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Abstract. Ground coverage (GC) allows monitoring of crop growth and development and is normally estimated as
the ratio of vegetation to the total pixels from nadir images captured by visible-spectrum (RGB) cameras. The accuracy
of estimated GC can be significantly impacted by the effect of ‘mixed pixels’, which is related to the spatial resolution
of the imagery as determined by flight altitude, camera resolution and crop characteristics (fine vs coarse textures). In
this study, a two-step machine learning method was developed to improve the accuracy of GC of wheat (Triticum
aestivum L.) estimated from coarse-resolution RGB images captured by an unmanned aerial vehicle (UAV) at higher
altitudes. The classification tree-based per-pixel segmentation (PPS) method was first used to segment fine-resolution
reference images into vegetation and background pixels. The reference and their segmented images were degraded to
the target coarse spatial resolution. These degraded images were then used to generate a training dataset for a regression
tree-based model to establish the sub-pixel classification (SPC) method. The newly proposed method (i.e. PPS-SPC)
was evaluated with six synthetic and four real UAV image sets (SISs and RISs, respectively) with different spatial
resolutions. Overall, the results demonstrated that the PPS-SPC method obtained higher accuracy of GC in both SISs
and RISs comparing to PPS method, with root mean squared errors (RMSE) of less than 6% and relative RMSE
(RRMSE) of less than 11% for SISs, and RMSE of less than 5% and RRMSE of less than 35% for RISs. The proposed
PPS-SPC method can be potentially applied in plant breeding and precision agriculture to balance accuracy
requirement and UAV flight height in the limited battery life and operation time.
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Introduction

Ground coverage (GC) is a key physiological trait that correlates
to the water and energy balance of the soil–plant–atmosphere
continuum, such as canopy light interception (Purcell 2000;
Campillo et al. 2008; Gonias et al. 2012), plant water use
(Suzuki et al. 2013) and soil water evaporation (Mullan and
Reynolds 2010). It is already being served as a predictor of crop
canopy traits, such as abovegroundbiomass, grainyield, leaf area
index and crop nitrogen status (Pan et al. 2007; Lati et al. 2011;
Nielsen et al. 2012; Lee and Lee 2013; Liebisch et al. 2015).
Ground coverage also has been utilised as a cultivar selection
criterion in crop breeding to characterise genotypic differences,
as it is linked to plant vigour affecting light interception early in
the season (i.e. early vigour) and leaf senescence affecting
canopy photosynthesis late in the season (i.e. stay-green)
(MullanandReynolds2010;Kippet al. 2014;Walteret al. 2015).

GC is defined as the proportion of the ground area covered
by the green canopy (Adams and Arkin 1977). Conventional
estimation of GC has typically been achieved through
destructive sampling methods, which are time-consuming
and restricted (i.e. small breeding plots may not allow
multi-temporal destructive measurements). Conventional
non-destructive methods are based on visual scoring, such
as the paper drawings of sampling regions, which are
subjective as they rely on the expertise of operators and
may not have sufficient accuracy to distinguish genotypic
differences (Campillo et al. 2008; Mullan and Reynolds
2010). Alternatively, a field survey with conventional hand-
held digital cameras may offer good precision in GC analysis
but is slow (Mullan and Reynolds 2010; Bojacá et al. 2011).
These field survey methods are inefficient, laborious, biased
and expensive, especially for their applications in phenotyping
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large-scale agronomy and breeding trials. It is thus necessary
to develop high-throughput phenotyping techniques for
non-invasive, non-destructive and timely characterisations
of phenotypic traits (e.g. GC) for thousands of plots
(Großkinsky et al. 2015; Pauli et al. 2016; Hu et al. 2018).

With recent advances in unmanned aerial vehicle (UAV)
platform and camera sensor, UAVs have been transformed into
high-throughput phenotyping platforms to capture remote-
sensed images with high spatial resolutions, which provides
unique opportunities to estimate GC. Compared with satellite
or aerial remote-sensing platforms, UAVs are cost effective
and have greater flexibility in terms of the temporal and
spatial resolution of data collection. Further, UAVs are less
constrained by field conditions that may restrict the access
and movement of operators or ground vehicle-based platforms
(Chapman et al. 2014; Sankaran et al. 2015; Shi et al. 2016;
Jay et al. 2019). UAVs can screen a field in a short timeframe
via predesignated flight routes, speeds and altitudes and
specified onboard sensors, varying with the objectives of
the experiments (Chapman et al. 2014; Martínez et al.
2017). UAV, therefore, has been becoming an attractive
platform for field-based high-throughput phenotyping
(Sankaran et al. 2015; Yang et al. 2017) and aerial survey
of agronomy (Gago et al. 2015; Shi et al. 2016). Imagery
captured by diverse onboard sensors, including visible,
multispectral and thermal cameras, which have been applied
for estimations of diverse plant traits including GC (Torres-
Sánchez et al. 2014; Duan et al. 2017; Ashapure et al. 2019;
Zhang et al. 2019).

Image analysis techniques in remote sensing have been
applied to analyse UAV imagery for GC estimation. The key
step in the estimation of GC is classifying vegetation pixels
from non-vegetation pixels using the principle that vegetation
has different spectral signatures from non-vegetation features
in the imagery (Myint et al. 2011). Visible and multispectral
imaging techniques are widely used in GC estimations and
vegetation mapping (Ashapure et al. 2019; Zhang et al. 2019;
Bhatnagar et al. 2020a; Daryaei et al. 2020), as vegetation and
non-vegetation have different spectral characteristics in the
visible and near-infrared regions of the electromagnetic
spectrum (Xie et al. 2008; Sankaran et al. 2015). Image
classification normally can be implemented through per-
pixel, sub-pixel and object-based approaches (Laliberte
et al. 2007; Lu and Weng 2007; Myint et al. 2011; Torres-
Sánchez et al. 2015; Tsutsumida et al. 2016), such as machine
learning (ML; e.g. decision tree, support vector machine and
random forest (Jay et al. 2019; Zhang et al. 2019; RandÅelovi�c
et al. 2020)) and deep learning (DL; e.g. convolutional neural
network (Bhatnagar et al 2020b; Yang et al. 2020; Su et al.
2021)) based classifiers. Spatial resolution (i.e. pixel size) of
imagery and the selection of classification approaches are the
significant factors that influence the accuracy of image
classification and consequent GC estimation (Lu and Weng
2007; Waldner and Defourny 2017; Hu et al. 2019). Finer
spatial resolution offers more detailed information of
vegetation (e.g. spectral feature and context), and greatly
reduces the mixed pixel problem (Hsieh et al. 2001; Hengl
2006), especially in crops that have ‘fine’ profile textures;

e.g. in wheat (Triticum aestivum L.)compared with corn (Zea
mays L).

Flight height is a major determinant of spatial resolution
as the attached camera and its configurations (e.g. sensor
resolution and focal length) are fixed. A coarser resolution
associated with a higher flight height increases the mixed pixel
problem (Jones and Sirault 2014; Waldner and Defourny
2017), particularly for narrow-leaved crops (e.g. wheat) and
for early growth traits (e.g. early vigour), since smaller or
narrow leaves maybe a few pixels wide or even are
undetectable in the image (Campilho et al. 2006; Myint
et al. 2011; Prieto et al. 2016; Gu et al. 2017; Hu et al.
2019). Moreover, a finer resolution requires lower flight
heights and/or high-resolution cameras with long focal
lengths, which limits geographical area covered per unit of
UAV flight time, requires more flights to cover a large-scale
field due to short battery life (i.e. ~15–30 min in general) and
increases the investment of using the platform (Jin et al. 2017;
Hu et al. 2019; Lu et al. 2019). Alternatives to fine spatial
resolutions, appropriate classification approaches may
improve accuracy. Sub-pixel classifiers have the potential to
deal with the mixed pixel problem to achieve more accurate
GC estimations through quantifying percent distribution of
land covers in coarse imagery. Object-based approaches
have shown the ability to outperform per-pixel approaches
in classification through overcoming the high spectral
variations in the same cover classes on fine-resolution
images (Yu et al. 2006; Lu and Weng 2007; Blaschke
2010). Applying new advanced classification approaches is
more practical than the pursuit of fine resolutions from low-
height flights, as it is not practical for UAV survey. Therefore,
the development of more powerful image classification
methods should improve the estimation accuracy of GC
from UAV images.

The objectives of this study are: (1) to propose a new
approach coupling of classification and regression trees to
estimate GC from UAV remote sensing imagery with
coarse resolutions; and (2) to evaluate the performance of
the new approach through comparison with a classification
tree-based per-pixel segmentation method (Guo et al. 2013) on
synthetic and real UAV image sets.

Materials and methods

The new proposed approach to estimate GC is based on two-
step machine learning: (1) a classification tree-based per-pixel
segmentation (PPS) method (Guo et al. 2013) to segment fine-
resolution reference images into binary reference images; then
(2) a regression tree-based sub-pixel classification (SPC)
method to establish the relationship between the degraded
reference images and degraded binary reference images
(Fig. 1). The new approach is hereafter referred to as PPS-
SPC method. The performance of the PPS-SPC method was
evaluated using two types of image sets; i.e. synthetic UAV
image sets (SISs) with different spatial resolutions during the
wheat growing season and real UAV image sets (RISs)
captured at different flight heights for wheat and weed by
an RGB camera attached to a UAV.
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Experiment data
Synthetic image sets
Synthetic image sets (SISs) comprised the fine-resolution

reference images and their corresponding degraded coarse-
resolution images. Degraded images were used in this study to
mimic the images taken by a UAV platform at different flight
heights, avoiding the effects of environments and camera
configurations on real image acquisition and quality, so that
our study could focus on the evaluation of the proposed
method.

Reference images were collected in a wheat field
experiment. The wheat trial was carried out in 2016 at an
experimental field in Gatton Campus, the University of
Queensland, Australia (27.57�S, 152.33�E). The field was
161 m in length and 54 m in width. Contrasting canopy
structures were established by two irrigation treatments
(i.e. irrigation and rain-fed), two nitrogen treatments (i.e.
high and low nitrogen) and seven cultivars (i.e. Gregory,
Suntop, 7770, 7770tin, Spitfire, Hartog and Drysdale). The
trial contained 28 treatments in total and each treatment had
three replicated plots (i.e. 84 plots included in the trial). Each
plot was 7 m long and 2 m wide and comprised seven rows.
Wheat was sown on 21 May 2016 with a plant density of
150 plants m–2 and a row spacing of 22 cm.

Reference images were manually captured by a digital
camera (Canon 550D, maximum resolution 5184 � 3456
pixels) at an interval of about one week before flowering
(six sampling times in total) to cover the range of GC from
~0 to 100% (Table 1). The weather on image sampling days
was cloudless and windless. In each sampling time,
two images were respectively captured at different
representative regions in each plot. The camera was set to

automatic shooting mode (i.e. camera configurations including
aperture, ISO and shutter speed were automatically set) with
fixed focal length. The camera was held stationary at ~1.0 m
above canopies to shoot nadir (or near-nadir) and sharp
images; at this height, it generally captured the exact three
rows of wheat plants. After each shoot, the image was
carefully checked to ensure that the possible oblique image
was discarded and immediately retaken. For each sampling
time, images were saved with a resolution of 3456 � 2304
pixels or 5184 � 3456 pixels. A total of 1008 images (84 plots
� 6 sampling times � 2 images per plot and sampling time)
were collected for the six sampling times, of which five low-
quality images were excluded, and the remaining 1003 images
were used for further analysis. The reference images had a
spatial resolution of 0.03 cm or 0.02 cm (Table 1).

Each reference image was degraded into a series of coarse-
resolution images with several spatial resolutions (i.e. 0.1, 0.5,
1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 cm). These spatial resolutions

Segmentation

Classification

Reference
images

Per-pixel
segmentation
(PPS) model

Binary reference
images

Degraded binary
reference images

Degraded
reference images

Traning
regression tree

Sub-pixel
classification
(SPC) model

Fig. 1. Flowchart illustrating the proposed method to estimate ground coverage from UAV imagery.
The method is composed of two steps of machine learning’, i.e. classification tree-based per-pixel
segmentation (PPS) and regression tree-based sub-pixel classification (SPC) methods.

Table 1. Summary of the acquisition of reference images in the wheat
trial before flowering in 2016

Set ID Acquisition
date

Days
after

sowing

Image
resolution
(pixels)

Spatial
resolution

(cm)

1 2 June 12 3456 � 2304 0.03
2 10 June 20 3456 � 2304 0.03
3 17 June 27 3456 � 2304 0.03
4 4 July 44 5184 � 3456 0.02
5 13 July 53 5184 � 3456 0.02
6 26 July 66 5184 � 3456 0.02
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covered the normal range of flight heights of UAV surveys
(i.e. ~4–200 m above ground level (AGL) in the field of high-
throughput phenotyping and precision agriculture (e.g. Shi
et al. 2016; Duan et al. 2017; Jin et al. 2017; Hu et al. 2018;
Ashapure et al. 2019). The degraded images (i.e. coarse
images) were generated using the cubic interpolation
algorithm implemented in the R package imager. Cubic
interpolation is a widely used algorithm for image
degradation, which fits cubic polynomials to the brightness
values of 16 nearest neighbouring pixels (4 � 4) of the
calculated pixel. In total, the SISs had 10030 images,
including 1003 reference and 9027 corresponding coarse
(1003 reference images � 9 spatial resolutions per
reference image) images for the six sampling times.

Real UAV image sets
The real UAV image sets (RISs) were captured by a UAV

platform (Phantom 4 Pro, DJI, Shenzhen, China; with focal
length 8.8 mm, sensor size 13.2 mm � 8.8 mm and maximum
image resolution 5472� 3648 pixels) over a field with natural-
grown weeds and three wheat trials at different flight
heights (Table 2). Wheat trials were conducted in 2017 with
different sowing dates at the Gatton Campus, the University of
Queensland, Australia (27.57�S, 152.33�E). Flight campaigns
were carried out during early growth stages of wheat as spatial
resolution has big impacts at lower GCs (Hu et al. 2019)
(Table 2). For each flight, the first images of plots were
captured by the onboard camera of the UAV platform at
~3 m AGL. For the consistency, the first image of a plot
with the finest resolution was considered as the reference
image of the plot. The UAV platform then climbed
vertically to 100 m AGL with a constant speed of 1 m s–1,
and then images were captured at a 1-s interval with fixed focal
length and shutter speed <1/1200 s. Aperture mode was set to
automatic and ISO was adjusted to 100 for a clear sky and mild
wind conditions. The image resolution was 4864� 3648 pixels
for the weed field and 5472 � 3648 pixels for the wheat trials,
and spatial resolutions of reference images were 0.09 cm and
0.08 cm, respectively. The spatial resolution was reduced to
3.08 cm for weed field and 2.74 cm for wheat trials when the
UAV climbed to 100 m AGL (Table 2).

The RISs were processed for plot segmentation (Fig. 2)
through a cloud-based platform (PhenoCopter) (Chapman
et al. 2014; https://phenocopter.csiro.au) designed for UAV
surveys in breeding and agricultural experiments. The RISs

were processed in the Pix4DMapper software (Pix4D SA,
Switzerland, ver. 4.3.4; https://pix4d.com) to generate
undistorted images (i.e. images after geometric corrections)
and ortho-mosaics. Undistorted images containing the same
scene captured at specific heights (i.e. 5, 10, 20, 30, . . . , and
100 m AGL) were selected and used in further analysis. A
workflow was applied to divide ortho-mosaics into individual
virtual plots and then to extract regions of plots from the
undistorted images using the reverse calculation method (Duan
et al. 2017). Results of the reverse calculation were carefully
checked to make sure the same plots were extracted from
different images (data not shown). A total of 146 plots were
extracted for the four image sets (Table 2), and other plots
without the 11 flight heights were discarded. Consequently, the
RISs were composed of 1606 images in total (i.e. 146 plots �
11 heights, each plot extracted from undistorted image referred
to as an image in the further analysis for consistency in the
SISs).

Estimation of ground coverage using PPS-SPC methods
Segmentation of reference images
Reference images with fine resolutions were segmented by

a decision tree-based PPS method (Guo et al. 2013). The

Table 2. Summary of real UAV image sets captured over a field with natural-grown weeds and three wheat trials at different flight heights in 2016
n.a., not applicable

Set ID Plant Sowing
date

Acquisition
time

(days after
sowing)

Image
resolution
(pixels)

Spatial
resolution
range (cm)

No. images No. plots Plot
area (m2)

1 Weed n.a. n.a. 4864 � 3648 0.15~3.08 128 109 0.4
2 Wheat 12 May 23 5472 � 3648 0.14~2.74 163 11 0.6
3 Wheat 21 May 14 5472 � 3648 0.14~2.74 248 10 1.0
4 Wheat 22 May 15 5472 � 3648 0.14~2.74 187 16 0.6

(a) (b)

(c) (d)

Fig. 2. Example of the reverse calculation results of individual virtual
plots (blue grids) on UAV images captured at (a) ~5 m, (b) 10 m, (c) 20 m
and (d) 40 m above ground level. The same individual plot on different
images was highlighted with the red colour. Ground markers were placed
on the field to facilitate the image processing in Pix4DMapper and not
used as corners to represent virtual plots.
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method implements binary classification of image pixels to
generate a binary image of pixels (i.e. ‘0’ for none-vegetation
class and ‘1’ for vegetation class). Consequently, vegetation
proportion in each pixel is 0 or 100%. Here, we briefly describe
the method; for more information, refer to Guo et al. (2013). A
training dataset was first constructed for training a decision
tree-based PPS model. Regions of interests (ROIs) for
vegetation and none-vegetation class were manually
selected from images. As the performance of a decision
tree-based model relies on the training data, the selection of
ROIs should the cover representative scenes considering
heterogeneous natural light conditions. Colour features of
the pixels (i.e. a* of CIEL*a*b* colour space, R of RGB
colour space, Cb and Cr of YCbCr colour space, S of HSV
colour space, S of HIS colour space, u* and v* of CIEL*u*v*
colour space) were derived using their RGB bands. The
training dataset comprised the corresponding colour features
and class memberships (‘0’ for none-vegetation class and ‘1’
for vegetation class) of the pixels. A decision-tree based model
was then trained with the colour features and class
memberships of the training dataset. The trained model was
utilised to conduct segmentation on images, it can predict the
class membership of each pixel and generate binary images
(Fig. 3) to present the class membership (‘0’ for none-
vegetation class and ‘1’ for vegetation class). Reference GC
was finally computed as the ratio of the number of vegetation
pixels to all the pixels of the reference image. The method
obtained high accuracy of vegetation segmentations and GC
estimations of diverse crops from fine-resolution images under
natural light conditions, e.g. rice (Oryza sativa L.), wheat,
sorghum (Sorghum bicolor L.) and cotton (Gossypium
hirsutum L.) (Guo et al. 2013, 2017; Duan et al. 2017; Hu
et al. 2019). Due to the nature of binary segmentation and the
effects of mixed pixels, the method could not deliver high
accuracy for coarse-resolution images (Lu and Weng 2007; Hu
et al. 2019).

Classification of coarse images
The second step of the proposed PPS-SPC method was to

construct a regression tree-based SPC model to describe the
relationship between vegetation proportions and colour
features of coarse pixels. The SPC model included three
steps (i.e. the preparation of training dataset, establishment
of regression tree-based model and calculation of GC).

The training dataset was independent of the one in the PPS
method and was generated with colour features and
corresponding vegetation proportions of pixels from coarse
images. First, reference (i.e. colour image) and its
corresponding segmented images (i.e. binary images
generated from the PPS method) were selected to generate
training images. The selection of the reference images should
cover representative scenes of the filed considering various
light conditions as well, and their corresponding segmented
images were visually checked to ensure accurate segmentation
(Fig. 3). The selected images were degraded to the target
spatial resolution (i.e. the resolution of coarse images captured
by a higher flight) using the cubic interpolation method
implemented in the imager package (Barthelme 2019)
mentioned above (Fig. 4). These two kinds of degraded
images were then served as training images in the SPC
model (Figs 1, 4). Through the degradation, vegetation
proportion (continuous value from 0 to 100%) of each pixel
in the degraded binary image was calculated as the percentage
of vegetation pixels within a region, which overlayed in the
corresponding reference image. Colour information of these
pixels was obtained from its corresponding degraded reference
image. Using the RGB colour information of each pixel, the
same key colour features (Guo et al. 2013) as in the PPS
method were derived in different colour spaces (see Fig. S1).
The training dataset was generated through concatenating the
corresponding vegetation proportions and colour features of
the pixels as demonstrated in Fig. 4.

1_r 1_s

3_s 4_s

2_s

6_s5_s

3_r

5_r 6_r

4_r

2_r

Fig. 3. Examples of reference and segmented images used to generate training datasets for training the SPC models of
SISs. ID_r and ID_s (ID = 1, 2, . . . , and 6) are reference and segmented images for the six SISs.
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The regression tree was generated using colour features and
corresponding vegetation proportions of the training dataset
(see the workflow in Fig. 1). The basic theory behind the
regression tree was presented in Breiman et al. (1984), which
is already being used in remote sensing (Hansen et al. 2002;
Xu et al. 2005; Baccini et al. 2008) to describe nonlinear
relationships between features (e.g. colour channels) and target
variables (e.g. GC). Regression tree models were trained using
the training datasets by the CART algorithm (Breiman et al.
1984). To avoid overfitting problem, the k-fold (k = 10 in this
study) cross-validation was adopted for training (Zhang et al.
2019). The trained model (e.g. see Fig. S2) was then used to
conduct sub-pixel classification on coarse images, which
results in estimates of the vegetation proportion of each
pixel. The classification results were presented by grayscale
images, whose pixel values were vegetation proportion
ranging from 0 to 100%. The GC of each coarse image was
averaged from vegetation proportions of pixels.

Performance evaluation and statistical analysis
The proposed PPS-SPC method was evaluated on two types
of UAV image sets; i.e. the SISs and RISs. The GCs of
coarse images calculated by the PPS and the PPS-SPC
method was compared with the corresponding reference
values, respectively. Further, comparisons between the two
methods were conducted to evaluate the performance of the
PPS-SPC method. Some criteria, including coefficient of
determination (R2), root mean square error (RMSE,
Eqn (1)) and relative root mean square error (RRMSE,
Eqn (2)), were used to quantify the estimation accuracy of GC.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

i¼n

i¼1

ðGCref � GCcrsÞ2
v

u

u

t ð1Þ

RRMSE ¼ RMSE

GCref
� 100% ð2Þ

whereGCref andGCcrs are theGCof referenceandcorresponding
coarse images, respectively. n is the number of reference GCs,
GCref

is the average of reference GCs. Image analysis, GC
estimation and statistical analysis were implemented using the
R programming language (R Core Team 2019) with customised
scripts.

Results

Diverse distributions of GC in image sets

There was a broad variance in reference GC of the SISs
ranging from 4.5% to 95.0% (Fig. 5a). Reference GC
increased from 5.9% � 1.4% (mean � s.d.) at 12 days after
sowing (DAS) to 85.7% � 9.3% at 66 DAS. The reference GC
at 44 DAS had the greatest variation (71.7% � 8.8%). The
variation of GC at each sampling date was mainly due to the
contrasting canopy structures of treatments (i.e. combinations
of irrigation, nitrogen and cultivar). The GC of the RISs ranged
from 5.6% � 1.0% in Set2 to 25.8% � 4.0% in Set3 (Fig. 5b).
The Set1 obtained from a field with natural-grown weeds had
the largest variation (10.5% � 6.6%). The lower GC (<50%)
were selected for the RISs as the spatial resolution has big
impacts on lower GC of early growth stages of wheat (Hu et al.
2019).

16 × 16 4 × 4

Degradation

Degradation

Segmentation

Pixel No.

Pixel No. Vegetation
proportion

Vegetation
proportion

1

2

16 0.5

0

0.8750.5

0

0.875

1

2

16

r g b

r g b

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b) (c)

(d)

Fig. 4. Example of training dataset acquisition for training the SPC method. Reference image (upper plot in a) was segmented into a binary image (lower
plot in a) by the PPS method. Reference and the corresponding binary image were degraded to the target spatial (b). Colour features (green columns in
c) and corresponding vegetation proportions (the orange column in c) of pixels in the degraded images were combined to create a training dataset (data
table in d). Note that the illustrated images in (a) were a sub-region of a reference image and its corresponding binary image, and the degraded images in
(b) are enlarged for better visualisation.
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Evaluation with synthetic UAV image sets

Vegetation proportions of individual pixels were estimated by
the PPS and PPS-SPC methods, respectively. Vegetation
proportion of each pixel was derived by the two methods
from fine and coarse images with different spatial resolutions
(0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 cm in Fig. 6).
Images with fine resolutions (e.g. 0.1 cm) provided clearer
boundaries between the vegetation and non-vegetation areas.
However, image segmentations gradually blurred for coarse-
resolution images. With the per-pixel segmentation (i.e. PPS
method), vegetation proportion in each pixel was 0 or 100%.
The vegetation region gradually shrank with decreasing in
spatial resolution at the lower GC (e.g. Fig. 6a) but increased at
the higher GC (data not shown; Hu et al. 2019). Conversely,
the PPS-SPC method created the continuous gradient of
vegetation proportion (i.e. ranged from 0 to 100%) for each
pixel, and the vegetation area gradually expanded but

vegetation proportion of individual pixels decreased (lighter
colour) as the decreasing spatial resolution (Fig. 6b).

The GCs of degraded and their corresponding reference
images in the SISs were compared at different spatial
resolutions for the PPS and PPS-SPC methods (Fig. 7). For
both methods, the accuracy of GC estimations was excellent at
a spatial resolution of 0.1 cm and decreased as the spatial
resolution coarsened to 4 cm, and the deviation between
estimated and reference GC gradually increased. The PPS
method overestimated the GCs of coarse-resolution images
when reference GCs were greater than a cut-off point, and
vice versa (Fig. 7a). The PPS method was observed with high
R2 (i.e. R2 >0.95), but RMSE and RRMSE significantly
increased (i.e. RMSE and RRMSE increased from 1.2% to
14.9% and from 2.1% to 25.9%, respectively, when spatial
resolution increased from 0.1 cm to 4.0 cm; Fig. 8).
Accordingly, the mean absolute error of GC estimations
increased from 1.0% � 0.6% to 13.1% � 7.1% for the PPS

0.1 cm 0.5 cm

1.5 cm 2.5 cm2.0 cm

1.0 cm

3.5 cm3.0 cm 4.0 cm

0.1 cm 0.5 cm

1.5 cm 2.5 cm2.0 cm

1.0 cm

3.5 cm3.0 cm 4.0 cm

0 25 7550 100
Vegetation proportion (%)

(a) (b)

Fig. 6. Example of vegetation proportion estimated from synthetic UAV images with different spatial resolutions using the PPS method (a) and
the proposed PPS-SPC method (b). Colour gradient represents vegetation proportion in each pixel.
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method. The GCs of degraded images were slightly prone to be
underestimated by the PPS-SPC method as reference GC
increased (Fig. 7b). The PPS-SPC method obtained better
performance of estimating GCs as the spatial resolution
coarsened (i.e. R2 >0.97, RMSE and RRMSE increased
from 1.1% to 6.4% and from 1.9% to 11.1%, respectively,
when spatial resolution increased from 0.1 cm to 4.0 cm;
Fig. 8). Meanwhile, the mean absolute error of GC estimations
increased from 0.7% � 0.9% to 4.0% � 4.8%. Across all the
spatial resolutions, the performance of PPS-SPC was relatively
accurate (higher mean R2 and lower mean RRMSE) and stable

(smaller s.d.), with R2 = 0.97 � 0.02 and RRMSE = 16.1% �
6.1% for the PPS method, and R2 = 0.98 � 0.01 and RRMSE =
9.4% � 3.4% for the PPS-SPC method (Fig. 8).

Evaluation with real UAV image sets

The PPS and PPS-SPC methods were also evaluated on the
vegetation proportion of individual pixels of the RISs.
Examples of vegetation proportions of pixels derived by the
two methods from images captured at different flight heights
(i.e. 5, 10, 20, 25, 30, 40 and 50 m) are demonstrated for
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Fig. 7. Comparison of reference and estimated ground coverages from the PPS (a) and the proposed PPS-SPC method (b) for the synthetic
UAV image sets across various spatial resolutions. The colour gradient of hexagons represents the number of data points in a certain value
range. Black dashed lines represent one-to-one lines.
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a wheat trial in Fig. 9. Images captured at a lower height
(i.e. 5 m) provided clearer boundaries between the vegetation
and non-vegetation areas. However, boundaries gradually
blurred as the flight height increased. For the PPS method,
the vegetation area significantly shrank with the increase in
flight height, especially the image at 50 m (Fig. 9a).
Conversely, the PPS-SPC method maintained a continuous
gradient of vegetation proportion (i.e. ranged from 0 to 100%)
among pixels, and the vegetation areas of images gradually
expanded but vegetation proportion of individual pixels
decreased as the increasing flight height (Fig. 9b).

The RISs were used to evaluate the two methods through
comparison of the GC estimations of reference and
corresponding coarse images captured at different flight
heights (Fig. 10). For both methods, the GC estimations
tend to be underestimated as flight height increased from

5 m to 100 m with the anomalies gradually increasing.
Both methods were observed similar high accuracy of GC
estimations at a lower flight height (e.g. 5 m: R2, RMSE and
RRMSE were ~0.98, 1.2% and 9.3%, respectively; Fig. 11).
The performance of the PPS method significantly declined
with increasing flight heights (R2 decreased from 0.98 to 0.22,
RMSE increased from 1.2% to 11.9% and RRMSE increased
from 9.3% to 90.3%). Contrarily, the accuracy of the PPS-SPC
method was decreased much less with increasing flight height
(R2 decreased from 0.97 to 0.79, RMSE increased from 1.3%
to 4.5% and RRMSE increased from 9.9% to 34.5%), with
relatively good estimates for reference GC of less than ~20%.
The performance of the PPS-SPC method was stable when
flight height increased from 30 m to 100 m (i.e. R2 = 0.80 �
0.031, RMSE = 4.0% � 0.56% and RRMSE = 30.3% �
4.3%).
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Fig. 9. Example of vegetation proportion estimated from real UAV images captured at different flight heights using PPS method (a) and the
proposed PPS-SPC method (b). Colour gradient represents vegetation proportion in each pixel.
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Discussion

This study proposed a new method (i.e. PPS-SPC method) to
estimate ground coverage (GC) from UAV remote sensing
imagery and its performance was evaluated with the synthetic
UAV image sets (SISs) and the real UAV image sets (RISs).
The results showed that the PPS-SPC method obtained overall
higher and stable performances in GC estimation of the SISs
and RISs comparing with a per-pixel segmentation method
(PPS; Guo et al. 2013) (Figs 7, 8, 10, 11).

Accuracy of GC estimation strongly depended on the
spatial resolution of UAV imagery. Both methods obtained
high accuracy (i.e. RRMSE <10%) at fine resolutions
(i.e. resolution �0.5 cm in SISs and flight height at 5 m in
RISs). However, the performances declined as decreasing
spatial resolution in both the SISs and RISs (Figs 7, 8, 10,
11). A finer spatial resolution provides more spatial details,
reduces the impact of mixed pixels, and then affects
classification, especially when the size of the scene
elements (e.g. wheat leaves that range from 4 mm to
~15 mm in width) is relatively smaller than the pixel size
(Hsieh et al. 2001; Hengl 2006). In this study, wheat leaf edges
became blurred and even undetectable on UAV imagery with
higher flight heights (e.g. flight height >30 m in Fig. 2), which
caused poor estimations of GC (Fig. 10). The effects of spatial
resolution on GC estimation were evaluated in Hu et al. (2019)
using synthetic UAV imagery, which concluded that a fine
spatial resolution is required to accurately estimate GC and to
distinguish genotypes with UAV surveys in plant breeding
(e.g. <0.1 cm). Impacts of the spatial resolution were also
reported for phenotyping other crop traits; e.g. canopy
temperature (Jones and Sirault 2014; Deery et al. 2016),
plant density (Jin et al. 2017) and height (Lu et al. 2019),
aboveground biomass (Lu et al. 2019), crop disease (Mahlein
2016) and weed detection (Gebhardt and Kühbauch 2007;
Peña et al. 2015).

Algorithms of image classification also affected the
accuracy of GC estimation. The two methods (i.e. PPS and
PPS-SPC) showed significant differences in the performance

of GC estimation, especially for imagery with coarse
resolutions (i.e. resolution >1.0 cm or flight height >20 m;
Figs 7, 10). These performance differences were correlated
with the nature of classifiers and the mixed pixel problem. As
the spatial resolution coarsens, the colour information of a
pixel may be mixed through containing the colour information
of both the vegetative and non-vegetative class, such that the
colour of this mixed pixel is correlated with percentages of the
two classes (Lu and Weng 2007). Consequently, on coarse
resolution images with low GCs, the vegetation objects are
dissolved into non-vegetation objects and vice versa (Myint
et al. 2011). The PPS method ignores the impact of mixed
pixels, classifies each pixel into one class (i.e. either vegetation
or none-vegetation), and then introduces inaccurate estimation
of GC, especially for coarse-resolution imagery (Lu and Weng
2007; Myint et al. 2011; Hu et al. 2019). Contrarily, the PPS-
SPC method decomposed the partial class memberships of
components (i.e. vegetation and none-vegetation classes) in
the mixed pixels and then extracted the continuous proportion
(i.e. ranged from 0 to 100%) for each component (Figs 7, 9)
(Drzewiecki 2016; Tsutsumida et al. 2016).

Plant breeding programs require phenotyping of numerous
plots with adequate spatial and temporal resolution to
characterise the differences of specific traits within a
breeding population and their changes over time (Araus and
Cairns 2014; Haghighattalab et al. 2016). With the PPS
method, to accurately estimate GC through the growing
season requires low flight heights (<10 m with the onboard
camera in this study; Fig. 10), as its RRMSE values should be
less than 30%, which was normally considered as fair
performance in model evaluation (Jamieson et al. 1991).
However, low flight heights are normally impractical for
UAV surveys in plant breeding, whose normal heights
ranging from 20 to 50 m in a practical sense. A camera
with extreme high-resolution of sensors and/or lens with
long focal lengths is a method to acquire fine resolution
imagery with higher flights and thus to obtain accurate
estimations. An alternative is to use an advanced
classification method, such as ML and DL classifiers
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(Zhang et al. 2019; Bhatnagar et al. 2020b; Su et al. 2021) and
spectral/colour unmixing analysis (Keshava and Mustard
2002; Yan et al. 2019), which could obtain accurate
estimations of GC from relative higher flights without extra
investment. The PPS-SPC method has shown that it could
obtain a fair performance of GC estimations from higher
flights (<50 m with the onboard camera in this study;
Fig. 10). Some studies suggested that ML classifiers are
more practical than DL classifiers in vegetation
segmentation, although the later may outperform ML
classifiers. This is due to that high-accurate DL classifiers
normally require larger training datasets and computational
capacity when compared with ML classifiers, and DL
networks also need to be trained for each different site and
growth stage (Ayhan et al. 2020; Bhatnagar et al 2020b).
Besides, the fusion of diverse sources of imageries (e.g.
combining visible and multispectral imagery) has the
potential to improve the segmentation of vegetation and
estimation of GC (Xie et al. 2008; Zhang et al. 2019;
Daryaei et al. 2020).

Compared with field trials, applications in precision
agriculture require screening of larger areas in each UAV
survey with much higher flight heights, with the expense of the
spatial resolution of images. For instance, to cover a 10 ha
(200 m � 500 m) field using a UAV platform mounted with a
high-resolution camera (e.g. 20-megapixel sensor: sensor size
13.2 mm � 8.8 mm, focal length 8.6 mm, image resolution
5472 � 3648 pixels), it takes ~150 min at a flight height of
20 m AGL with image spatial resolution 0.56 cm, but only a
10-min flight at a height of 100 m AGL with a spatial
resolution of 2.8 cm. In precision agriculture, accurate
estimation of GC is beneficial for monitoring crop growth
status (e.g. crop germination and nitrogen status, Hunt et al.
2018; Jay et al. 2019; Li et al. 2010) and making proper
decisions on determination of side-dress nitrogen rate (van
Evert et al. 2012), irrigation (Sharma and Ritchie 2015) and
weed control (Peña et al. 2013). Therefore, to balance the
accuracy (or spatial resolution) requirement and UAV flight
height is important for accurate estimations of phenotypic
values when considering the investment of equipment and
time in the larger-scale farm (Mahlein 2016; Hunt et al. 2018).
The PPS-SPC method could facilitate the estimation of GC
as it provided the accurate and stable performance of GC
estimations (i.e. RRMSE = 30.3% � 4.3%) over a broad range
of flight heights (e.g. up to 100 m; Figs 10, 11), and will be
further evaluated with a wider range of GCs in real-world.

As an ML classifier, the performance of the PPS-SPC
method strongly depends on training data, which should
cover the colour information for vegetation classification.
The training datasets and images were visually selected and
labelled in this study, which was time-consuming and
subjective to the experience of operators. Further work
should be devoted to improving the efficiency of acquisition
of training datasets. In a practical sense, applying the PPS-SPC
method requires high-resolution reference images for the
acquisition of training dataset, which can be captured at a
low flight height (e.g. 3 m or lower) over different parts of the
whole scene to cover the different illumination conditions and
GC levels, during take-off and/or landing with the same

camera settings (e.g. white balance and focal length). The
training images were selected for each different growth stage
(i.e. dataset) in this study. It is possible to prepare a training
dataset to train a generic model for all the growth stages by
selecting training images that cover a range from 0% to ~100%
of GC and various light conditions, which will decrease the
time for training models for different stages and improve the
applicability of the model. However, this kind of generic
model will be further evaluated to see if it can obtain
similar performance when compared with the model built
for each growth stage. Alternatives to the classification and
regression tree models used in this study, other ML models
(e.g. random frost) will be evaluated for further improvement
in the proposed method.

Conclusion

This study proposed a new method (i.e. PPS-SPC) coupling of
classification and regression trees to estimate GC from UAV
imagery. An assessment of the performance of PPS-SPC
method was conducted using two image sets (i.e. SISs and
RISs) with wide ranges of spatial resolutions, which
demonstrated that the GC estimations by the PPS-SPC
method agreed with corresponding reference values (the
RRMSE was less than 10.9% for SISs and 34.5% for RISs).
Particularly, the PPS-SPC method was more accurate and
robust in GC estimations from UAV imagery with coarse
resolutions (up to 4 cm) when compared with the PPS
method. This improvement suggested that we could increase
the spatial coverage of UAV per unit of time with a higher
flight height while ensuring an acceptable accuracy of GC
estimation. In summary, the proposed PPS-SPC method can
be potentially applied in plant breeding and precision
agriculture to balance accuracy requirement and UAV flight
height in the limited battery life and operation time.
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