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A rise in antibacterial drug resistance comes at a timewhen

our once reliable sources of antibacterial natural products,

bacteriaandfungi,are failingus.Thesearchfornewdrugsto

fight pathogens has led to a range of innovative approaches

and includes screening organisms which have developed

evolutionary adaptions to prevent bacterial attack. The

discovery of antibacterial phytochemicals from plants can

be achieved using an activity-guided platform involving

biological and chemical pre-screening, compound isola-

tion, structure elucidation, and thedirect testingof isolated

compounds. Challenges include the clean isolation of nat-

ural products, avoiding the rediscovery of known com-

pounds, toxicity, and poor levels of activity.

For a good part of the 20th century, humans had the upper hand

against bacterial pathogens thanks to the pioneering work of

Alexander Fleming, René Dubos and Selman Waksman et al. who

demonstrated the value of mining antibacterial natural products

from bacteria and fungi. For a few decades this approach (which

yielded the likes of penicillin, streptomycin and tetracycline)

seemed to be an impenetrable fortress against bacterial pathogens,

until the walls began to strain under the force of growing antimi-

crobial resistance and a dearth of new antibiotic classes1. The ‘old’

approach eventually failed to produce significantly new clinical

agents against thebackgroundofknowncompounds1. Researchers

have responded in a range of novel ways: running large compound

libraries through high throughput screenings2, mining the natural

products in previously unculturable organisms3, screening the che-

micals hidden away on the shelves of chemistry labs4, disarming

bacteria of their virulence factors5, and developing phage therapies6;

each approach with its merits and limitations. Another approach is

screening botanical natural products.

The plant world as a whole is estimated to produce over 100 000

secondary metabolites with lowmolecular mass, generally derived

from isoprenoid, phenylpropanoid, alkaloid and fatty acid or poly-

ketide pathways7. While plants and animals have some common

antibacterial defences such as apoptosis of infected tissue, antibac-

terial peptides (purothionins from Triticum aestivum8 are a note-

worthy plant-based example) and the targeted exploitation of

reactive oxygen species, they do not produce antibodies, relying

instead on a limited number of receptors to recognize pathogens

along with a diverse armoury of small molecules with antibacterial

activity9. Compounds with known specific antibacterial targets are

not common in plants, although there are examples such as

coumarins with comparable action to the DNA-gyrase inhibitor

novobiocin9. While activity is usually weak, it is possible that plants

target virulence rather than growth or that relatively weak antibac-

terial agents work in synergy with each other to create potent

activity as seen with the antibacterial compound berberine from

Berberis fremontii together with the multi drug resistance (MDR)

pump inhibitor 5’-methoxyhydnocarpin9,10.

Important phytochemical groups include phenolics and polyphe-

nols, quinones, coumarins, flavonoids, terpenoids and alkaloids11

(Figure 1). Phenolics and polyphenols include the simple phenols,

phenolic acids and tannins. Antibacterial examples are found in the

tea plant Camellia sinensis and include gallic acid, a phenolic acid

which disrupts cell membranes12,13, and the tannin tannic acid

which reduces Staphylococcus aureus biofilm formation14. A rep-

resentativeof thequinones is juglone found in theblackwalnut tree

Juglans nigra15, while the coumarins include osthole found in

Arracacia tolucensis var. multifida16. Flavonoids include myrice-

tin, found in the sweet potato plant Ipomoea batatas and which

appears to affect protein synthesis17,18.
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Terpenoids are common phytochemicals based on the isoprene

structure and include terpinen-4-ol, an antibacterial terpene

found abundantly in Melaleuca alternifolia tea tree oil19, which

evidence suggests leads to damage to the cell membrane and loss

of cytoplasmic material20. Alkaloids are another common phy-

tochemical group and include berberine (previously discussed)

found in Coptis chinensis and Berberis fremontii. The mode of

action of berberine may be through binding with double helical

DNA21 and/or the inhibition of the bacterial division protein

FtsZ22.

There are many ways to decipher a plant’s defences to find these

antibacterial small molecules and these are accessible to a micro-

biologist who has support from a multidisciplinary team that

includes a chemist and botanist. A simple schema developed in

our lab is shown inFigure2 and involvesplant collection, secondary

An�bacterial phytochemicals

terpinen-4-ol

juglone

gallic acid

tannic acid

osthole

myrice�n

berberine

Terpenoids. Compounds based on 
the isoprene structure, with or 
without addi�onal elements. 

Quinones. Cyclic compounds with 
two ketone subs�tuents and two 
unsatura�ons.

isoprene

Phenols & phenolic acids. 
Hydroxylated compounds based 
on a single aroma�c ring.

Tannins. Compounds with mul�ple aroma�c rings and phenol 
groups.

Coumarins. Structures which 
contain a fused benzene and α-
pyrone ring, o�en highly 
oxygenated.

Flavanoids. 4-Benzopyranones 
containing an aryl subs�tuent,
o�en highly oxygenated.

Alkaloids. Naturally occurring 
nitrogenous compounds where 
the nitrogen is usually basic.OOH

Figure 1. Examples of antibacterial phytochemicals and the chemical classes to which they belong.

Post isolation
Characterisation of new compounds generally requires specialist knowledge and tools from a chemist and includes the use of NMR and/or crystallography. Further studies

on highly active novel compounds may include mechanism of action and cytotoxicity assays.  

Antibacterial 
pre-screening
Extract is applied to blank 

disks for a disk diffusion 

assay on a range of target 

organisms. 

Dereplication
GCMS analysis 

assists in 

identifying if an 

extract is rich in 

known volatile 

antimicrobial 

compounds by 

matching 

spectra and 

retention times 

against 

databases.

TLC bioautography 
Extract is separated into 

components using a thin 

layer chromatography 

(TLC) plate and 

overlayed with bacteria-

seeded media to identify 

active components.

Isolation
Flash chromatography is 

a relatively simple and 

accessible method for 

compound isolation, 

although prep-HPLC 

provides better 

separation. To ensure the 

correct fractions are 

further purified and 

characterised, they are 

re-tested using TLC 

bioautography. 

Minimum inhibition 
concentrations
Run on isolated compounds, 

MICs can be undertaken by 

adapting the CLSI methods. 

Generally, starting 

concentrations need to be 

relatively low and DMSO is 

often included to improve 

solubility during assays.

Collection & extraction
Plants are collected and 

secondary metabolites 

extracted by soaking 

dried (or fresh) plant 

material in a solvent 

(e.g., methanol) for 

around 24 h. The extract 

is filtered and solvent 

evaporated. 

An�bacterial phytochemical discovery

Figure 2. Schema for discovering antibacterial phytochemicals.
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metabolite extraction, antimicrobial disk diffusion screen (adapted

from the EUCAST23 method), GC-MS analysis coupled with data-

bases (e.g. NIST Mass Spectral Libraries) for dereplication, TLC

bioautography24,25, compound isolation by flash chromatography

(or prep-HPLC) guided by testing fractions by TLC bioautography,

elucidating new compound structures by NMR and/or crystallog-

raphy and undertakingMICs on isolated compounds (adapting the

CLSI methods26). Additionally, screening phytochemicals against

specific virulence factors could uncover a trove of treasures, but

there are diverse targets5 and each target requires a suitable assay:

ultimately lots of work whichmay result in few if any hits. Inclusion

in a compound library for high throughput screening is a possible

solution. If good activity is seen during crude extract screening but

is poor in the isolated compounds, combinations of compounds

suspected to potentiate each other can be tested in a checkerboard

assay27.

While the potential of antimicrobial phytochemicals is clear,

there is a dearth of examples that have made it into the clinic.

Many reasons for this exist including the differences in human

and plant biology and physiology giving rise to toxicity con-

cerns. An isolated compound with promising MIC activity needs

to demonstrate low toxicity with preliminary tests such as

in vitro cytotoxicity assays28 presenting a hurdle. Other factors

for the lack of plant-based antibacterial agents include plants

making diverse antimicrobial compounds but each with rela-

tively poor activity9, and their production of a range of struc-

turally similar compounds making isolation difficult and

resource intensive. Compounding these problems, often the

researcher spends time and resources to simply discover a

known compound.

Attacking drug resistant bacteria from multiple fronts gives us the

best chance for success. Screening phytochemicals as one of those

approaches makes sense given the reliance of flora on secondary

metabolites for antibacterial protection, and the incredible diver-

sity of structures present across an enormous number of plant

species. While plants have thus far generated few clinical candi-

dates, successes in other anti-infective classes such as that of the

antimalarial drug artemisinin from Artemisia annua29 allow for

optimism. In Australia, only a limited number of researchers have

looked at our unique flora as a potential solution and research has

tended to focus on a limited number of genera, notably, Acacia,

Melaleuca, Eucalyptus and Eremophila, leaving most species still

to be screened.
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The presence of the bacterial genera Corynebacterium and

Dolosigranulum has consistently been associated with a

healthy upper respiratory tract (URT). Commonly occur-

ring together in the nasopharynx of healthy children, the

role of these commensal organisms in nasopharyngeal

health is unknown, as few studies have sought to determine

whether they actively contribute to maintaining a healthy

state. We recently identified Corynebacterium pseudo-

diphtheriticum and Dolosigranulum pigrum as the major

nasopharyngeal species associatedwith resistance to recur-

rent ear infections, via 16S rRNA gene sequencing and

metagenomics. Using in vitro bacterial interference assays,

we observed a reduction in the growth ofMoraxella catar-

rhalis – one of the three major otopathogens – in the

presence of C. pseudodiphtheriticum. Further in vitro and

in vivo studies of the interactions between commensal

C.pseudodiphtheriticumandD.pigrumstrains,URTpatho-

gens, and the human host will help to clarify their role in
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