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Abstract. Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately
tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of
wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a
recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur � Kukri. This population
was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping.
Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of
3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress,
including QTL for maintenance of shoot growth under salinity (QG(1-5).asl-5A, QG(1-5).asl-7B) sodium
accumulation (QNa.asl-2A), chloride accumulation (QCl.asl-2A, QCl.asl-3A) and potassium : sodium ratio (QK:Na.
asl-2DS2). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These
findings are expected to facilitate the breeding of new salt tolerant wheat cultivars.

Additional keywords: chloride, non-destructive phenotyping, potassium, salinity, shoot ion-independent tolerance,
sodium, quantitative trait locus, wheat.
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Introduction

Wheat plays a major role in food security across the globe and
the demand of wheat is expected to increase by 60% by 2050
(Nelson et al. 2010; Shiferaw et al. 2013). However, one of the
major constraints for the productivity of wheat is soil salinity,
which greatly reduces yield (Rengasamy 2002, 2006; Roy
et al. 2014; Munns and Gilliham 2015). In Australia, it is
estimated that 69% of the Australian wheatbelt is affected by
salinity to some degree (Rengasamy 2002). Hence, to meet the
growing demands of wheat consumption, there is an urgent

need to identify novel salt tolerance subtraits and develop
salinity tolerant wheat cultivars.

Tosurvive saline conditions, plants relyona rangeofdifferent
tolerance mechanisms, including, but not limited to: excluding
Na+ and Cl- from the shoot (Rashid et al. 1999; Poustini and
Siosemardeh 2004; Roy et al. 2014; Ismail and Horie 2017);
maintaining a highK+ : Na+ ratio in the leaves (Shabala and Cuin
2008; Shabala and Pottosin 2014; Hanin et al. 2016; Ali andYun
2017); vacuolar sequestration of toxic ions (Hasegawa et al.
2000; Flowers and Colmer 2008; Munns et al. 2016; Ismail and
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Horie 2017); compatible solutes synthesis (Munns et al. 2016,
2020; van Zelm et al. 2020); and maintenance of plant growth
(Roy et al. 2014; Al-Tamimi et al. 2016; Tilbrook et al. 2017;
Asif et al. 2018). Reductions in plant growth have been shown
to occur during the first few minutes of salt stress, before ions
can accumulate to high levels in the shoot tissue, and the
ability of plants to maintain shoot growth is called shoot ion-
independent tolerance or osmotic tolerance (Roy et al. 2014;
Asif et al. 2018). Of the described tolerance mechanisms,
little is known about the genes that control the mechanisms of
shoot ion-independent tolerance and/or Cl- accumulation in
bread wheat, although several candidate genes have been
proposed in recent studies (Genc et al. 2014; Asif et al.
2018). Shoot ion-independent tolerance is considered a
complex mechanism and long-distance signalling (reactive
oxygen species and Ca2+ signalling or long distance
electrical signalling) is believed to be involved in this
tolerance mechanism (Kudla et al. 2010; Roy et al. 2014;
Al-Tamimi et al. 2016; van Zelm et al. 2020). Chloride, in
contrast, is an essential micronutrient with metabolic functions
in enzyme activation, photosynthesis, osmoregulation and
movement of stomata, but it is toxic at high concentrations
and can result in leaf chlorosis, growth reduction and yield loss
(White and Broadley 2001; Tavakkoli et al. 2010; Li et al.
2017; Wege et al. 2017; Geilfus 2018). Identification and
exploitation of genetic variation for these tolerance
mechanisms have great potential to breed new salt tolerant
wheat cultivars. Therefore, a forward genetics approach to
identify quantitative trait loci (QTL) followed by fine mapping
could lead to the detection of novel genes for these tolerance
mechanisms.

QTL mapping is a valuable tool for studying complex
polygenic traits like salinity tolerance in various crops (Ortiz
1998; Ruttan 1999; Roy et al. 2011). QTL for salinity tolerance
have been identified in a large number of plant species including
breadwheat (Asif et al. 2019); however, limited success has been
made so far regarding the identification of candidate genes
and development of new salt tolerant wheat cultivars
(Gilliham et al. 2017; Asif et al. 2019). Hence, more studies
are needed to identify and understand salt tolerance mechanisms
and the underlying genes responsible for such traits. Here, we
describe the genetic characterisation of a new recombinant
inbred line (RIL) population and QTL associated with
different salt tolerance subtraits. We speculate on the potential
candidate genes within the QTL intervals which could be tested
to develop new salt tolerant cultivars.

Materials and methods
Plant materials
An F2:F6 population of RILs, derived from a cross between
single plants of two Australian wheat cultivars Excalibur-198
(RAC177/Uniculm492//RAC311S) and Kukri-199 (76ECN44/
76ECN36//RAC549/Madden/6*RAC177) were utilised for
this study. Excalibur is a salt- and drought-tolerant cultivar
with a high yield potential under South Australian conditions,
but it has low grain quality and is susceptible to rust. Kukri
produces excellent quality grain and is resistant to rust (Izanloo
et al. 2008; Asif et al. 2018). Seeds of RILs and parents

(Excalibur and Kukri) were provided by Australian Centre for
Plant Functional Genomics (ACPFG), Australia.

Non-destructive glasshouse-based phenotyping
A phenotyping experiment was conducted on 128 RILs using
the automated high-throughput imaging facility at The Plant
Accelerator, Adelaide, South Australia (longitude 138.64,
latitude –34.97). The 128 RILs and parents (Excalibur and
Kukri) were phenotyped during late winter to early spring, 14
August to 16 September 2013 using a partially replicated
(20%) split-plot design, using the same method described
by Asif et al. (2018).

Plants were germinated and planted as described by Asif
et al. (2018) with some minor changes. Salt treatment was
applied by adding 212 mL of 170 mM NaCl at 27% (w/w) soil
water content (573 ml) to the saucer of each salt stress pot to a
final concentration of 100 mM NaCl in the soil after drying
down to 17% (w/w) soil water (361 mL). Control pots received
212 mL of water on the same day to reach a soil water content
of 27% (w/w) and allow drying down to 17% (w/w), the same
as salt treated pots. After salt application, each pot was
weighed and watered automatically, on a daily basis on the
electronic conveyor system to maintain the soil water content
at 17% (w/w) and 100 mM NaCl concentration in soil. Plant
imaging, shoot ion-independent tolerance calculations and
statistical analysis were performed as described previously
by Asif et al. (2018).

Measurement of leaf Na+, K+ and Cl- concentration
The fourth leaf, which was the fully developed leaf blade
under salt stress treatment, was harvested 13 days after salt
treatment and used to measure Na+, K+ and Cl- contents. Fresh
weight of leaf samples was recorded before samples were dried
in an oven for two days at 65�C and the dry weight recorded.
Samples were digested in 10 mL of 1% (v/v) HNO3 at 85�C for
4 h in a 54-well Hotblock (Environmental Express). The
concentration of Na+ and K+ were measured using a flame
photometer (Model 420 Sherwood), while Cl- was measured
using a chloride analyser (Model 926 Sherwood).

Genotyping of the RIL population
Genomic DNA was extracted from leaf material using a
phenol/chloroform method described previously by
Rogowsky et al. (1991) and Pallotta et al. (2000). The
DNA concentration was quantified by PicoGreen (Ahn
et al. 1996). 272 RILs were genotyped using genotyping by
sequencing (GBS) to identify single nucleotide polymorphism
(SNP) markers for high density genetic map construction. GBS
libraries were prepared using protocols described in Elshire
et al. (2011) and Poland et al. (2012). DNA samples of all the
RILs and parents were digested with two restriction enzymes
(PstI – CTGCAG andMspI – CCGG) for complexity reduction
and barcoded with DNA adapters, designed following the
criteria described by Poland et al. (2012) (Table S1,
available as Supplementary Material to this paper). Three
multiplex GBS libraries, each having 96 samples (93 RILs,
two parents and one negative control), were sequenced using
the Illumina NextSeq500 platform at the Australian Genome
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Research Facility (AGRF, Adelaide, South Australia).
Sequencing data was processed using the Universal
Network Enabled Analysis Kit (UNEAK), which is the
non-reference GBS SNP calling pipeline and an extension
of the Java program of TASSEL (Lu et al. 2012). The
heterozygous SNP calls were assigned as missing data and
only the SNP markers which contained less than 20% missing
data were used for map construction.

RILs were further genotyped for the phenology genes
Ppd-2A, Ppd-2B and Vrn-A1 and 16 Kompetitive Allele
Specific PCR (KASP) polymorphic markers by a KASP assay
(https://www.biosearchtech.com/products/pcr-kits-and-reagents/
genotyping-assays/kasp-genotyping-chemistry, accessed 4
August 2020) (Table S2).

Genetic map construction
Map construction was performed using R/ASMap following
the instructions outlined by Taylor (2015). Genotypic data was
checked for lines with missing data (>25%), segregation
distortion (an allele frequency of either parent at <0.4 and
>0.6, at P = 0.05) and clonal individuals (similarity of >90%)
using the appropriate functions in R/ASMap (Taylor 2015).
The data outside the threshold ranges were removed and
remaining markers and lines were used for map
construction. Recombination fractions were converted to cM
distances using the Kosambi mapping function and the final
map was constructed using 3236 markers for the 128 RILs
that were phenotyped. The total length of the genetic map was
3084 cM, with a marker density of 0.95 cM per marker
(Table 1). Chromosome numbers were assigned to each
linkage group (LG) using the sequence reads that were
outputted from the UNEAK pipeline for each of the SNPs
that were identified. These sequences were assigned to each of
the chromosomes using an in-house BLAST portal with a
BLASTn performed against the IWGSC RefSeq v1.0
(IWGSC, https://wheat-urgi.versailles.inra.fr/Seq-Repository/
Assemblies, accessed 2 August 2020). The limit of acceptance
of assignment was based on the percentage of similarity
(>96%) and the final percentage of matches (80–100%)
between the query (the SNP markers) and the hit from the
sequence database.

The A and B genome were well represented among all of
the LGs. A total of 1478 markers were assigned to the A
genome, which consisted of 1415 cM of the genetic map
(0.96 cM per marker) (Table 1). The B genome accounted
for 1007 cM with 1459 markers (0.69 cM per marker)
(Table 1). The D genome was the least represented group
with 299 markers spanning 662 cM (2.22 cM per marker)
(Table 1).

QTL analysis
Composite interval mapping (CIM) was performed on 128
RILs using WinQTLCart-vers. 2.5 (Model 6 standard analysis
with five control markers and a window size of 10 cM) (Wang
et al. 2012) (Table S3). Log of odds (LOD) value thresholds
were determined with 1000 times permutations (Churchill and
Doerge 1994) at a 1 cM walk speed (P = 0.05). Significant
QTL were summarised with their position on a linkage group,

LOD score, magnitude and directions of their estimated
additive effects and their contribution to the genetic
variance. Map graphics and QTL positions were drawn
using MapChart 2.1 (Voorrips 2002). The notation for
individual QTL followed the format previously described
by Asif et al. (2018). A QTL region was defined as unique
if it was further than 15 cM from a neighbouring QTL (Sewell
et al. 2000; Sewell et al. 2002).

Physical mapping of the QTL
To determine the potential candidate genes within the QTL
intervals, all the markers (Tables S4, S5) that were up to two
LODdrops from themaximum likelihood value of selectedQTL
were used for BLASTn against the IWGSC RefSeq v1.0
(IWGSC, as above) using an in-house BLAST portal as
described previously by Asif et al. (2018). Only the query
sequence having a cumulative identity percentage of
similarity (>96%) and a cumulative alignment length

Table 1. Marker distribution, density and length of the Excalibur �
Kukri RIL genetic linkage map

Linkage
groups

Number of
markers

Length
(cM)

Marker
density

(cM/markers)

1A 251 196.14 0.78
1B 130 84.25 0.65
1BL 33 47.54 1.44
1D 66 148.53 2.25
2A 183 191.45 1.05
2B 384 196.77 0.51
2DS1 17 65.9 3.88
2DS2 33 35.66 1.08
3A 193 197.08 1.02
3B 234 187.2 0.80
3D 5 66.64 13.33
3DL 25 3.09 0.12
4A 227 191.34 0.84
4B 0 0 0.00
4D 6 17.03 2.84
4DL 3 13.88 4.63
5A 182 234.08 1.29
5B 199 112.61 0.57
5BL 59 73.72 1.25
5D 10 46.28 4.63
5DL 25 26.06 1.04
6A 201 155.96 0.78
6B 225 151.27 0.67
6D 10 22.6 2.26
6DS 10 7.03 0.70
6DL 32 18.73 0.59
7A 241 248.9 1.03
7B 195 153.51 0.79
7D 41 187.6 4.58
7DS 16 3.29 0.21
A genome 1478 1414.95 0.96
B genome 1459 1006.87 0.69
D genome 299 662.32 2.22
Total 3236 3084.14 0.95
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percentage of matches (90–100%) to the hit from the sequence
database were shortlisted. All the scaffolds that were within the
QTL intervalswere retrieved from theBLASTresults andused to
find expressed genes on the scaffolds, using DAWN (diversity
among wheat genomes) (Watson-Haigh et al. 2018) and
POTAGE (PopSeq Ordered Triticum aestivum Gene
Expression) (Suchecki et al. 2017). DAWN integrates data
from the Triticum aestivum Chinese Spring IWGSC RefSeq
v1.0 genome with public whole genome sequencing and
exome data from 17 and 62 bread wheat accessions,
respectively (Watson-Haigh et al. 2018) and RNA-Seq
expression data from five wheat tissues (root, leaf, stem, spike
and grain), taken at three developmental stages (seedling,
vegetative and flowering). POTAGE integrates map location
with gene expression and inferred functional annotation and
visualises these data through a web browser interface (Suchecki
et al. 2017).

Results

Glasshouse phenotyping of RILs

To assess the responses of plants to salinity, we exposed a total
of 128 RILs and parents (Excalibur and Kukri) to 100 mM
NaCl salt stress for 13 days; their growth during this period
was monitored using high-throughput, non-destructive
imaging. Images were used to extract the projected shoot
area (PSA), which in turn was used to estimate the relative
growth rate (RGR) of plants in the interval of 1-5 days after salt
treatment. The ratio of RGR (RGR salt/RGR control) during this
period was used to calculate the shoot ion-independent tolerance.
The range of shoot ion-independent tolerance within the RIL
population varied from 0.51 to 1.16 (Table 2).

The ionic contents (Na+, K+, and Cl–) in the fourth leaf of
the RILs growing in 100 mM saline soil for 13 days revealed
considerable variation between the lines (Table 2). The mean
and standard error of shoot Na+ accumulation for this
population was 215 � 21 mmol g–1 DW. The majority of
lines had a concentration between 50 and 600 mmol g–1 DW,
with seven lines having a leaf Na+ concentration greater than
600 mmol g–1 DW and the highest concentration observed at
1877 mmol g–1 DW (Table 2). By contrast, K+ accumulation in

the leaf followed a closer to normal distribution and had a
population mean of 1013 � 14 mmol g–1 DW and ranged from
364 to 1377 mmol g–1 DW (Table 2). The fourth leaf Cl-

accumulation exhibited a distribution similar to that of Na+

with a population mean of 458 � 21 mmol g–1 DW (Table 2).

QTL mapping

A total of nine QTL at eight unique locations on seven linkage
groups were detected under salt stress (100 mMNaCl; six QTL)
and control (0mMNaCl; threeQTL) treatments (Table 3; Fig. 1).
The phenotypic variation explained by a single QTL ranged
between 8.7 and 14.6% (Table 3).

The ability to maintain growth under salinity (shoot ion-
independent tolerance) was mapped to two QTL on
chromosomes 5A (QG(1-5).asl-5A) and 7B (QG(1-5).asl-7B)
(Table 3; Fig. 1). The LOD score of the 5A QTL was 3.8 and
explained 10.9% of the phenotypic variation. The second QTL
on chromosomes 7B had a LOD score of 3.4 and accounted for
8.7% of the phenotypic variation. The 5A QTL had a positive
effect from the Excalibur parent, while the favourable allele of
the 7B QTL was from Kukri (Table 3). Under control
treatment a significant QTL for relative growth rate (RGR)
was also identified in another region on chromosome 5A
(QCRGR.asl-5A) with a LOD score of 4.1 and explaining
11.2% of the phenotypic variation. The additive effect of this
QTL was very small (0.003) with the positive allele inherited
from the Excalibur parent (Table 3).

Table 3. Quantitative trail loci (QTL) for salt tolerance traits determined in the Excalibur � Kukri RIL mapping population under control
and salt stress (100 mM NaCl for 13 days) conditions

Trait name, QTL name, treatment, chromosome number (Chr), position (cM), physical position (bp) based on IWGSC RefSeq v1.0, marker (most
significant marker), log of odds (LOD), additive effect and phenotypic variation (R2) explained by the QTL (% variation) are shown. CRGR, control

relative growth rate (Days 1 to 5), Growth (1-5), RGR of plants between 1-5 days after salt stress (RGR salt/RGR control)

Trait QTL Treatment Chr Position Physical position Marker LOD Additive effect R2

Growth(1-5) QG(1-5).asl-5A Salt 5A 229.6 696479487 TP14539 3.8 0.03 10.9
Growth(1-5) QG(1-5).asl-7B Salt 7B 119.9 689968548 TP211556 3.4 -0.03 8.7
RGR QCRGR.asl-5A Control 5A 143.1 584618687 TP141568 4.1 0.003 11.2
Na+ (mmol g–1 DW) QNa.asl-2A Salt 2A 141.6 716221845 TP81191 3.5 -128.2 10.3
Cl– (mmol g–1 DW) QCl.asl-2A Salt 2A 141.6 716221845 TP81191 3.4 -80.8 9.7
Cl– (mmol g–1 DW) QCl.asl-3A Salt 3A 159.7 718544292 TP87398 3.6 -83.7 10.6
Cl– (mmol g–1 DW) QCl.asl-1A Control 1A 108.3 520571878 TP112034 3.2 15.7 9.2
Na+ :K+ DW QNa:K.asl-2B Control 2B 131.7 696278400 TP9739 4.9 0.02 14.6
K+ :Na+ DW QK:Na.asl-2DS2 Salt 2DS2 1.97 14379318 TP37342 3.6 1.7 10.2

Table 2. Frequency distribution of shoot ion-independent tolerance
(RGR salt/RGR control, Days 1–5, fourth leaf Na+ (mmol g–1 DW),
K+ (mmol/g DW) and Cl– (mmol g–1 DW) accumulation in the

Excalibur � Kukri RIL population.
RGR, relative growth rate

Trait Excalibur Kukri RIL population
Mean ± s.e. Range

Growth(1-5) 0.91 0.93 0.90 ± 0.007 0.51–1.16
Na+ mmol g–1 DW 208 178 215 ± 21 47–1877
K+ mmol g–1 DW 899 1007 1013 ± 14 364–1377
Cl– mmol g–1 DW 513 412 458 ± 21 187–2010
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A single QTL for fourth leaf Na+ accumulation under salt
treatment was mapped on chromosome 2A (QNa.asl-2A) with a
LOD score of 3.5. It accounted for 10.3% of the phenotypic
variation with the allele for Na+ exclusion linked to Excalibur
(Table 3).

A total of three QTL were associated with fourth leaf Cl–

exclusion including two QTL in salt treated plants and one
under control (Table 3; Fig. 1). The QTL detected under the
salt treatment were mapped on chromosome 2A (QCl.asl-2A)
and 3A (QCl.asl-3A) with LOD scores of 3.4 and 3.6,
respectively. These two QTL accounted for 9.7 and 10.6%
of the phenotypic variation and the Cl– exclusion allele for
both was inherited from the Excalibur parent (Table 3). A
single QTL detected on chromosome 1A under control
treatment had a LOD score of 3.2 which accounted for
9.2% of the phenotypic variation with the favourable allele
for Cl– exclusion derived from Kukri (Table 3).

One QTL was identified for Na+ : K+ DW under control
treatment on chromosome 2B (QNa:K.asl-2B). This QTL had a
LOD score of 4.9 and explained 14.6% of the phenotypic
variation with the allele for Na+ exclusion derived from the
Kukri parent (Table 3). One QTL for K+ : Na+ DW was
detected under salt stress on chromosome 2DS2 (QK:Na.
asl-2DS2) with a LOD score of 3.6 and phenotypic variance

of 10.2%. The beneficial allele for this QTL was inherited from
the Excalibur parent (Table 3).

Predicted genes within the QTL intervals

All the scaffolds from the bread wheat IWGSC RefSeq v1.0
(IWGSC, as above) that were within two LOD drops from the
maximum likelihood value of the QTL observed under salt
treatment (QG(1-5).asl-5A, QG(1-5).asl-7B, QNa.asl-2A, QCl.
asl-2A, QCl.asl-3A, QK:Na.asl-2DS2) were retrieved from
BLAST results and used to investigate the presence of
potential candidate genes using DAWN (Watson-Haigh et al.
2018) and POTAGE (Suchecki et al. 2017). Potential candidate
genes were selected based on their role in salinity tolerance as
published in literature.

The first QTL for shoot ion-independent tolerance or
maintenance of growth under salinity on chromosome 5A
(QG(1-5).asl-5A) spanned six scaffolds (scaffold45192,
scaffold15805, scaffold4453, scaffold43014, scaffold21530,
scaffold34444–3) and contained 184 expressed genes
(Table S6) which contained several potential candidates for
the phenotype including the purple acid phosphatases (PAPs)
and a nitrate transporter (NRT1.1) (Table 4). The secondQTL for
this tolerance sub-trait identified on chromosome 7B (QG(1-5).
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Fig. 1. Position of quantitative trail loci (QTL) detected in Excalibur � Kukri recombinant inbred
lines (RILs) population under control and salt stress (100 mM NaCl for 13 days) conditions. The
vertical QTL bars represent the one and two log of odds (LOD) drops from the QTL maximum
likelihood value. QTL and their position are indicated: for Growth(1-5) under salinity (QG(1-5).asl-
5A, QG(1-5).asl-7B), relative growth rate in control conditions (QCRGR.asl-5A), fourth leaf Na+
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100 mM NaCl (QCl.asl-2A, QCl.asl-3A) and control conditions (QCl.asl-1A), Na+ : K+ (DW) in
control conditions (QNa:K.asl-2B) K+ : Na+ (DW) in 100 mM NaCl conditions (QK:Na.asl-2DS2).
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asl-7B) was located on four scaffolds (scaffold101790,
scaffold101708, scaffold138378, scaffold85256) containing a
total of 88 expressed geneswith a calmodulin like (CML) protein
shortlisted as a potential candidate (Table S6).

Two scaffolds (scaffold52744, scaffold78889) were found
within the QTL region for QNa.asl-2A, which contained
280 expressed genes (Table S6). Candidate genes selected
within this interval include those coding for a vacuolar type
H+-ATPase (V-ATPase) and calcium/calmodulin-dependent
protein kinases (CaMKs) based on their role in salt
tolerance (Kirsch et al. 1996; Dietz et al. 2001; Pandey
et al. 2002; Beyenbach and Wieczorek 2006; Yang et al.
2011; Lv et al. 2017) (Table 4).

The Cl- accumulation QTL (QCl.asl-2A) identified under
salinity stress was located across four scaffolds
(scaffold52744, scaffold78889, scaffold13951, scaffold21915)
containing 317 expressed genes (Table S6). There are an
additional 37 genes located within this interval compared
with QNa.asl-2A, however none of these genes appear as
additional candidates to those listed above. For QCl.asl-3A, a
total of four scaffolds (scaffold87465, scaffold60640,
scaffold10162, scaffold29358) were identified having 108
expressed genes (Table S6). A Multidrug and Toxic
Compound Extrusion (MATE) protein was shortlisted as a
candidate gene based on its role in Cl- transport (Zhang et al.
2017) (Table 4).

For the K+ :Na+ DW QTL (QK:Na.asl-2DS2), a total of five
scaffolds (scaffold65451, scaffold 42730, scaffold87109,
scaffold32556, scaffold38944) with 170 expressed genes were
retrieved (Table S6).Within thisQTL region a sodium/hydrogen
exchanger 7 (NHX7) or a salt overly sensitive 1 (SOS1) was
selectedas apotential candidatedue to its role inNa+homeostasis
(Zhu 2003; Olías et al. 2009; Ullah et al. 2016) (Table 4).

Discussion

QTL detection using the newly constructed genetic map
revealed a total of nine QTL at eight unique locations on
seven different chromosomes for several salt tolerance sub-

traits. These include novel QTL for shoot ion-independent
tolerance or maintenance of shoot growth under salinity (QG(1-

5).asl-7B), Cl
- accumulation (QCl.asl-3A) and K+ : Na+ DW

(QK:Na.asl-2DS2) (Table 3; Fig. 1) with mining of the bread
wheat reference sequence allowing the identification of
candidate genes within these regions.

To date, a limited number of studies have been conducted to
identify QTL linked with shoot ion-independent tolerance and/
or Cl- accumulation in bread wheat, with the majority of
studies focusing on the identification of QTL for shoot ion
accumulation (mostly Na+ exclusion and K+ accumulation)
(Dubcovsky et al. 1996; Ma et al. 2007; Genc et al. 2010,
2013; Díaz De León et al. 2011; Oyiga et al. 2018; Asif et al.
2019). Shoot ion-independent tolerance is an important
tolerance mechanism and helps plants in maintaining tissue
expansion and tillering during the initial phase of salt stress
before salt accumulates to toxic levels in the shoot (Roy et al.
2014). Recent advancements in non-destructive imaging
technology have helped to study this tolerance mechanism
in more detail and identifying a QTL in bread wheat on
chromosome 7A (Asif et al. 2018).

In this study, two QTL were detected for shoot ion-
independent tolerance on chromosomes 5A (QG(1-5).asl-5A)
and 7B (QG(1-5).asl-7B) (Table 3; Fig. 1). The physical
position of the QTL QG(1-5).asl-5A is in the same QTL region
identified by Oyiga et al. (2018) for shoot DW under salt
stress signifying the importance of this locus in maintenance
of plant biomass under salinity and is some distance away from
the known developmental gene, vernalisation gene Vrn-A1.
However, another QTL on Chromosome 5A controlling
plant biomass (QCRGR.asl-5A) was detected in the a region
of Vrn-A1. This shows that Vrn-A1 gene could have an effect
on plant biomass.

To the best of our knowledge QG(1-5).asl-7B is novel, and
no other QTL in this region have been reported before under
salt treatment. Analysis of shoot ion-independent QTL, QG(1-

5).asl-5A, in DAWN and POTAGE showed several salt
tolerance genes within the region under the QTL, such as,
PAPs, and NRT1.1 (Table 4). PAPs belong to a diverse group

Table 4. List of potential candidate genes within the interval of each quantitative trail locus
For each gene, Gene ID, Gene name, Munich Information Centre for Protein Sequences (MIPS) annotation hit ID and rice annotation hit ID is given

QTL Gene ID Gene name MIPS annotation Hit ID Rice annotation Hit ID

QG(1-5).asl-5A Traes_5AL_F7270AC94 Purple acid phosphatase AT5G50400.1 LOC_Os08 g41880.1
Traes_5AL_394CDB9BC Purple acid phosphatase AT5G50400.1 LOC_Os08 g41880.1
Traes_5AL_F792D0298 Purple acid phosphatase AT1G52940.1 LOC_Os12 g44010.1
Traes_5AL_0AB5FEA83 Nitrate transporter 1.1 AT1G12110.1 LOC_Os03 g01290.1

QG(1-5).asl-7B Traes_7BL_AABF91B01 Calmodulin like protein AT3G01830.1 LOC_Os01 g72550.1
QNa.asl-2A and Traes_2AL_B854D3399 V-type proton ATPase sp|Q8AVM5|VPP1_XENLA LOC_Os10 g10500.1
QCl.asl-2A Traes_2AL_3E61D4DE2 V-type proton ATPase sp|O13742|VPH1_SCHPO LOC_Os10 g10500.1

Traes_2AL_30BE9A333 Calcium/calmodulin-dependent
protein kinases

AT2G17290.1 LOC_Os04 g49510.3

QCl.asl-3A Traes_3AL_509408B05 MATE efflux family protein AT3G21690.1 LOC_Os03 g37640.1
Traes_3AL_9FC13B618 MATE efflux family protein AT3G21690.1 LOC_Os03 g37640.1
Traes_3AL_61D8E92DB MATE efflux family protein AT3G21690.1 LOC_Os03 g37640.1
Traes_3AL_39236690F MATE efflux family protein AT1G61890.1 LOC_Os03 g37640.1
Traes_3AL_3AA7AE317 MATE efflux family protein AT3G21690.1 LOC_Os0 g37640.1

QK:Na.asl-2DS2 Traes_2DS_981F332F2 Sodium/hydrogen exchanger 7 sp|Q9 LKW9|NHX7_ARATH LOC_Os12 g44360.4
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of acid phosphatases and are found in plants, animals and
microorganisms (Schenk et al. 2000; Olczak et al. 2003). In
plants, the majority of PAPs catalyse the hydrolysis of
phosphate esters and anhydrides (Zhang et al. 2011; Schenk
et al. 2013); however, recent studies also showed their role in
improving plant growth and alleviating oxidative damage
during salt stress (Li et al. 2008; Deng et al. 2014) which
makes them attractive candidates from this study. The second
candidate, NRT1.1 modulates the nitrate-dependent Na+

transport in Arabidopsis under saline conditions and helps
in osmotic adjustment, which prevents water loss and wilting
during salt stress (Álvarez-Aragón and Rodríguez-Navarro
2017). Among 88 genes within the interval of QG(1-5).asl-
7B a CML protein was shortlisted as a potential candidate
(Table 4). CML protein belongs to calcium-binding EF-hand
family proteins, which play an important role in cellular
calcium signalling cascades through the regulation of
numerous target proteins (Ranty et al. 2006; Shi and Du
2020). This protein has a role in salinity tolerance and
genes related to CML are shown to be upregulated under
salt stress (Zeng et al. 2015; Dubrovina et al. 2019; Shi and Du
2020) and has improved the salt tolerance of Arabidopsis by
affecting abscisic acid mediated pathways (Magnan et al.
2008).

A novel QTL for Cl- concentration was detected on
chromosome 3A QCl.asl-3A under 100 mM salt stress in the
glasshouse (Table 3; Fig. 1). Previously a QTL for Cl-

accumulation has been mapped on chromosome 3A under
hydroponics and field conditions (Genc et al. 2014) but its
physical location is different to the QCl.asl-3A reported in
this study. For QCl.asl-3A, the MATE transporters were
identified as a potential candidate (Table 4). MATE are
widely accepted as transporters of organic compounds (Li
et al. 2002; Marinova et al. 2007; Dobritzsch et al. 2016;
Zhang et al. 2017); however, a recent study has also shown
the role of two tonoplast MATE-type proteins in sequestration
of Cl- into the vacuole which can be helpful in controlling the
toxic Cl- concentration in the cytoplasm under saline
conditions (Zhang et al. 2017).

Using the new IWGSC reference sequence, (as above), it
appears that the QTL for leaf Na+ accumulation (QNa.asl-2A)
identified in this study is not in the same position as the Nax1
locus (35 Mbp away) (Lindsay et al. 2004), Q.Na2A locus (88
Mbp away) (Genc et al. 2010, 2013) and significant Na+

concentration SNP locus on chromosome 2A (46 Mbp
away) (Genc et al. 2019). However, QNa.asl-2A may be the
same locus as Na+ content and K+ : Na+ QTL described by
(Oyiga et al. 2018), as their markers sit on the same IWGSC
scaffold (52744). The QNa.asl-2A is also away (74.7 cM) from
the photoperiodinsensitive gene Ppd-A1, which means this
genes has no effect on leaf Na+ accumulation. The QTL (QNa.
asl-2A) was associated with fourth leaf Na+ exclusion under
salinity stress in the glasshouse and is co-located with a Cl-

exclusion QTL (QCl.asl-2A) (Table 3; Fig. 1). The physical
position of both QNa.asl-2A and QCl.asl-2A based on the
IWGSC reference sequence 1.0, (as above) indicates that these
are on the long arm of chromosome 2A where other QTL have
previously been detected for leaf Na+ accumulation (Genc
et al. 2010, 2013; Oyiga et al. 2018), K+ : Na+ (Oyiga et al.

2018), Cl- accumulation (Genc et al. 2014), maturity (Díaz De
León et al. 2011), tiller number (Díaz De León et al. 2011) and
seedling biomass (Genc et al. 2010, 2014) under salt stress in
bread wheat. Co-location of ion accumulation (Na+, Cl-) and
biomass related QTL indicates that more than one gene for the
salt tolerance sub-traits may be present within this region.
These may include genes such as V-ATPase and CaMKs which
are shortlisted as a candidate for QNa.asl-2A (Table 4). V-
ATPases are involved in pumping protons into the vacuole and
establishing an electro chemical gradient used by the Na+/H+

antiporters to sequester Na+ into the vacuole which in return
improves plant performance under saline conditions (Kirsch
et al. 1996; Dietz et al. 2001; Beyenbach and Wieczorek 2006;
Lv et al. 2017). CaMKs are Ca2+-regulated protein kinases and
play a key role in stress signalling (Zhang and Lu 2003; Wang
et al. 2004). These kinases do not directly bind Ca2+ by
themselves, but instead interact with a specific Ca2+ sensor,
such as calmodulin (CaM) or calcineurin B-like protein (CBL)
(Zhang and Lu 2003; Wang et al. 2004) known for their role in
salt tolerance (Pandey et al. 2002; Yang et al. 2011).

A novel QTL for K+ : Na+ DW was detected on the short
arm of chromosome 2D (QK:Na.asl-2DS2) (Table 3; Fig. 1).
Previous studies (Ma et al. 2007; Genc et al. 2010, 2019;
Oyiga et al. 2018), found QTL for other salt tolerance subtraits
on chromosome 2D including plant biomass, chlorophyll
content, leaf chlorosis and leaf Na+ accumulation, however,
at a different region of the chromosome based on the physical
position. Of the 170 genes within the region of QK:Na.asl-
2DS2, a NHX7 was shortlisted as potential candidate based on
its role in salt tolerance by limiting the Na+ accumulation in
plants (Shi et al. 2003; Ullah et al. 2016) (Table 4).

It should be noted that DAWN (Watson-Haigh et al. 2018)
and POTAGE (Suchecki et al. 2017) bioinformatics tools use
databases that have genes expressed only under non-saline
conditions, hence, it is possible that there could be other salt
responsive genes present in these intervals that have not been
detected due to a lack of gene expression data of wheat under
salinity stress.

Phenotyping experiments conducted under controlled
environments do not always mimic field conditions. Detection
of salt stress related traits in the greenhouse under a limited
stress period and at a specific growth stage will not necessarily
translate to improved yields under field conditions. A single
salt tolerance sub-trait cannot always guarantee yield
improvement. Traits such as early vigour, at the seedling
stage, may be detrimental to final grain yield under field
conditions, as the plant may accumulate greater biomass,
therefore having reduced water use efficiency. Hence,
multiple salinity tolerance subtraits are required over the
lifespan of the plant to contribute towards improved yield.
Future studies are needed to develop NILs around the key salt
tolerance QTL identified in the present study, to evaluate them
under a range of salinity levels in the field, and to identify the
best alleles for future breeding programs, as was done by Asif
et al. (2018).

In summary, novel QTL have been identified for shoot ion-
independent tolerance (QG(1-5).asl-7B), Cl- accumulation
(QCl.asl-3A) and K+ : Na+ DW (QK:Na.asl-2DS2) in bread
wheat. The detection of shoot ion-independent tolerance and
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Cl- accumulation QTL in this study will help to better
understand the genetic control of these mechanisms in
bread wheat and has the potential to speed up breeding for
these sub-traits. Future work should focus on studying the
effect of these loci on yield under saline field conditions
followed by fine mapping and differential expression of
candidate gene(s) between the two parents.
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