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Scientists George P Smith and Gregory Winter were

recently awarded half of the 2018 Nobel Prize for

Chemistry for developing a technology to display exoge-

nouspeptidesandproteinson the surfaceofbacteriophage.

‘Phage display’ has revolutionised the development of

monoclonal antibodies, allowing fully human-derived

antibodies to be isolated from large antibody libraries. It

has been used for the discovery ofmany blockbuster drugs,

including Humira (adalimumab), the highest selling

drug yearly since 2012, with US$18.4b in sales globally in

20171. Phage display can be used to isolate antibodies to

almost any antigen for a wide range of applications includ-

ing clinical use (for cancer, inflammatory conditions and

infectious diseases), diagnostic use or as research tools.

The technology is accessible to any laboratory equipped

for molecular biology and bacteria culture.

Displaying exogenous peptides and proteins

on bacteriophage
Phage display technology was first demonstrated by Smith in 1985,

who showed that DNA encoding peptides could be inserted

into the bacteriophage gene III resulting in the expression and

display of the corresponding peptides on the surface of the

virion as a fusion to the coat protein pIII2. Winter then showed

that this technology could be used to display antibody fragments

on the surface of bacteriophage3. His group also showed that

highly specific antibodies could be fished out of large libraries of

antibody gene sequences cloned into phage expression vectors4,5.

This now allowed the isolation of fully human antibodies, from

cloned human antibody gene repertoires, reducing the impact

of immunogenicity of mouse-derived therapeutic antibodies.

The bacteriophage biology that allows the display of peptides and

proteins is well reviewed by Russel et al.6. The most commonly

used phage display system uses phagemid vectors, where the

antibody-pIII gene fusion is cloned into a bacterial expression

vector containing a periplasmic leader sequence, an ampicillin

resistance gene and an f1 viral origin of replication. When the

phagemid is transformed into Escherichia coli, and grown in the

presence of ampicillin and M13-derived filamentous helper phage

(usually M13K07), the antibody-pIII fusion protein is expressed

and incorporated into the newly synthesised phage particles, and

the phagemid is replicated as single-stranded DNA and preferen-

tially packaged into the particle (Figure 1). Phage particles are

released into the culture media and are purified by precipitation

with high salt and polyethylene glycol.

Phage display libraries and biopanning
Phageantibody librariescaneitherbe ‘naïve’or ‘immunised’.Naïve

libraries are usually human derived, and are created by collecting

peripheral blood samples from a large group of healthy donors

from a general population, with no bias towards any particular

disease or condition. Naïve libraries can be used indefinitely to

isolate antibodies to almost any target presented to the library.

For this reason, naïve libraries are also termed ‘single-pot’ libraries

since the same library can be used for any antigen7. Immunised

libraries are focussed on the isolation of particular antibodies, with

blood samples collected from individuals with a defined condition

or from mice immunised with an antigen-of-interest8. Immunised

libraries increase the likelihood of obtaining highly specific and

high affinity antibodies, but also limits their use towards a single

antigen.

The process of isolating specific antibodies from a phage antibody

library is termed ‘biopanning’, and is summarised in Figure 2.

Biopanning involves incubating the library of phage particles with

immobilised antigen, washing away non-binding phage, and then

eluting the bound phage using a buffer that breaks the antibody-

antigen interaction. After enriching the library for binding phage,

individual clones can be isolated, characterised and further devel-

oped as either laboratory tools, or as commercial diagnostic and

therapeutic antibodies.

Therapeutic antibodies isolated by phage display
As of December, 2018, there were 82 antibodies approved in the

US and/or EU for therapeutic use in humans, and 10 of these
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were isolated using phage display9–12 (Table 1). The majority

of therapeutic antibodies target endogenous antigens such as

proteins involved in the inflammatory response, or cell-surface or

circulating proteins overexpressed in cancers.

Phage-derived antibodies against infectious

agents
Therapeutic antibodies can also target infectious agents, including

bacteria and viruses; examples include bezlotoxumab, which tar-

gets the B toxin of Clostridium difficile, obiltoxaximab and rax-

ibacumab, which target the anthrax toxin, and palivizumab, which

targets the F protein of respiratory syncytial virus. These are

currently the only antibodies approved for therapy against infec-

tious agents, and only raxibacumab was isolated using phage

display. The others were isolated from mice using traditional

hybridoma technology followed by humanisation, or using trans-

genic mice with humanised immune repertoires.

However, phage display, using immunised human antibody librar-

ies created from individuals who have survived viral infections or

from vaccinated individuals, offers a unique advantage for the

isolation of neutralising antibodies to infectious agents. Antibodies

have been isolated using such techniques from several viruses

including Enterovirus 7114, Ebola virus15, HIV16, West Nile Virus17

Figure 2. Summary of the biopanning process. The phage particles are depicted in blue with the scFv-p3 fusion protein on their tips. (1) The
phage particles displaying a library of scFv is incubated with immobilised antigen (depicted in red), which could be purified proteins, or
whole cells or viruses. (2) The surface is washed to remove any non-binding phage. (3) Bound phage are eluted using a low pH, high pH
or high salt buffer. (4) The eluted phage are infected into Escherichia coli to amplify these phage, enriching the library for specific binders.
This process is then repeated with the newly amplified, enriched pool 3–5 times with increasing stringency at step 2 to further enrich the library for
strong binders.

Figure 1. Left: A phagemid cloning vector containing an f1 origin of replication (f1 ori), and antibody variable region genes (Heavy chain (orange)
and Light chain (blue)), assembled as a single chain variable fragment (scFv), cloned in frame with the gene for the bacteriophage p3 coat protein
(green). Right: A bacteriophage particle containing a phagemid vector inside the particle, and the scFv antibody fragment displayed on its surface
as a fusion to the p3 protein.
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and Rabies virus18. Neutralising antibodies can also be isolated

from naïve human libraries using phage display. m102.4 antibody

neutralises Hendra and Nipah viruses, and was isolated by panning

a naïve library against the G-protein of Hendra virus19. This anti-

body has recently completed Phase I clinical trials in Australia20 and

has been used as passive immunotherapy in several individuals

exposed to Hendra virus21.

Biopanning strategies for isolation of antibodies to microbial tar-

gets requires a source of antigen for incubation with the phage

library. The antigen can be a highly purified preparation of the

target, for example viral proteins22–24or purified bacterial tox-

ins25,26, or crude preparations such as whole bacterial cells27,28 or

virus particles29,30.

Advantages of phage display
Phage display offers several advantages over mouse immunisation

strategies for antibody discovery, especially for targets that are

either toxic or non-immunogenic in a mouse host, or where

precision over epitope targeting is required31. Guidance towards

particular epitopes can be incorporated into the biopanning strat-

egy, by competing with a ligand, or alternating between mouse

and human equivalent antigens, or depleting the library to binders

that are cross-reactive to similar antigens. For example, antibodies

specific for each of the four serotypes of Dengue virus (DENV)

NS1 were isolated from a human naïve phage library32. Serotype

specificity was achieved by first exposing the library to the other

three DENV NS1 serotypes to deplete cross-reactive binders.

Such antibodies may be useful in serotyping assays.

Phage display is a simple but powerful tool for antibody discovery,

either for therapeuticuseor for research tools. It is accessible to any

laboratory equipped for standard culturing andmolecular biology.

Libraries can be created in-house, obtained commercially (Source

Bioscience, Creative Biolabs) or shared from other researchers

throughmaterial transfer agreements.Within Australia, theNation-

al Biologics Facility (NBF) at the University of Queensland offers

phage display services and access to their naïve human library, and

Table 1. FDA approved therapeutic antibodies isolated using phage display technology. Information was obtained from the ImMunoGeneTics
antibody database (IMGT/mAb-DB)11,13, and the numbers following each drug name indicate the IMGT database entry number.

Non-proprietary
name

Trade name Library type Target Indication Year approved
(FDA)

Adalimumab
(IMGT-165)

Humira Human naı̈ve TNF-a Immune/
inflammatory
diseases

2002

Ranibizumab
(IMGT-84)

Lucentis Mutagenic library of
bevacizumab

VEGF-A Immune/
inflammatory
diseases

2006

Belimumab
(IMGT-266)

Benlysta Human naı̈ve B-lymphocyte
stimulator

Immune/
inflammatory
diseases

2011

Raxibacumab
(IMGT-260)

ABthrax Human naı̈ve Anthrax protective
antigen of Bacillus
anthracis

Infectious disease 2012

Ramucirumab
(IMGT-295)

Cyramza Human naı̈ve VEGFR-2 Oncology 2014

Necitumumab
(IMGT-294)

Portrazza Human naı̈ve EGFR Oncology 2015

Ixekizumab
(IMGT-380)

Taltz Mouse immunised IL-17A Immune/
inflammatory
diseases

2016

Atezolizumab
(IMGT-526)

Tecentriq Human naı̈ve PD-L1 Oncology 2016

Avelumab
(IMGT-512)

Bavencio Human naı̈ve PD-L1 Oncology 2017

Moxetumomab
pasudotox
(IMGT-198)

Lumoxiti Mutagenic library of
mouse antibody

CD22 Oncology 2018
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has experience in isolating antibodies against infectious targets

including Dengue virus32 and the malaria parasite33. Isolation of

viral neutralising antibodies using phage display of libraries gen-

erated from immunised or recovered patients is an emerging field

in infectious disease therapy.
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