
The marine mammal microbiome: current
knowledge and future directions

Marine mammals are globally significant because of their

sensitivity to environmental change and threatened status,

often serving as ‘ecosystem sentinels’1. Disease is a major

cause of marinemammal population decline and the role of

the microbiome in disease has generated considerable

interest. Recent research in humans has greatly enhanced

our understanding of how the host-associated microbial

community, the microbiome, affects host health. In this

review, we provide an overview of the extent of the marine

mammal microbiome with a focus on whole community

characterisation using genomic methods. This research

highlights the overlap in microbial communities between

geographically distinct species and populations of marine

mammals, suggesting tight links betweenmarinemammals

and their microbial symbionts over millions of years of

evolution. An understanding of these links in both healthy

and compromised hosts is essential to identifying at-risk

populations and making ecologically appropriate manage-

ment decisions. We advocate further development of

innovative sampling and analytic techniques that advance

the field of microbial ecology of marine mammals.

Recent investigations have highlighted the capacity of the micro-

biome to act strongly and significantly in maintaining host health

with a vital role in disease manifestation and immune system

function2,3. Members of the microbial community can directly

influence the progression of a disease via infection and also mod-

ulate the host’s own immune system regulation and response4.

Indeed thehost’smicrobial partners areessential to immunesystem

function. Themicrobiome has been observed to be species-specific

in a variety of vertebrate hosts5–7 and is influenced by host phylog-

eny, as a result ofmillionsof yearsof co-evolution8.Marinemammals

represent unique evolutionary lineages and investigations into their

associated microbes will provide a deeper understanding of their

ecology and evolution.

Marine mammals form a diverse group of 129 species in three

orders, and of those, 28 are considered endangered or threatened9.

Disease is one of the main causes of death in marine mammals and

somepopulationshave sufferedmassmortalities causedbybacterial

pathogens10. Bacteria exist as part of the normal, or even beneficial,

flora associated with a host, fluctuating and changing with a host’s

physiology andmetabolism11. Inmammals, disease canoccur under
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a number of different circumstances, most commonly on occasions

when the host’s immune system is compromised. For marine

mammals, susceptibility to pathogens may be particularly elevated

due to anthropogenic stressors such as depleted food resources,

habitat degradation and chemical or sound exposure12–15. Addi-

tionally, succession events occurring after an initial bacterial infec-

tionmay lead to dysbiosis, and alterations in the host’s microbiome

may be a better predictor of disease progression than following the

presence of individual pathogenic agents16. Hence, we need to

establish baseline data on microorganisms commonly associated

with marine mammals in order to detect anomalies. In the last

decade genomic sequencing technologies have provided a previ-

ously unrecognised diversity of microorganisms in numerous

diverse habitats. In this brief review we highlight the current

knowledgeof themicrobial composition in associationswithmarine

mammals with a focus on whole community characterisation.

Skin microbiome
Skin, as the largest organ of mammals, serves as a thick physical

barrier that provides defense against the surrounding marine

environment. Marine mammal skin is prone to lesions and disor-

ders, however the role of microorganisms in these conditions is

still largely unresolved and knowledge is primarily founded on

cultivation-based studies17. The recent application of cultivation-

independent sequencing-survey approaches to humpback whale

(Megaptera novaeangliae) skin has demonstrated that a unique

ecosystem of microbes resides on the skin surface (Table 1), which

differs from the community present in seawater18.

Among populations of humpback whales surveyed in diverse geo-

graphic regions, two genera of bacteria (Bacteroidetes genus Tena-

cibaculum and Gammaproteobacteria genus Psychrobacter) were

found to be cosmopolitan and abundant associates on humpback

whale skin26. Scanning electron microscopy of humpback whale

skin revealed a rich layer of microbial cells on the skin surface26, but

ashumpbackwhales regularly undergo skin sloughing throughboth

behavioural27 and physiological activities28 it is possible that the

robust Tenacibaculum and Psychrobacter cells may have some

means to maintain their residence on the whale skin and could

provide benefits to their host. Sequencing survey-based data also

demonstrate differences between the skin bacterial associates of

healthy and health-compromised humpbacks18,26. Additional data

on and study of the skinmicrobiomemight potentially improve our

ability to assess health status among free-rangingmarine mammals,

in particular cetaceans.

Gut microbiome
The gastrointestinal tract is home to an abundant community of

microorganisms. The gutmicrobiomeplays a significant role in food

breakdown and digestion, the production of essential vitamins and

minerals and regulationof the immunesystem3. In youngmammals, T
a
b
le

1
.
R
e
la
ti
v
e
a
b
u
n
d
a
n
c
e
o
f
b
a
c
te
ri
a
lp

h
y
la

c
o
m
p
a
re
d
b
e
tw

e
e
n
k
n
o
w
n
s
tu
d
ie
s
o
f
m
a
ri
n
e
m
a
m
m
a
ls
p
e
c
ie
s
a
n
d
a
n
a
to
m
ic
a
ls
it
e
s
in

h
e
a
lt
h
y
in
d
iv
id
u
a
ls

O
rd
e
r

C
e
ta
c
e
a

C
a
rn
iv
o
ra

S
ir
e
n
ia

S
u
b
-O

rd
e
r

M
y
s
ti
c
e
ti

O
d
o
n
to
c
e
ti

P
h
o
c
id
a
e

P
in
n
ip
e
d
ia

C
om

m
on

na
m
e

H
um

pb
ac
k
w
ha
le

B
ot
tle
no
se

do
lp
hi
n

Le
op
ar
d

se
al

S
ot
he
rn

el
ep
ha
nt

se
al

H
oo
de
d

se
al

H
ar
bo
ur

se
al

G
re
y

se
al

A
us
tr
al
ia
n
fu
r
se
al

A
us
tr
al
ia
n

se
a
lio
n

D
ug
on
g

M
an
at
ee

S
pe
ci
es

M
eg
ap
te
ra

no
ve
an
gl
ia
e

Tu
ri
so
ps

tr
un
ca
tu
s,

T.
ad
un
cu
s,

hy
br
id
A

T.
tr
un
ca
tu
s

H
yd
ru
rg
a

le
pt
on
yx

M
ir
ou
ng
a
le
on
in
a

C
ys
to
ph
or
a

cr
is
ta
ta

Ph
oc
a

vi
tu
lin
a

H
al
ic
ho
er
us

gr
yp
us

A
rc
to
ce
ph
al
us

pu
si
llu
s
do
ri
fe
ru
s

N
eo
ph
oc
a

ci
ne
ra

D
ug
on
g

du
go
ng

Tr
ic
he
ch
us

m
an
at
us

la
tir
os
tr
is

A
ge

gr
ou
p

A
du
lt

C
al
f

A
du
lt
an
d

S
ub
-a
du
lt

N
R

A
du
lt

A
du
lt
an
d

su
b-
ad
ul
t

Pu
p

N
R

N
R

N
R

9
m

pu
p

6
m

pu
p

2
m

pu
p

N
R

A
du
lt

A
du
lt

S
ub
-a
du
lt

C
al
f

S
am

pl
e

S
ki
n

S
ki
n

B
lo
w

B
lo
w

Fa
ec
es

Fa
ec
es

Fa
ec
es

C
ol
on

C
ol
on

C
ol
on

Fa
ec
es

Fa
ec
es

Fa
ec
es

Fa
ec
es

Fa
ec
es

Fa
ec
es

Fa
ec
es

Fa
ec
es

B
ac
te
ri
al

ph
yl
a
(%

of

co
m
m
un
ity
)

Fi
rm

ic
ut
es

1
<1

1
5

44
43

18
22

50
76

83
87

83
80

83
79

79
71

B
ac
te
ro
id
et
es

40
63

1
34

8
21

14
68

49
24

10
6

4
2

15
17

19
26

Pr
ot
eo
ba
ct
er
ia

60
36

50
60

31
15

5
9

0
0

2
<1

4
8

<1
<1

<1
<1

Fu
so
ba
ct
er
ia

<1
<1

1
<1

13
20

62
1

<1
<1

<1
<1

<1
<1

0
<1

<1
<1

N
um

be
r
of
in
di
vi
du
al
s

51
6

24
4

12
18

6
9

1
1

4
4

4
1

1
18

11
7

M
et
ho
do
lo
gy

P
P

P
C
L

P
P

P
C
L

C
L

C
L

P
P

P
M

C
L

P
P

P

R
ef
er
en
ce

1
9

1
9

1
9

2
0

7
7

7
2
1

2
1

2
1

2
2

2
2

2
2

2
3

2
4

2
5

2
5

2
5

D
at
a
su
m
m
ar
is
ed

fo
r
th
e
do
m
in
an
tb
ac
te
ri
al
ph
yl
a
ac
ro
ss

sp
ec
ie
s
an
d
an
at
om

ic
al
si
te
s.
Ta
bl
e
da
ta
ar
e
as

fo
llo
w
s:
no
tr
ec
or
de
d
(N
R
);
m
on
th
(m
);
cl
on
e
lib
ra
ri
es

(C
L)
;p
yr
os
eq
ue
nc
in
g
(P
);
m
et
ag
en
om

ic
se
qu
en
ci
ng

(M
).

A
H
yb
ri
d
bo
tt
le
no
se

do
lp
hi
n
re
fe
rs
to
in
di
vi
du
al
s
si
re
d
by

T.
tr
un
ca
tu
s
to
T.
ad
un
cu
s
fe
m
al
es

bo
rn

in
ca
pt
iv
ity
.

In Focus

MICROBIOLOGY AUSTRALIA * MARCH 2015 9



the gutmicrobiome is required for full development of the immune

system and maturation of the gut29,30. Studies of the complete gut

microbiome of marine mammals include leopard seals (Hydrurga

leptonyx), southern elephant seals (Mirounga leonine), grey seals

(Halichoerus grypus), hooded seals (Cystophora cristata), harbor

seals (Phoca vitulina), Australian fur seals (Arctocephalus pusillus

doriferus), Australian sea lions (Neophoca cinerea), Florida mana-

tees (Trichecus manatus latirostris) and dugongs (Dugong du-

gong). Across all these species the gut microbiome is composed

largely of Firmicutes, Bacteroidetes and Proteobacteria (Table 1).

Diet and age have been identified as factors that shape the com-

position of the gut microbiome7,25.

Amongst the seals, the gut microbiome of pinnipeds has a greater

abundance of the phylum Firmicutes compared with phocids

(Table 1). A ‘core’ group of microorganisms including the genera

Ilyobacter, Psychrilyobacter, Fusobacterium, Bacteroides, Subdo-

lingranulum, Sporobacter, Sutterella,Weisella, Anaerococcus and

Campylobacterhavebeenobservedwithinphocid seals7,21,22whilst

their herbivorous relatives, within the order Sirenia, shared mem-

bers from the order Clostridiales, including the genera Clostridium

and Ruminococcus24,25,31. The presence of shared bacterial oper-

ational taxonomic units (OTUs) in multiple hosts from different

studies highlights the strong phylogenetic influence on microbial

assembly.

Respiratory microbiome
Respiratory illnesses such as pneumonia are a major cause of

mortality in both wild and captivemarinemammals32. The cetacean

upper respiratory tract terminates in a blowhole, positioned at the

top of the head. This feature is a unique adaptation to life in the

marine environment, and allows airways to be effectively sealed off

from seawater. Upon surfacing, cetaceans forcefully exhale and in

the process eject a substance termed blow (also called condensed

respiratory vapor or exhaled breath condensate). This material has

been shown toharbour potential pathogens inwhales33 andhas also

been used to characterise the normal respiratory-associated micro-

biome residing in the upper respiratory tract of bottlenose dol-

phins19,20 (see collection methods in Figure 1). Members of the

bacterial genera Plesiomonas, Aeromonas, Escherichia, Clostridi-

um and Pseudomonas, Burkholdaria, Mycobacterium, Haemo-

phylis, Streptococcus and Staphylococcus (including multiple

resistant Staphylococcus aureus) have been detected in both

sick/dead34 and healthy, free-ranging cetaceans20,33,35.

Blow samples from both free-ranging Tursiops truncatus and

captive T. aduncus and T. truncatus were dominated by three

novel dolphin associated clades (termed DAC 1, 2 and 3) within

the Cardiobacteraceae lineage of the Gammaproteobacteria19,20.

The Cardiobacteraceae are facultative anaerobic, Gram-negative

rod-shaped cells, members of which form part of the commensal

microbiome of humans, and whose growth is enhanced by the

presence of carbon dioxide36, which occurs in high abundances at

the termination of the respiratory tract. Representatives from each

of DAC 1, 2, and 3 have been present in every bottlenose dolphin

surveyed thus far, although themajority of sequences are associated

with DAC 3, indicating this is likely a ubiquitous and critical com-

ponent of the dolphin respiratory system. Other ‘core’ taxa asso-

ciated with the dolphin respiratory microbial community appear

to include the Arcobacter, Hydrogenimonaceae, Halotalea, Aqui-

marina, Helococcus, Mycetocola, Methylococcus and Marinimi-

crobium19. Temporal analysis of captive dolphins suggests

community composition in healthy animals is quite stable

and that individual dolphins harbour consistently unique microbial

communities19.

Sampling techniques
Sampling of material for microbiological analysis from marine

mammals is logistically challenging (reviewed by Hunt et al.37),

hence themajority of information onmicrobial disease comes from

captiveor strandedanimals that arenotnecessarily representativeof

(a)

(b)

Figure 1. Exhaled ‘blow’ samples provide access to respiratory
microbiome, host DNA, hormones and associated metabolites.
Bottlenose dolphins can be trained to exhale on demand allowing
collections to be made routinely as shown here by Jillian Wisse from
the National Aquarium in Baltimore, Maryland, USA in captive dolphins
(a) and Dr Ewa Krzyszczyk, collecting samples from wild bottlenose
dolphins that visit a beach in Shark Bay, WA, Australia (b). Photo credit
monkeymiadolphins.org.
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the greater wild population. However, current sampling methods

(see examples in Figures 1 and 2) still provide considerable insight

into the microbiome of marine mammals. Capture by sedation or

restraint has been employed on smaller species such as seals and

dolphins7,38,39 and has recently been used for some larger whales40.

However, there are few opportunities to sample using these meth-

ods. It is increasingly common to use biopsy darts for collection of

skin and blubber samples for genetic and, now, microbiological

studies18,41. Permissions for biopsy sampling can be challenging for

some species ofmarinemammals, and repeated samplings areoften

not possible for the same individuals. In order to increase existing

data on the marine mammal microbiome, logistically feasible, non-

or minimally-invasive sampling protocols that are easily reproduc-

ible and provide biological material suitable for a range of studies

are necessary. For example, respiratory blow can be used to

examine host DNA42 and hormone levels43,44 as well as respiratory

associated microorganisms19,33,37, while non-invasively collected

fecal samples can be used to study host DNA45, prey items46 and

the gut microbiome22,23.

Future research
It appears likely that there are deep branching clades of bacteria

that are uniquely associated with marine mammals and have been

conserved throughout the evolution of their hosts. Many bacterial

sequences obtained from marine mammal studies have close rela-

tives that originate from other marine mammal species. This has

significant implications for the transmission of disease amongst

these hosts. As they are usually highly social animals, there are

numerous opportunities for the transfer of microorganisms

between individuals47. Diseases inmarinemammals have also been

shown tohave their roots inothermammals, includingdogs48,49 and

humans50. In many cases where disease has caused significant

mortality in wild marine mammals, it has been linked to viruses,

includingmorbillivirus, phocine distemper and influenza virus51–55.

Despite these links being made there is really very little known

regarding the ecological role of viruses in marine mammal hosts.

Further investigations into the factors responsible for shaping the

marine mammal microbiome need to be made. Designing studies

that control for host variation will allow us to make headway in our

understanding of disease manifestation. Studies that focus on the

functionality of themicrobiomewill reveal the interactions between

host and the microbial community23,56. In human subjects, similar

target investigations have allowed for the development of novel

metabolites to treat and prevent disease57. Unlike humans, howev-

er, to access adequatebiologicalmaterial, stridesneed tobe taken to

develop innovative andnon-invasive techniques for the collectionof

relevant samples from wild populations.
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