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ABSTRACT

Plant growth and development is adversely affected by environmental constraints, particularly
salinity and drought. Climate change has escalated the effect of salinity and drought on crops in
varying ways, affecting agriculture and most importantly crop productivity. These stressors
influence plants across a wide range of levels, including their morphology and physiological,
biochemical, and molecular processes. Plant responses to salinity and drought stress have been
the subject of intense research being explored globally. Considering the importance of the
impact that these stresses can have on agriculture in the short term, novel strategies are being
sought and adopted in breeding programs. Better understanding of the molecular, biochemical,
and physiological responses of agriculturally important plants will ultimately help promote global
food security. Moreover, considering the present challenges for agriculture, it is critical to
consider how we can effectively transfer the knowledge generated with these approaches in the
laboratory to the field, so as to mitigate these adversities. The present collection discusses how
drought and salinity exert effects on plants.
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The abiotic stresses of foremost importance, such as salinity and drought, threaten crop 
cultivation and agricultural production (Huang et al. 2012). In the current scenario of 
climatic changes, salinity and drought stresses are gradually becoming more severe, 
particularly in arid and semi-arid regions (Kumar et al. 2019). When the threshold of 
salinity and drought stress is exceeded, the plant becomes stressed, followed by 
activation of a complex signalling pathway, resulting in variable alterations of molecular, 
biochemical, and physiological mechanisms (dos Santos et al. 2022; Zhang et al. 2022) in  
various plant species to acclimatise to individual or combined stresses (Saharan et al. 2022). 
Drought and salinity are major environmental stresses resulting in secondary stresses such 
as osmotic and oxidative stress. Osmotic stress is induced by drought, and salinity affects 
the plant by hindering development, growth, seed germination, flowering and fruiting 
(Kumar et al. 2021). To survive osmotic stress, plants have adapted a range of 
integrated mechanisms including morphological changes (in leaf thickness, rolling, wax 
or cutin deposition, and alteration in root system architecture), biochemical adjustments 
(accumulation of osmolytes such as sugars and phenols, antioxidant enzymes for 
reactive oxygen species [ROS]), molecular responses (expression of stress-induced genes), 
and physiological adaptations (stomatal aperture) (Cao et al. 2023; Hasanuzzaman et al. 
2023). However, understanding the underlying mechanisms for improving crops’ 
tolerance to salinity and drought stress is challenging (Waseem et al. 2023). Therefore, 
it is pivotal to develop new strategies, tools, methods, and equipment to predict the 
changes that could be caused by salinity and drought stresses at the current time. This 
will make it possible to reduce production losses and increase crop tolerance. 

Collection: Understanding the Mechanistic Basis of Plant Adaptation to Salinity and Drought 

https://orcid.org/0000-0001-7947-7722
https://orcid.org/0000-0002-0890-4819
mailto:184328@hainanu.edu.cn
https://doi.org/10.1071/FP23216
https://www.publish.csiro.au/fp
https://www.publish.csiro.au/
https://doi.org/10.1071/FP23216


M. Waseem et al. Functional Plant Biology 51 (2024) FP23216

New insights into salinity and drought
adaptation in plants

The members of the Solanaceae family include important 
plant food species such as Solanum tuberosum, S. lycopersicum, 
S. melongena, and  Capsicum annuum (Samuels 2015). Salinity 
is one of the devastating environmental stresses and affects 
approximately 20% of agricultural land, and significantly 
reducing crop yields (Negrão et al. 2017). In the current 
scenario of global warming, the magnitude and frequency 
of salinity have amplified, impacting the productivity of 
solanaceous crops. Altaf et al. (2022) discuss the impact of 
salinity on various traits of solanaceous crop plants including 
relative growth rate, transpiration, water relations, water use 
efficiency, senescence, ion homeostasis, hormonal balance, 
rate of photosynthesis, yield and yield-related components. 
They summarise key mechanisms, including (1) water relations, 
photosynthesis, source–sink relationships, and nutrient uptakes; 
(2) antioxidant enzymes of ROS, osmolytes accumulation 
and osmo-protectant; (3) alterations in hormonal balance; 
(4) protein functions, and gene expression. We hope that 
this review will provide pertinent information to researchers 
for performing proficient assays and interpreting results from 
salinity tolerance experiments. 

In recent years melatonin has gained much attention as a 
multifunctional bioactive and powerful antioxidant compound 
associated with plant growth and regulation (Ahmad et al. 
2023). Melatonin regulates plant responses either directly, 
by preventing accumulation of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS), or indirectly by affecting 
stress-responsive pathways (Zeng et al. 2022). 

Drought has a strong impact on the agroeconomics of the 
Mediterranean region due to persistent rain deficiency (Toreti 
et al. 2022). Capsicum annuum is an important crop in the 
Mediterranean region that is impacted by drought, which 
hinders root nutrient absorption, particularly nitrogen at the 
root–soil interface (Wang et al. 2019). Kaya and Shabala 
(2023) demonstrated melatonin-mediated drought tolerance 
in C. annuum. The exogenous application of melatonin 
minimises the impact of oxidative stress by modulating the 
activities of enzymes related to nitrogen metabolism, including 
nitrite reductase, nitrate reductase, glutamate synthetase, 
glutamine synthetase, and glutamine dehydrogenase. Leafy 
vegetables belonging to Compositae family, including lettuce 
(Lactuca sativa L.), are rich in antioxidants, minerals, vitamin, 
and fibre, (Camejo et al. 2020). However, environmental 
perturbations, including salinity, significantly reduce growth 
and yield of lettuce (Al-Maskri et al. 2010). Ascorbic acid, a 
water-soluble vitamin with antioxidant properties, is effective 
under salt stress (Foyer and Noctor 2011). Foliar application of 
ascorbic acid is one the effective strategies to mitigate stress 
effects (Billah et al. 2017). Similarly, Naz et al. (2022)  demon-
strated that foliar application of ascorbic acid encourages the 
accumulation of superoxide dismutase, peroxidase, catalase, 

and phenolic content in lettuce. These studies suggest that 
exogenous application of melatonin and ascorbic acid has 
the potential to mitigate the adverse effects of salinity and 
drought and could be serve as a cost-effective and sustainable 
solution for crop productivity. 

Wheat is the second essential staple cereal crop after rice 
among those cultivated worldwide. Wheat production is 
significantly affected by climate factors, mainly drought 
and heat stress (Waseem et al. 2023). Al-Quraan et al. (2022) 
explored the Jorden’s durum wheat (Triticum durum L.) 
germplasm by evaluating agronomic adaptions for drought 
tolerance. A panel of four durum wheat cultivars, including 
Umqais, Hurani75, Sham1, and Acsad65, were selected to 
assess the functional role of genes involved in the gamma-
aminobutyric acid (GABA) shunt pathway, dehydrin gene 
expression (dhn; Dehydrins and wcor; wheat cold regulated 
(cor)), and ROS accumulation. Gaining insight into the genetic 
mechanisms underlying drought tolerance in cultivated and 
advanced wheat lines helps us to understand the phenomic 
variation in modern wheat cultivars. The application of 
high-throughput approaches for functional genes elevation 
is a prerequisite for a modern molecular breeding program 
(Waseem et al. 2022). A panel of 40 wheat genotypes were 
selected from Pakistan’s wheat germplasm by Rubab et al. 
(2023) using Kompetitive allele specific polymerase chain 
reaction (KASP) assays integrated with agronomic traits. The 
authors selected eight functional KASP markers and nine 
morphological traits to demonstrate that Aas, China 2, 
Chakwal42, Bhakar Star, and Markaz performed better under 
drought stress. The data collected by Al-Quraan et al. (2022) 
and Rubab et al. (2023) can be used for breeding programs to 
enhance climate resilience in wheat for sustainable food 
production and global food security. 

Soybean is one of the important oil crops with desirable 
traits and is regarded as low-cost meat alternative (Abbasi 
2020). Soybean is highly susceptible to drought stress 
(Ayman et al. 2016) and intensive research efforts have 
been to develop drought-tolerant cultivars (Suhartina et al. 
2022). Similar efforts has been made by Castro-Valdecantos 
et al. (2023) by investigating a panel of drought-sensitive 
(Williams 82 and Union) and drought-tolerant (Jindou 21, 
Long Huang 1, and Long Huang 2) genotypes of soybean 
subjected to varying soil moisture levels, to understand the 
role of endogenous ABA (abscisic acid) concentrations and 
leaf water relations in regulating stomatal behaviour. Although 
ABA is a prime mediator of drought stress tolerance, this 
tolerance can also be brought about in an ABA-independent 
manner. Waseem et al. (2023)  found that leaf water potential 
relations play a dominant role in regulating stomatal closure 
across soybean cultivars. 

Ben Hamed et al. (2023) reported a comparative analysis of 
the effect of water stress for 23 days followed by rewatering 
for 7 days on Pistacia vera and P. atlantica, considering 
various factors such as leaf gas exchange, chlorophyll content, 
and mineral nutrition, particularly Zinc (Zn) and Iron (Fe). 
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This study showed that P. atlantica exhibited enhanced water 
relations, leaf chlorophyll content, gas exchange, and Zn/Fe 
content relative to P. vera. 

Abbasi et al. (2023) explores the impact of silicon 
supplementation (50 mg L−1) on enhancing salt tolerance in 
sugarcane (CPF-246). The research reveals improvements in 
chlorophyll content and photosynthesis, attributing these 
effects to silicon’s regulation of ion concentrations. The element 
limits the uptake of sodium by roots while promoting essential 
elements in both roots and shoots. Positive outcomes were 
observed not only in CPF-246 but also in other genotypes 
(HSF-240, CPF-250). The findings suggest that silicon supplemen-
tation could serve as a viable strategy for enhancing crop growth 
in saline soil. The study recommends further investigation into 
silicon-mediated gene expression in sugarcane protoplasts for 
broader applications in cultivating crops in saline areas. 

Ahmed et al. (2023) focused on examining the impact of 
salinity and alkalinity stress on root system traits and ion 
content in 21 accessions of Avena species. Various treatments 
were applied, revealing significant variations in root traits and 
ion levels among genotypes. Principal component analysis 
identified key traits contributing to stress tolerance, and 
biplot analysis highlighted significant correlations. Specific 
oat genotypes, such as IG-20-1183, IG-20-894, and IG-20-425, 
exhibited tolerance to particular stress conditions. The study 
conducted multi-trait stability index analysis, identifying 
three stable genotypes (IG-20-714, IG-20-894, IG-20-425) 
suitable for cultivation in salinity–alkalinity affected areas. 

Concluding remarks and future outlooks

Collectively, recent research on salinity and drought stress has 
significantly advanced our knowledge, providing insights into 
the response, signalling, and the adaptive mechanisms 
operating in plants. This compilation offers invaluable cues 
for the better understanding of salinity and drought stress. We 
anticipate that the accumulated knowledge will not only assist 
but also pave the path for new studies and breeding programs 
aimed at developing crops with enhanced salinity and 
drought tolerance. To comprehend salinity and drought 
tolerance in plants more comprehensively, a combination of 
integrated variety improvement, theoretical research, and 
field management is essential. We sincerely appreciate the 
efforts and significant contributions of the authors, editors, 
and peer reviewers who made this research topic possible. 
We hope that our readers can identify valuable information 
from this topic of research and find appropriate collaborators 
to promote their great success. 
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