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Towards a systematic revision of the superfamily Cyrenoidea 
(Bivalvia: Imparidentia): species delimitation, multi-locus 
phylogeny and mitochondrial phylogenomics 
Ruiwen WuA,* , Lili LiuA , Xiongjun LiuB, Yingying YeC, Xiaoping WuD, Zhicai XieE, Zhenyuan LiuE and  
Zhengfei LiE,*

ABSTRACT 

Cyrenoidea is a superfamily of bivalves (Bivalvia: Imparidentia) currently comprising three families 
(Cyrenidae, Cyrenoididae and Glauconomidae). The superfamily is widely distributed in marine, 
brackish and freshwater environments, with an estimated 60 or more living species. Recent 
phylogenetic results have confirmed the monophyly of Cyrenoidea and placement in Venerida. 
Nevertheless, a comprehensive phylogenetic analysis of Cyrenoidea remains elusive and the 
phylogeny is unresolved due to inadequate sampling in previous studies. Moreover, the taxonomy 
and delimitation of most species, originally based on shell morphology, have not yet been tested 
with molecular data. Here, we constructed three molecular datasets by sequencing three 
markers (COI + 16S rRNA + 28S rRNA) and complete mitogenomes for Geloina coaxans 
(Gmelin, 1791) and Glauconome virens (Linnaeus, 1767). COI barcoding clarifies the validity of 
Geloina coaxans and Geloina erosa that have been subject to controversy regarding synonymy. 
Additionally, the barcoding supports the existence of multiple cryptic species within the Geloina 
expansa complex. A multi-locus dataset (COI + 16S rRNA + 28S rRNA) provides the most 
comprehensive phylogeny of all eight recognised genera of Cyrenoidea to date. Phylogenetic 
results indicate that the currently recognised family Cyrenidae is polyphyletic. The type species 
Geloina coaxans, Cyanocyclas limosa (Maton, 1811) and Polymesoda caroliniana (Bosc, 1801) that 
have long been classified within the family Cyrenidae based on shell morphology, have a closer 
relationship with Cyrenoida floridana Dall, 1896 than with other Cyrenidae. Therefore we transfer 
the genera Geloina, Cyanocyclas and Polymesoda from the family Cyrenidae to the family 
Cyrenoididae. The mitochondrial phylogenomics further support the family-level relationships 
in Cyrenoidea obtained from the three-gene analyses, confirming that the newly defined 
Cyrenoididae is closely related to Glauconomidae as the sister group. We observed a novel 
gene arrangement in Glauconome virens, the first report on the mitogenome of the family 
Glauconomidae, by comparing gene arrangements. Three patterns of gene rearrangement 
identified in Cyrenoidea are shared by the families Glauconomidae, Cyrenoididae and 
Cyrenidae, suggesting that gene arrangements can be a valuable tool for phylogenetic studies.  

Keywords: Cyrenidae, Cyrenoididae, COI barcoding, gene order, Glauconomidae, Glauconome 
virens, mitochondrial genomes, molecular phylogeny, taxonomic revision. 

Introduction 

Bivalves are the second most species-rich molluscan class after Gastropoda (Bieler et al. 
2014) and are regarded as commercially and ecologically important groups of aquatic 
fauna (Kocot et al. 2011; Smith et al. 2011; Vaughn and Hoellein 2018). After decades of 
puzzling efforts by anatomists, palaeontologists and molecular biologists, bivalve sys
tematics are stabilising, especially at the family level and higher levels (e.g. Newell and 
Boyd 1978; Popham 1979; Steiner and Müller 1996; Johnston et al. 1998; Carter et al. 
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2000; Cope 2000; Giribet and Wheeler 2002; Sharma et al. 
2012; Plazzi et al. 2013; Bieler et al. 2014; González et al. 
2015; Combosch et al. 2017; Lemer et al. 2019; Valentas- 
Romera et al. 2019; Crouch et al. 2021). 

Cyrenoidea Gray, 1840 is a superfamily of bivalves 
(Bivalvia: Imparidentia) (Bieler et al. 2010). As currently 
recognised, Cyrenoidea consists of three families: Cyrenidae 
Gray, 1840, Cyrenoididae H. Adams & A. Adams, 1857 and 
Glauconomidae Gray, 1853 and includes more than 60 extant 
species in 8 genera (i.e. Corbicula, Geloina, Cyanocyclas, 
Cyrenoida, Batissa, Polymesoda, Villorita and Glauconome) 
(Bieler et al. 2014; MolluscaBase 2022). Cyrenidae is the most 
diverse (~50 species) of these 3 families and is widely distrib
uted on all continents except Antarctica; Cyrenoididae 
includes 6 species and is found across the Afrotropics, 
Central America and North America; Glauconomidae contains 
~12 species, mainly distributed in the coastal areas of south
ern China, India and the Philippines (note: all numbers are for 
extant species; Bieler et al. 2010, 2014; Bouchet and Rocroi 
2010; Coan and Valentich-Scott 2012; Pereira et al. 2014;  
Huber 2015; Breure et al. 2022). The habitat of most 
Cyrenoidea taxa is the fringe area between freshwater and 
saltwater environments, resulting in this group receiving little 
attention and being left out of larger-scale treatments of 
marine (e.g. Roy et al. 2009) and freshwater molluscs (e.g.  
Bogan 2013; Böhm et al. 2021; Graf and Cummings 2021). 

Traditionally, the classification of Cyrenoidea at the family 
level has mainly been based on the anatomy of gills, stomachs, 
hinge teeth and muscle scar arrangements, and the classifica
tion and identification of species are mainly based on com
parative morphology of the shell and body (e.g. Newell 1965;  
Taylor et al. 1969; Beesley et al. 1998; Allen 2000; Schneider 
2001; Williams et al. 2004; Taylor and Glover 2006; Valentas- 
Romera et al. 2019). Due to morphological convergences and 
phenotypic plasticity, shell morphology-based taxonomy and 
species synonymy in Cyrenoidea are often controversial (Gray 
1853; Dall 1896; Liu 2008; He and Zhuang 2013) and this 
seriously hinders the assessment of species diversity and the 
enactment of protection measures for this group. 

Over the past 20 years, the molecular phylogenetic 
framework for bivalves has been updated and improved 
based on the combined work of several researchers 
(e.g. Matsumoto 2003; Williams et al. 2004; Taylor et al. 
2007, 2009; Sharma and Wheeler 2013; Bieler et al. 2014;  
Combosch et al. 2017) and the monophyly of Cyrenoidea 
has been strongly supported. However, previous molecular 
studies have been lacking in sampling of Cyrenoidea taxa. 
To date, only four Cyrenoidea (Corbicula fluminea (O. F. 
Müller, 1774), Polymesoda caroliniana, Glauconome rugosa 
and Cyrenoida floridana Dall, 1896) have been sampled in 
the latest bivalve trees (Lemer et al. 2019; Crouch et al. 
2021). Therefore, a comprehensive phylogeny of Cyrenoidea 
is lacking and the species taxonomy and delimitation origi
nally based on morphology and anatomy have not yet been 
thoroughly tested by molecular analyses. 

To confirm the species validity, taxonomic position and 
phylogenetic relationships, we established three molecular 
datasets of the Venerida (Bivalvia: Heteroconchia), focusing 
on Cyrenoidea. A DNA barcoding (cytochrome c oxidase 
subunit I, COI) dataset was initially used. COI is commonly 
used for DNA barcoding and widely used for species delimi
tation and species discovery (Bolotov et al. 2017; Araujo 
et al. 2018; Wu RW et al. 2018; Smith et al. 2019). We 
expanded the COI dataset and explored the capability of 
resolving deeper nodes at the genus level based on a 
three-gene (i.e. the mitochondrial 16S rRNA and COI, and 
the nuclear 28S rRNA) dataset. Complete mitogenomes with 
conserved gene order and low recombination are particu
larly useful tools for higher taxonomy (Huang et al. 2013;  
Lopes-Lima et al. 2017; Froufe et al. 2020; Wu RW et al. 
2021; Wu XP et al. 2022). Complete mitochondrial genomes 
might be valuable for enhancing the comprehensiveness of 
Venerida phylogeny. 

The objectives of this study are to (1) determine the 
validity of the nominal species in Cyrenoidea Gray, 1840 
using DNA barcoding; (2) resolve phylogenetic relationships 
of the eight genera of Cyrenoidea based on multi-locus data 
and revise the current taxonomy; and (3) produce compre
hensiveness of Venerida phylogeny based on complete 
mitogenomes. 

Materials and methods 

Taxon sampling and generation of the three 
molecular datasets 

Geloina coaxans (Fig. 1) (SXNU_22071001) was collected in 
the Dutou River (114.543513°E, 22.740437°N), Huizhou City, 
Guangdong Province, China. Two specimens of Glauconome 
virens (Fig. 2) (SXNU_22112301, SXNU_22112302) were col
lected in the Shankou Mangrove National Ecological Nature 
Reserve (109.116308°E, 21.448125°N), Beihai City, Guangxi 
Zhuang Autonomous Region, China. Morphological identifi
cation of the species is based on publications (Gmelin 1791;  
Reeve 1843; Liu 2008) and the WORMS Web Site 
(MolluscaBase 2023a, 2023b). The identified specimens 
are deposited as vouchers in the Museum of Zoology, 
Shanxi Normal University, China. 

To achieve the objectives of this study, three molecular 
datasets were constructed: (1) a DNA barcoding (COI) data
set (Table 1): we downloaded the currently available 56 COI 
sequences representing 21 nominal species in Cyrenoidea 
from GenBank and combined these with the newly obtained 
sequences in the present study to construct the DNA barcod
ing dataset and the sequences from two species in 
Veneroidea from GenBank were selected as outgroups; (2) 
we constructed a molecular dataset comprising 13 taxa from 
8 genera in Cyrenoidea, using 3 genes (COI, 16S rRNA and 
28S rRNA) to clarify phylogenetic relationships (Table 2) 
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4 cm

Fig. 1. Shells of Geloina coaxans. View of shells from top to bottom: exterior of right and left valves, dorsal view of 
articulated valves, interior of right and left valves.    
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and 5 species sequences in Veneridae, Sphaeriidae, Arcticidae 
and Pharidae were also downloaded from GenBank as out
groups; (3) all 53 complete available mtDNA sequences 

representing 8 families in Venerida (not including unverified 
sequences) and 2 Cardiida taxa, i.e. Acanthocardia tubercu
lata (Linnaeus, 1758) and Cerastoderma edule (Linnaeus, 

1 cm

Fig. 2. Shells of Glauconome virens. View of shells from top to bottom: exterior of right and left valves, dorsal view of articulated 
valves, interior of right and left valves.    
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Table 1. List of COI sequences used for species delimitation.       

Order Superfamily Species GenBank 
numbers 

References   

Venerida 
Gray, 1854 

Cyrenoidea 
Gray, 1840 

Corbicula fluminea MK308235 Unpublished 

Corbicula leana AB845591  Yamada et al. (2014) 

Corbicula leana MN746814  Bespalaya et al. (2021) 

Corbicula sandai AB845590  Yamada et al. (2014) 

Corbicula sandai OM912155 Unpublished 

Corbicula sandai OM912165 Unpublished 

Corbicula madagascariensis OM912260 Unpublished 

Batissa violacea DQ837726  Glaubrecht et al. (2006) 

Batissa violacea DQ837727  Glaubrecht et al. (2006) 

Villorita cornucopia MH593260 Unpublished 

Villorita cornucopia MH593261 Unpublished 

Villorita cornucopia MH593262 Unpublished 

Villorita cyprinoides JQ773442 Unpublished 

Villorita cyprinoides KT347297 Unpublished 

Villorita cyprinoides MH593257 Unpublished 

Villorita cyprinoides MH593258 Unpublished 

Villorita cyprinoides MH593259 Unpublished 

Glauconome angulata OM292862 Unpublished 

Glauconome angulata OM292863 Unpublished 

Glauconome chinensis DQ184851  Mikkelsen et al. (2006) 

Glauconome chinensis OL877112 Unpublished 

Glauconome chinensis OL877113 Unpublished 

Glauconome chinensis OL877114 Unpublished 

Glauconome rugosa KC429140 Unpublished 

Glauconome rugosa DQ184852 Unpublished 

Glauconome straminea MN608341 Unpublished 

Glauconome virens OQ569915 This study 

Glauconome virens OQ569916 This study 

Geloina coaxans OQ569914 This study 

‘Geloina expansa’ AB722087 Unpublished 

‘Geloina expansa’ AB722090 Unpublished 

‘Geloina expansa’ MN608338 Unpublished 

Geloina erosa OM791690 Unpublished 

Geloina erosa OM791691 Unpublished 

Geloina erosa OM791692 Unpublished 

Geloina erosa OM791693 Unpublished 

Geloina erosa OM791694 Unpublished 

Geloina expansa AB498812 Unpublished 

Geloina expansa AB722089 Unpublished 

(Continued on next page) 
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1758), selected as outgroups were downloaded from 
GenBank. Two complete new mtDNA sequences (i.e. Geloina 
coaxans and Glauconome virens) were obtained from this 
study, of which G. virens is the first mitogenome in the family 
Glauconomidae. Finally, a mitogenomic dataset was con
structed for 57 sequences. 

DNA extraction, PCR sequencing and 
mitogenome assembly 

The total genomic DNA of specimens was extracted from the 
dissected somatic tissues using TIANamp Marine Animals 
DNA Kit (Tiangen Biotech, Beijing, China) according to the 
manufacturer’s instructions. 

For the newly acquired specimens, COI (LCO22me2 5′- 
GGTCAACAAAYCATAARGATATTGG-3′ and HCO700dy2 5′- 
TCAGGGTGACCAAAAAAYCA-3′, ~680 bp) (Walker et al. 
2007), 16S rRNA (16SarL 5′-CGCCTGTTTATCAAAAACAT-3′ 
and 16SbrH 5′-CCGGTCTGAACTCAGATCACGT-3′, ~500 bp) 
(Wu RW et al. 2019) and 28S rRNA (D23F 5′-GAGAGTTCAA 
GAGTACGTG-3′ and D4RB 5′-TGTTAGACTCCTTGGTCCG 

TGT-3′, ~420 bp) (Park and Ó Foighil 2000) were amplified 
and sequenced. PCR conditions were as follows: 98°C for 10 s, 
35 cycles 94°C for 1 min, 50°C for 1 min, 72°C for 1 min and a 
final extension of 72°C for 7 min, following the TaKaRa Ex 
manufacturer’s protocol. Amplified PCR products were purif
ied and sequenced by Sangon Biotech (Shanghai). The newly 
obtained sequences have been uploaded to GenBank 
(OQ569914–OQ569916 for COI, OQ570956–OQ570957 for 
16S, OQ608005–OQ608006 for 28S). 

The quality of genomic DNA was detected by agarose gel 
electrophoresis. We sent samples of high-quality DNA to 
Novogene Co., Ltd (China) for library construction and sequenc
ing. Paired-end reads of 2 × 150 bp were generated on the 
Illumina NovaSeq 6000 sequencing platform. Raw data filtra
tion, cleaning and assembly were performed using the CLC 
Genomic Workbench (ver. 12.0, Qiagen). Mitochondrial 
genome sequences were designated from resulting contigs 
using BLAST (ver. 2.14.1, see http://blast.ncbi.nlm.nih.gov/) 
and concatenated into the complete mitogenome using 
Geneious (ver. 11, Biomatters, see https://www.geneious. 
com/). Mitogenomes were annotated by MITOS WebServer 

Table 1.(Continued)      

Order Superfamily Species GenBank 
numbers 

References   

Geloina expansa MW311111 Unpublished 

Geloina expansa MW311112 Unpublished 

Geloina expansa AB722088 Unpublished 

Geloina expansa OM791695 Unpublished 

Geloina expansa OM791696 Unpublished 

Geloina expansa OM791697 Unpublished 

Geloina expansa OM791698 Unpublished 

Geloina expansa OM791699 Unpublished 

Geloina sp. KX608980 Unpublished 

Geloina sp. KX608982 Unpublished 

Geloina sp. KX608983 Unpublished 

Geloina sp. MK481951 Unpublished 

Geloina sp. MK481952 Unpublished 

Cyanocyclas limosa AF196277  Siripattrawan et al. (2000) 

Cyrenoida floridana KC429123  Sharma et al. (2013) 

Cyrenoida sp. MK308013 Unpublished 

Cyrenoida sp. MK308062 Unpublished 

Cyrenoida sp. MK308266 Unpublished 

Cyrenoida sp. MK308305 Unpublished 

Polymesoda caroliniana AF196276  Siripattrawan et al. (2000) 

Veneroidea 
Rafinesque, 1815 

Mercenaria mercenaria KX713477  Combosch et al. (2017) 

Chamelea striatula KY547747 Unpublished   
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(ver. 2.0, see http://mitos2.bioinf.uni-leipzig.de/index.py;  
Donath et al. 2019) and submitted to GenBank using BankIt 
(Accession numbers: OQ595194–OQ595195). 

Alignments, partitioning strategies and model 
selection 

Protein-coding genes (PCGs) were translated to the corre
sponding amino acid under the invertebrate codon translation 
mode in MEGA (ver. 7.0, see http://www.megasoftware.net;  
Kumar et al. 2016) and aligned based on the amino acid 
sequences using the built-in MUSCLE (ver. 5.0, see http:// 
www.drive5.com/muscle; Edgar 2004) with default settings. 
The ribosomal genes 16S rRNA and 28S rRNA were aligned 
using MAFFT (ver. 7.2, see https://mafft.cbrc.jp/alignment/ 
server/; Katoh and Standley 2013) with the L-INS-i algorithm. 
Ambiguous alignment areas were trimmed by Gblocks 
(ver. 0.91b, see http://molevol.cmima.csic.es/castresana/ 
Gblocks.html; Castresana 2000), the parameter ribosomal 
gene block with a minimum length was set to 2 base pairs 
(bp), allowed gap position was selected with half; the mini
mum length of protein-coding gene block was set to 3 bp, 
allowed gap position was also selected with half. 

The COI sequence fragment length was 657 bp after 
alignment and trimming for the barcoding dataset. The 
COI, 16S rRNA and 28S rRNA sequences were 459, 1069 
and 576 bp respectively after alignment and trimming for 
the three-gene dataset. The resulting alignment of 2104 
nucleotides was concatenated in Phylosuite (ver. 1.2.3, see 
http://phylosuite.jushengwu.com/; Zhang et al. 2020). 

We analysed two data sets for the mitogenomic data: 
(1) nucleotide sequences of 12 PCGs (NUC dataset); and 
(2) amino acid sequences of 12 PCGs (AA dataset). The 
concatenated NUC and AA datasets consisted of 10 698 bp 
and 3566 aa. Atp8 was removed for the mitogenomic dataset 
due to high sequence variation and a lack of annotation in 
some species. 

The multi-locus dataset was performed with five partition 
schemes based on genes and codons, i.e. COI (3 codons) + 16S 
rRNA + 28S rRNA. PartitionFinder (ver. 2.1.1, see http:// 
www.robertlanfear.com/partitionfinder/; Lanfear et al. 2012) 
was used to select Bayesian inference (BI) analysis models for 
partitioning schemes. ModelFinder (ver. 1.4.2, see http:// 
www.iqtree.org/ModelFinder/; Kalyaanamoorthy et al. 2017) 
was used to select the maximum likelihood (ML) analysis 
models in IQ-TREE. The selection for best-fit models was 

Table 2. Three-gene dataset used for molecular analyses and corresponding GenBank numbers.         

Order Supfamily Family Species COI 16S 28S   

Venerida Gray, 1854 Cyrenoidea Gray, 1840 Cyrenidae Gray, 1840 Corbicula fluminea MK308235 MG759516 DQ343848 

Corbicula leana AB845591 JX399587 AB661754 

Corbicula 
madagascariensis 

OM912260 AF152022 KM598271 

Corbicula sandai AB845590 NC_061685 AB661660 

Batissa violacea DQ837726 KU318348 – 

Villorita cyprinoides JQ773442 KF638716 – 

Glauconomidae 
Gray, 1853 

Glauconome rugosa KC429140 KC429302 KC429500 

Glauconome virens OQ569915 OQ570957 OQ608006 

Glauconome chinensis DQ184851 DQ184753 DQ184798 

Cyrenoididae H. Adams 
& A. Adams, 1857 

Cyrenoida floridana KC429123 KC429280 KC429470 

Geloina coaxans OQ569914 OQ570956 OQ608005 

Cyanocyclas limosa AF196277 AF152025 AF131012 

Polymesoda caroliniana AF196276 KX713250 KX713425 

Veneroidea 
Rafinesque, 1815 

Veneridae 
Rafinesque, 1815 

Chamelea striatula KY547747 KY547771 KX713366 

Arcticoidea 
Newton, 1891 

Arcticidae Newton, 1891 Arctica islandica KX713445 KC429288 AM779737 

Sphaeriida Lemer, Bieler 
& Giribet, 2019 

Sphaerioidea 
Deshayes, 1855 

Sphaeriidae 
Deshayes, 1855 

Musculium indicum KF483411 KU376173 KF483345 

Pisidium costulosum KF483422 KF483323 KU376194 

Adapedonta Cossmann 
& Peyrot, 1909 

Solenoidea 
Lamarck, 1809 

Pharidae H. Adams & A. 
Adams, 1856 

Sinonovacula constricta AB076949 AB751361 AB746907 

Species with sequences obtained in this study are in bold.  
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based on the corrected Akaike Information Criterion 
(AICc). Substitution models assigned to each partition by 
PartitionFinder and ModelFinder are listed in Supplementary 
Table S2. 

The mitochondrial genome NUC dataset was partitioned 
into 36 partitions according to the codon position and each 
PCG; and the AA dataset was partitioned into 12 partitions 
according to each PCG for phylogenetic analyses. Selection 
for best-fit models using ModelFinder and PartitionFinder 
was based on AICc. The best-fit partitioning schemes and 
subset models were shown in Supplementary Table S3. 

Neighbour-joining clustering and species 
delimitation approaches 

Molecular species delimitation is mainly determined by the 
barcode gap and for this purpose, we performed a 
neighbour-joining (NJ) analysis of the COI dataset. An NJ 
tree based on p-distances was generated in MEGA (ver. 7.0;  
Kumar et al. 2016) with 1000 bootstrap replicates (Minh 
et al. 2013) using the ‘Pairwise deletion’ option to treat gaps 
and missing data. 

To view the validity of the nominal species and examine 
the possible presence of cryptic species, we implemented the 
following three species delimitation tools on the barcoding 
data: Automatic Barcode Gap Discovery (ABGD), multi-rate 
Poisson Tree Processes (mPTP) and Species Tree And 
Classification Estimation, Yarely (STACEY). 

ABGD analyses (Puillandre et al. 2012) were performed at 
the webserver (see http://wwwabi.snv.jussieu.fr/public/ 
abgd/) using the default value of prior intraspecific diver
gence values (Pmin = 0.001 and Pmax = 0.1); relative gap 
width (X) was set to 1.0; the matrix computes of pairwise 
distances were selected p-distances models. mPTP analyses 
(Kapli et al. 2017) were performed on the NJ tree of COI data 
using the online server (http://mptp.h-its.org). STACEY (ver. 
1.2.4, see https://beast2.blogs.auckland.ac.nz/tag/stacey/;  
Jones 2017) was implemented in BEAST (ver. 2.0, see 
http://www.beast2.org/; Bouckaert et al. 2014); and param
eter settings included collapse-height = 0.0001, simcutoff =  
1.0 and burn-in 50%. 

Phylogenetic analyses 

We employed both Bayesian inference (BI) and maximum 
likelihood (ML) methods with various software packages to 
produce a robust set of phylogenetic hypotheses based on 
the comprehensive three-gene and mitogenome datasets. 

Bayesian analysis was performed using MrBayes (ver. 
3.2.6, see http://nbisweden.github.io/MrBayes/; Ronquist 
et al. 2012). Four simultaneous runs with four chains each 
were run for 10 million generations, sampling every 1000 
trees. The first 25% of these trees was discarded as burn-in 
when computing the consensus tree (50% majority rule). 
Sufficient mixing of the chains was considered to be reached 

when the average standard deviation of split frequencies 
was below 0.01. 

IQ-TREE (Nguyen et al. 2015) was used for ML tree 
reconstruction, using partition models with 1000 ultrafast 
bootstrap replicates (Minh et al. 2013). Additionally, a ML 
analysis was conducted in RAxML (ver. 2.0, see https:// 
antonellilab.github.io/raxmlGUI/; Stamatakis 2014), with 
the search strategy including rapid bootstrapping. Clade sup
port was evaluated by 1000 bootstrap replicates, assuming a 
generalised time reversible (GTR) + gamma (G) + proportion 
of invariable sites (I) model for each partition. 

Gene arrangement comparisons 

We batch-downloaded 53 complete mitochondrial genomes 
in Venerida from GenBank using PhyloSuite (Zhang et al. 
2020) and assessed genomic features and gene order. All 
complete mitogenome sequences were also re-annotated by 
MITOS (Donath et al. 2019) to avoid the influence of differ
ent annotation methods on the analysis results. 

Phylograms and gene orders were visualised in iTOL 
(ver. 6.0, see https://itol.embl.de/itol.cgi; Letunic and 
Bork 2007). For visualisation, we arbitrarily designated 
the beginning of the COI gene as position 1 in each genome 
(pointing in the direction of COII). 

Results 

Species delimitation 

We examined the COI dataset of 59 sequences representing 
21 nominal species in Cyrenoidea. The three species delimi
tation analyses consistently identified 19 OTUs (molecular 
operational taxonomic units) (Fig. 3). 

Based on ABGD, the barcode gap distance was 0.04. 
Estimates identified that OTU divergence (p-distances) ran
ged between 0.06 (Corbicula madagascariensis v. Corbicula 
spp.) and 0.26 (Corbicula madagascariensis v. Polymesoda 
caroliniana) within Cyrenoidea. 

The following congeneric species were indistinguishable 
according to these methods: Villorita cornucopia + Villorita 
cyprinoides (divergence = 0.02) and Corbicula fluminea +  
Corbicula leana + Corbicula sandai (average divergence =  
0.01), providing evidence that there are possible errors in 
synonymisation from previous taxonomists. Interestingly, 
the Geloina expansa sequences retrieved from GenBank 
were clustered into four distinct clades and the Geloina 
coaxans specimens identified in this study formed a shallow 
branch with one of these clades. 

Phylogenetic relationships of Cyrenoidea 

BI and ML analyses based on the three-gene dataset showed a 
congruent topology (Fig. 4). Cyrenoidea was the sister-group 
to Arcticoidea with strong support (BS = 80%, PP = 0.98). 
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Both phylogenetic trees confirmed that the currently recog
nised family Cyrenidae was polyphyletic. Geloina coaxans, 
Polymesoda caroliniana and Cyanocyclas limosa, previously 
classified in the family Cyrenidae, formed a sister group rela
tionship with Cyrenoida floridana that belongs to the 
family Cyrenoididae (Fig. 4). With the exception of 
Batissa violacea and Cyrenoida floridana, our taxa contained 
type species for each genus. BI and ML trees showed that 
the phylogenetic relationships among genera were as fol
lows: (((Batissa + Villorita) + Corbicula) + (Glauconome +  
(Cyrenoida + (Geloina + (Cyanocyclas + Polymesoda))))) 
(Fig. 4). 

Mitogenomics 

We constructed five phylogenetic trees inferred from 12 mito
chondrial protein genes. ML and BI analyses of the NUC data 
and ML analyses of the AA data yielded congruent topologies. 
Most relationships across the Venerida were well-supported, 
with most nodes having high bootstrap support values 
and Bayesian posterior probabilities (BS ≥ 75%, PP ≥ 0.95;  

Fig. 5). The AA-based BI tree differed from the abovemen
tioned topology and the only distinction was the position of 
Ruditapes decussatus (Supplementary Fig. S1). In all phyloge
netic trees, Cyrenidae, Cyrenoididae and Glauconomidae 
formed a clade with strong nodal support (BS = 100%, 
PP = 1.0) and obtained topologies consistent with the three- 
gene dataset. 

Within Venerida, BI and ML analyses revealed the phy
logenetic relationships of eight families as follows: 
((((((Glauconomidae + Cyrenoididae) + Cyrenidae) + Arctic
idae) + (Veneridae + Vesicomyidae)) + Mactridae) + Sphae
riidae). Cyrenoidea was the sister group to Arcticidae. 
Sphaeriidae was the sister group to all the remaining 
Venerida in all IQ-TREE, MrBayes and RAxML analyses 
(Fig. 5, Supplementary Fig. S1). 

Novel mitochondrial gene arrangements 

Mitogenomes of Geloina coaxans and Glauconome virens 
were newly generated in this study. Both sequenced mitogen
omes displayed a typical structure composed of 13 protein- 

Tree scale: 0.1

C
yr

en
oi

da
 s

p.

C
. m

ad
ag

as
ca

rie
ns

is

C
. s

an
da

i

C. le
an

a

Corbicula !u
mineaPolymesoda caroliniana

Villorita cyprinoides

Villorita cornucopia

Cyanocyclas limosa

Geloina expansa

G
eloina expansa

Gelo
ina

 e
xp

an
sa

Gelo
ina

 ex
pan

sa

Geloina sp.

Chamelea striatula

Mercenaria mercenariaGlauconome stramineaGlauconome angulata
Glauconome chinensis

G
lauconom

e virens

G
lauconom

e rugosa

B
atissa violacea

C
yrenoid

a !orid
ana

G
el

oi
na

 e
ro

sa

G
el

oi
na

 c
oa

xa
ns

Fig. 3. Neighbour-joining tree inferred 
from 59 COI sequences representing 21 
nominal species in Cyrenoidea based on 
p-distances. Taxa marked in red were 
obtained in this study. Taxon blocks 
represent the OTUs defined by three 
delimitation analyses. The blue branches 
represent four clades separated by the 
Geloina expansa complex, each of which 
corresponds to an OTU.    
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coding genes, 22 tRNA genes and 2 rRNA genes (Fig. 5). All 37 
genes were located on the plus strand. The mitogenomes 
ranged from 15 136 bp in Geloina coaxans to 18 473 bp in 
Glauconome virens. The base composition of G. coaxans was 
A = 23.57%, T = 45.98%, C = 7.87% and G = 22.58% that 
showed a high AT-bias (69.55%). The base composition of 
virens was A = 26.47%, T = 42.45%, C = 9.01% and 
G = 22.08%, also with an AT-bias of AT (68.92%). AT 
skews in sequenced G. coaxans and G. virens mitogenomes 
were −0.32 and −0.23 respectively. GC skew values were 
similar and these were 0.48 for G. coaxans and 0.42 for 
G. virens. 

Geloina coaxans exhibited the identical gene rear- 
rangement as that previously reported for Geloina erosa 
(Liao et al. 2020). However, we found a novel and unique 
mitochondrial gene order in Glauconome virens that differed 
significantly from the gene order reported for other species in 
Venerida (Fig. 5). We mapped the gene order of these mito
genomes onto the Venerida phylogeny based on 12 PCGs. 

Discussion 

Species delimitation 

OTU results obtained from the three methods (ABGD, mPTP 
and STACEY) suggest that species may require revision, 
including the possible existence of a species complex in 
the currently known Geloina expansa. 

Based on morphological similarities, Huber (2015) proposed 
Villorita cornucopia as a variant of Villorita cyprinoides. 

V. cornucopia is currently accepted as a synonym of V. cypri
noides in the World Register of Marine Species (https://www. 
marinespecies.org). Our species-delimitation methods using 
COI sequences also support this synonymisation. 

The genus Corbicula is of great concern for malacologists 
worldwide due to the high invasive potential (e.g. Pigneur 
et al. 2014; Gomes et al. 2016; Benson and Williams 2021;  
Bespalaya et al. 2021, 2023). Species descriptions in this 
group were typically based on slight differences in shell 
shape, size and colouration (e.g. Lamarck 1818; Dall 1903;  
Ota and Ohta 1970). At present, 91 species of the genus 
Corbicula have been described globally (Bieler and 
Mikkelsen 2019; Graf and Cummings 2021; MolluscaBase, 
see https://www.molluscabase.org). Although subsequent 
studies have attempted to clarify the nominal species, the 
validity of many of these remains controversial (Okamoto 
and Arimoto 1986; Park and Kim 2003; Benson and 
Williams 2021). In our study, the divergences of Corbicula 
fluminea, Corbicula leana and Corbicula sandai were so 
small that the three methods employed for species delimita
tion failed to distinguish among these species. Our analysis 
focused exclusively on the molecular data of these species 
without considering voucher-specimen information. We do 
not support synonymising species based on a single locus 
analysis. The aim of this study was not to provide integra
tive evidence to resolve the synonymisation of the Corbicula 
complex. Rather, we intend this group to remain in the 
spotlight, awaiting comprehensive examination, after our 
casual molecular analysis. 

The species validity and synonymy of Geloina coaxans, 
G. erosa and G. expansa have been controversial since 
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descriptions were typically inferred only from shell charac
ters in the absence of comparative soft-anatomy and molec
ular data (e.g. Morton 1976; He and Zhuang 2013; Huber 
2015). Morton (1976) and He and Zhuang (2013) believed 
that G. erosa was not morphologically distinct from 
G. coaxans and regarded G. erosa as a variety of the latter. 
But Huber (2015) proposed G. erosa as a junior synonym of 
G. expansa by comparing the conchological characters. 
Currently, two of the world’s most comprehensive bivalve 
species websites, i.e. World Register of Marine (https:// 
www.marinespecies.org) and the MUSSEL Project (http:// 
www.mussel-project.net/), support inconsistent species 
synonyms. We downloaded all available barcode data of 

Geloina from GenBank and combined with sequences 
of G. coaxans obtained in this study, species delimitation 
supported the validity of G. erosa and G. coaxans and the 
existence of multiple cryptic species in the G. expansa 
complex. 

Synonymising species or proposing new species in 
controversial congeneric species would be tentative, solely 
relying on shell morphological variation and insufficient 
molecular evidence. The addition of unlinked markers and 
integration of reproductive characteristics, and ecological 
and behavioural data should be underatken to further clarify 
the above concept of species before a comprehensive taxo
nomic classification of the group can be established. 
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Fig. 5. Gene arrangement of the complete mitogenomes of Venerida mapped on the phylogenetic trees that were inferred from 12 
mitochondrial protein genes (except atp8). We show the consistent phylogenetic tree built by Bayesian Inference (BI) based on the NUC 
dataset and Maximum Likelihood (ML) analyses conducted by IQ-TREE based on both NUC and AA datasets, and RAxML based on the 
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Phylogenetic relationships and taxonomic 
revision 

Valentas-Romera et al. (2019) conducted a comprehensive 
review of the anatomical data of Cyrenoidea and provided 
a succinct summary of the relevant research history. The 
monophyly of the superfamily Cyrenoidea including the 
freshwater–brackish water families Cyrenoididae, Cyrenidae 
and Glauconomidae in Imparidentia has been confirmed 
(Taylor et al. 2009; Sharma et al. 2012; Bieler et al. 2014;  
Combosch et al. 2017). Subsequent studies (Rahuman et al. 
2020; Crouch et al. 2021) further confirmed the close relation
ship of three families in Cyrenoidea as (Cyrenidae +  
(Cyrenoididae + Glauconomidae)). More recently, the tran
scriptomic study conducted by Lemer et al. (2019) included 
representatives from Cyrenidae (Corbicula fluminea (O. F. 
Müller, 1774) and Polymesoda caroliniana (Bosc, 1801)), 
Glauconomidae (Glauconome rugosa Hanley, 1843) and 
Cyrenoididae (Cyrenoida floridana). Notably, P. caroliniana 
grouped with G. rugosa instead of C. fluminea (Lemer et al. 
2019), indicating that the monophyly of the Cyrenidae is 
questionable and requires revision. 

In this study, we collected 13 taxa, representing the 
currently recognised eight genera, to construct the most 
comprehensive phylogenetic framework of Cyrenoidea 
(Fig. 4). Multi-locus phylogenetic analyses provide compel
ling evidence to question the traditional taxonomy based on 
shell characteristics. Geloina coaxans, Cyanocyclas limosa 
and Polymesoda caroliniana as type taxon of the respective 
genera have been classified in the family Cyrenidae based on 
shell morphology (e.g. Gray 1840; Keen and McLean 1971;  
Turgeon et al. 1998). Our study shows that these three 
species are more closely allied to Cyrenoida floridana that 
belongs to the family Cyrenoididae, rather than Corbicula 
fluminea, the type taxon of the family Cyrenidae (Fig. 4). 
Previous phylogenetic studies (González et al. 2015;  
Kondakov et al. 2020) based on different datasets also 
showed that P. caroliniana was more closely related to 
C. floridana, albeit with a sampling strategy not designed
to resolve cyrenoidean relationships. Incorporating the type
species of Cyrenoididae, Cyrenoida dupontia Joannis, 1835
from West Africa, into the molecular analysis would have
been preferable. However, no suitably preserved specimens
were available. Taylor et al. (2009) compared the shell
characteristics of C. floridana and C. dupontia, including
shell sculpture, cardinal teeth and lateral teeth, and were
convinced that these were members of the same group.

Consequently, with the reinforcement of the three- 
gene dataset, our phylogenetic studies provide strong evi
dence to transfer Geloina, Cyanocyclas and Polymesoda 
from the family Cyrenidae to the family Cyrenoididae. 
Multi-locus phylogeny and mitochondrial phylogenomics 
consistently support the family-level placement of the newly 
delimited Cyrenoididae as sister group to Glauconomidae 
(Fig. 4 and 5). 

Gene rearrangement of Venerida 

In contrast to the conserved mitochondrial gene order 
observed in most vertebrate groups, bivalves exhibit a remark
ably diverse mitochondrial gene arrangement (Boore and 
Brown 1994; Boore et al. 1999; Kurabayashi and Ueshima 
2000; Froufe et al. 2020) that is attributed to various mecha
nisms such as gene transpositions and reverse, tandem dupli
cation and random loss events (Boore 2000; Wu RW et al. 
2021). Although homoplastic rearrangements have been 
reported in some invertebrate groups, such as insects 
(Dowton and Austin 1999; Babbucci et al. 2014), the complete 
mitochondrial gene order of bivalves exhibits a unique and 
specific diagnostic signal that can provide powerful indicators 
for inferring phylogenetic and evolutionary relationships 
(Yuan et al. 2012; Lv et al. 2018; Froufe et al. 2020). 

In this study, the mitochondrial genomes of Geloina 
coaxans and Glauconome virens were obtained for the first 
time. Notably, G. virens represents the first complete mito
chondrial genome of Glauconomidae. In terms of length 
and nucleotide composition, the mitochondrial genome 
of G. virens in Venerida is not atypical; however, this 
does possess a distinctive gene arrangement structure. 
Consequently, three distinct mitochondrial gene orders 
(GO1, GO2 and GO3) are identified in Cyrenoidea, each of 
which is shared by the different families: Glauconomidae, 
Cyrenoididae and Cyrenidae (Fig. 5). We anticipate that 
these three mitogenome gene orders may serve as a diag
nostic tool for family-level classification but further valida
tion will be required through incorporating additional 
mitogenomes for this group in the future. 

In conclusion, we establish a first modern phylogenetic 
framework for the superfamily Cyrenoidea and revise the 
taxonomic placement of three genera using a multi-locus 
phylogeny. We clarify the phylogenetic relationship of the 
family within Venerida based on mitochondrial phyloge
nomics and describe a novel gene arrangement from the 
complete mitochondrial genome of the Glauconome virens. 
Cyrenoidea has a wide distribution range that covers 
marine, brackish- and fresh-water habitats. This diversity 
of habitats could constitute a sound model for understand
ing transitions from ocean to freshwater habitats in bivalves. 
In addition, due to the imbalance in bivalve studies around 
the world, the multiple data of type taxon Batissa tenebrosa 
(Hinds, 1842) from Fiji (Hinds 1842) and Cyrenoida dupon
tia Joannis, 1835 from the Senegal River (De Joannis 1835) 
were only conchological descriptions. We are committed to 
exploring the morphological diagnosis, character evolution 
and biogeographic history of Cyrenoidea by expanding the 
sampling and strengthening international cooperation. 

Supplementary material 

Supplementary material is available online. 
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