars in this study would indicate that midday \(\Psi_{1}\) provides an accurate assessment of vine water status, and would therefore be useful to validate other measures of monitoring vine water status, or as a tool in an irrigation management program. In terms of cultivar-specific stomatal behaviour, all cultivars examined herein responded in an anisohydric manner at high water status by keeping stomata open as \(\Psi_{1}\) decreased. This was despite several of the cultivars having been assigned to the isohydric/near isohydric category in other studies. However, closer examination of the \(g_s\) vs \(\Psi_{1}\) relationship indicates there may be times – at moderate water deficits – in which stomata of various cultivars may respond differently to minimise water loss, an isohydric response. This would indicate that \(V.\ vinifera\) cultivars have both iso- and anisohydric stomatal responses to water deficits, and that any future classification should incorporate a holistic evaluation of the entire response curve. Finally, differences in osmotic adjustment among cultivars may play the primary role in determining the observed differences in stomatal behaviour.

Conflicts of interest

Larry E Williams, Mark A Matthews and Alexander D Levin conceived of and designed the research. ADL conducted experiments, analysed data, and wrote the manuscript. All authors read and approved the manuscript. The authors declare no conflicts of interest.

Acknowledgements

The authors would like to thank GA Gambetta, KA Shackel and AJ McElrone for helpful discussions related to earlier drafts of this manuscript; and Judith Chiginsky and Laura Fontaine for their technical assistance in data collection. The authors would also like to thank the staff at the KARE Center for vineyard management services. This work was supported in part by the American Vineyard Foundation (award number 2014–1533) and the California Institute of Water Resources Joseph G Prosser Trust Grant (award number 2015CA345B). This work also served as partial satisfaction of the requirements for the completion of A Levin’s doctoral thesis, which was generously supported by the Henry A Jastro Research Award, the Wine Spectator Scholarship, the Horace O Lanza Scholarship, the Adolf C and Richic C Heck Research Fellowship, the Louis R Gomberg Scholarship, CO Foerster Jr Scholarship, the Nathan Fay Scholarship, the Pearl and Albert J Winkler Scholarship in Viticulture, the Harold P Olmo Scholarship, the Richard and Saralee Kunde Scholarship, the David E Gallo Award, the John Ferrington Award, the Robert Lawrence Balzer Scholarship, the Curtis J Alley Memorial Research Scholarship, the Leon D Adams Research Scholarship, and the Andre Tchelisticheff and Dr Richard Peterson Scholarship.

References

