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Under the Microscope

The use of microorganisms to recover precious and 

base metals from mineral ores and concentrates is 

called biomining, or biohydrometallurgical processing. 

Biomining occurs through the natural ability of certain 

microorganisms to catalyse reactions, leading to the 

solubilisation of metals from the minerals. This process is 

used today in commercial operations to recover copper, 

nickel, cobalt, zinc and uranium from complex ores.

Specific microorganisms have the ability to oxidise reduced 

sulphide ores and hence enhance the solubilisation of desired 

metals. In bioleaching base metals are leached into solution, 

whereas biooxidation is used as a pre-treatment to oxidise the 

sulphide matrix of gold and silver ores or concentrates before 

cyanidation. Modern day biomining descends from observations 

in the 1950s at Kennecott copper mine in USA, where a blue 

coloured run-off was discovered coming from piles of waste ore. 

The liquid run-off contained copper sulphate released from the 

ore, a process normally attributed to powerful oxidising agents1. 

The oxidation was found to be catalysed by the bacterium 

Acidithiobaccillus ferrooxidans, which is the most studied 

bioleaching organism. Further investigations have shown that 

a number of other bacteria and archaea can also enhance 

mineral dissolution including other Acidithiobaccillus spp., 

Leptospirillum spp., Sulfobacillus spp. and Sulfolobus spp.2.

Bioleaching microorganisms are mesophiles (lovers of warmth) or 

thermophiles (lovers of heat) and grow in very acidic conditions 
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of pH 1.2–2.0 or even lower, allowing these organisms to thrive 

in very extreme environments. These organisms have a unique 

ability to oxidise inorganic compounds such as Fe2+ and S0 to 

derive energy (chemoautotrophy) for their metabolic processes. 

Many of them also possess the ability to use atmospheric 

carbon dioxide as a source of carbon (carbon fixing). Along with 

high metal tolerance, these characteristics make bioleaching 

microorganisms very useful for extracting metals from minerals.

Sulphide mineral leaching by microorganisms was previously 

thought to occur via direct and indirect leaching. In the direct 

bioleaching model the microorganisms attached to the minerals 

were believed to directly oxidise the ore enzymatically, thereby 

gaining energy from the sulphide mineral. As little evidence 

has been found to support the theory of a direct enzymatic 

mechanism, the current consensus view is that bioleaching 

occurs via an indirect mechanism3. The indirect bioleaching of 

sulphide minerals is mediated by microbially-regenerated ferric 

iron and protons produced in the biological oxidation of reduced 

sulphur compounds:

4 Fe2+ + 4 H+ + O2 ➞ 4 Fe3+ + 2 H2O (microbiologically catalysed 

reaction)

2 S0+ 2 H2O + 3 O2 ➞ 2 SO4
2- + 4 H+ (microbiologically catalysed 

reaction)

MS + 2 Fe3+ ➞ M2+ + 2 Fe2+ + S0 (abiotic reaction)
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Indirect bioleaching has been observed to occur via contact, 

non-contact and cooperative mechanisms (Figure 1). In contact 

leaching the microorganisms attach to mineral surfaces and 

the leaching reactions take place in an extracellular polymeric 

substance (EPS) matrix produced by the microorganisms. In the 

non-contact mechanism, planktonic cells produce Fe3+ and the 

H+ ions, which leach the mineral sulphides. In the cooperative 

mechanism, attached microorganisms release mineral particles 

and sulphur compounds, which are utilised by planktonic 

microorganisms to produce Fe3+ and H+ 4.

Metal sulphide leaching can occur via two reaction pathways, 

the polysulphate pathway and the thiosulphate pathway. The 

acid solubility of the metal sulphide determines via which 

pathway the sulphide oxidation will take place. All acid soluble 

metal sulphides such as chalcopyrite (CuFeS
2), sphalerite 

(ZnS), and chalcocite (Cu
2S) are leached by both Fe3+ and H+ 

via the polysulphide pathway with polysulphide as a major 

intermediate. Acid insoluble metal sulphides, such as pyrite 

(FeS
2), molybdenite (MoS2) and tungstenite (WS2) are leached 

solely by Fe3+ via the thiosulphate pathway with thiosulphate as 

the main intermediate5,6.

The main engineering techniques currently used commercially to 

extract metals from mineral sulphides are in situ, in place, dump, 

heap and reactor (stirred tank) bioleaching or biooxidation (Figure 

2). Reactor leaching has been used mostly for concentrates and 

involves higher costs but shorter leaching times. Heap, dump, 

in place and in situ leaching are more suitable for low-grade 

ores because the treatment costs are lower, but leaching times 

are significantly longer. Commercial bioleaching applications 

are used primarily for copper but also for nickel, cobalt, zinc 

and uranium. Bioleaching has been applied in over 20 industrial 

copper ore operations throughout the world and is currently 

used to produce over 20% of the world’s annual copper. 

Biooxidation has been mainly applied to refractory gold ores.

The use of bioleaching microorganisms in mining benefits the 

industry by minimising environmental impacts and allowing the 

utilisation of low-grade and complex ores, the processing of which 

would not be feasible with traditional methods. Conventional 

pyro- and hydrometallurgical ore extraction methods are usually 

cost- and energy-intensive, not feasible for low-grade ores, and 

have negative impacts on the environment, for example, tailings 

(toxic waste carrying heavy metals) from various extraction 

processes and emissions of chemical reagents, CO
2 and SO2

1. As 

the grades of available mineral ore deposits decline8, methods 

that allow extraction of metals from low-grade or other complex 

ores are required. The lower capital and operational costs make 

bioleaching a good alternative, particularly for ores containing 

<0.5% of valuable metals. Moreover, bioleaching can be used 

for ores for which smelters would impose penalty rates because 

of hazardous emissions (for example, ≥0.15% arsenic in feed 

intake). Bioleaching organisms also have the ability to oxidise 

and release metals efficiently at ambient temperatures with 

low energy consumption enabling the reduction of the carbon 

footprint. In addition to sulphide ores, the application of 

bioleaching has been explored for recovering metals from oxide 

ores9, metallurgical waste10,11, electronic scrap10, wastewater 

sludge12 and municipal solid waste incineration fly ash13. Further 

research might open avenues for utilising the unique capabilities 

of these microorganisms in other industries such as toxic waste 

management and bioremediation.

Figure 1. Contact, non-contact and cooperative leaching mechanisms (adapted from reference 4). EPS = extracellular polymeric substances.
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Figure 2. Main bioleaching and biooxidation techniques (adapted from reference 7).
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