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Abstract. The adaptive immune system, regulated by CD4 T cells, is essential for control of many viral infections. Endemic

coronavirus infectionsgenerally occur asshort-termupper respiratory tract infectionswhich inmanycasesappear tobecleared

beforeadaptive immunity is fully involved, sinceadaptive immunity takesapproximately 1.5–2weeks to rampup the response to

a primary infection, or approximately 1week for a recurrent infection. However, the adaptive immune response to SARS-CoV-2

infection will be critical to full recovery with minimal long-lasting effects, and to either prevention of recurrence of infection or at

least reduced severity of symptoms. The detailed kinetics of this infection versus the dynamics of the immune response,

including in vaccinated individuals, will largely determine these outcomes.
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Introduction

SARS-CoV-2 is the third highly pathogenic coronavirus zoonosis

from bats, which have evolved interferon and adaptive immune

responses that allow many such viruses to co-exist without disease,

but still permitting transmission1. In humans, transmission of SARS-

CoV-2 to other individuals will typically occur at the peak of viral

load in the first 5 days of symptoms2.

Innate immunity

The earliest mechanism combating an acute, short-lived viral infec-

tion of an epithelial barrier, such as with SARS-CoV-2, involves

type-1 and type-III interferons (IFN-I and IFN-l)3, prior to the

adaptive immune response. Therefore, the first phase of the current

pandemic is likely due to sufficient evasion of the early IFN

response. Amongst patients with severe life-threatening pneumonia,

3% have inborn genetic errors in the IFN-I response pathway4, and

13% have autoantibodies that prevent IFN-I signalling5, much

higher rates than in the general population. Also, it has been reported

that COVID-19 patients with severe disease have lower6, or delayed

IFN production7,8, consistent with evidence that exogenous IFN can

limit coronavirus replication in vitro, and that these viruses have

non-structural proteins that help evade and antagonise innate

immunity9,10.

Highly specialised circulating plasmacytoid dendritic cells

(PDCs) also sense dsRNA and produce large amounts of exogenous
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IFN-Is11. Importantly, numerically, these PDC’s decrease with

age12, which may add to the reasons that older patients do worse

after SARS-CoV-2 infection than paediatric and adolescent cases13,

who can be PCR negative in the same household as PCR+ adults14.

Overall, later adaptive immune responses could become more

critical in older patients.

Primary human immune responses to
viral infection

Neutralising and opsonising antibodies will likely be extremely

important to finally clear all virus in older adults. Neutralising

antibody (nAb) responses to viral infections are regarded as the

main protective mechanism of effective vaccines15, and generally

require a concomitant CD4 T-cell response to initiate germinal

centres where they help B cells increase the avidity of their anti-

bodies by somatic hypermutation and switch immunoglobulin to

important sub-classes of IgG16. CD4 T cells also help expanded

specific B cell clones to generate long-term memory B cells, and are

believed to be important also for CD8 T-cell responses17.

During a primary response, naïve B cells are multipotent with

different fate pathways, including: (1) short-term proliferating IgM

and IgG antibody-secreting plasmablasts in the circulation and the

spleen that are independent of CD4 T-cell help; (2) longer lived

plasma cells, generated via germinal centre reactions with CD4

T-cell help, that can mature into bone marrow-resident, non-prolif-

erating cells that produce antibody in large amounts; and (3) memory

B cells from germinal centres that can rapidly become antibody-

secreting upon re-encounter with antigen in secondary lymphoid

tissues (reviewed in Akkaya et al.18). Important variables include:

B cell receptor affinity; antigen structural pattern, especially valency;

signalling via TLR’s, especially TLR7 and TLR9 for viral antigens;

activation of CD4T cellswith expression of CD40, IL-4 and IL-21; and

generation of germinal centres18. Different B cell fates are mediated by

differential expressionof transcription factors,Bcl6 ingerminal centreB

cells,Blimp inplasmacells, and the level of IRF4expression in response

to the affinity and strength of the B cell receptor signalling18,19.

Empirically, all these different fate decisions can be effective, such as

the examples of immunity resulting from: T-cell-independent responses

to multivalent pneumococcal vaccine without generating memory B

cells20; nAb responses, with minimal somatic hypermutation, to highly

multivalent virus like particles of the HPV vaccine21; and T-cell-

associated lifelong nAb responses to measles infection and vaccinia

inoculation15.

Most studies of T cells during human acute viral infections have

begun after diagnosis, and exposure date is often unclear, but we

closely studied the immune response before and after inoculation of

healthy volunteers with vaccinia virus22. Typically, the draining

axillary lymph node was tender by days 7–8, the inoculation site was

edematous at days 9–11, antigen-specific CD4 T cells appeared in

the circulation at days 11–14 and serum nAb responses appeared

between days 14–2122, as later confirmed for antigen-specific CD8 T

cells23, and consistent with murine primary responses to influenza

infection24.

Overall, primary adaptive immune responses take longer than the

time course of a typical mildly symptomatic SARS-CoV-2 infection,

with 65% of such individuals reporting a return to usual health within a

median of 7 days from onset of symptoms25.

Secondary immune responses to viral
re-infection

By comparison, annual vaccination to influenza leads to enrichment

of circulating antigen-specific CD4 T cells at day 726, which is

4–5 days later than the peak and start of the decline of influenza viral

titres in human challenge studies27.

In murine influenza challenge models, large populations of

antigen-specific CD8 T cells present in the lungs are associated

with shortening the duration of peak viral load in lungs by about

2–3 days, compared to the viral load during the primary response28.

Antibody responses to SARS-CoV-2 infection

The kinetics of antibody responses to SARS-CoV-2 show that

most patients seroconvert with the appearance of specific IgG

between day 14 and day 21, peaking around day 3029, but IgG

levels thereafter decrease in serum by about half in the

ensuing month30. Numerous studies have found nAb in the vast

majority of COVID-19 patients, but there is a very wide range of

titres, with highest titres associated with severe symptoms29,31,32.

Acute SARS-CoV-2 infection is associated with a variable

increase in plasmablasts in the circulation33–35, which is resolved

during convalescence35. These relatively immature B cells sponta-

neously secrete immunoglobulins independent of CD4 help, but may

be short-lived cells, lost soon after viral clearance18,35. Overall, the

early drop in antibody levels30 may be mainly due to resolution of

the acute plasmablast response.

However, around the time of antibody appearance, COVID-19

patients who go on to develop life-threatening pneumonia begin to

exhibit worsening symptoms2. This raises the question of whether

the immune response could also be unfavourable. It is possible that

high levels of opsonising antibodies enhance viral entry into cells

with Fc receptors, such as mucosal epithelial cells that transcytose

immunoglobulins to and from the lumen at intestinal sites, possibly

making the infection worse36. Gastrointestinal symptoms are very
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common37, and antibody dependent enhancement could be involved,

in addition to direct infection of ACE2+ enterocytes.

Therefore, it is imperative to better understand the role of B cells

and antibodies in SARS-CoV-2 infection, as well as vaccination,

including: the affinity of naïve B cells for epitopes in spike protein,

particularly the receptor binding domain (RBD); does SARS-CoV-2,

as an RNA virus, trigger TLR7 and TLR9 signalling in B cells; what

are the CD4 epitopes in spike and RBD to help B cells; numbers of

naïve CD4 T cells available to respond and form germinal centres;

and how much somatic hypermutation is actually required for the

most effective nAb. It has been reported that nAb to SARS-CoV-2

may not require a large number of mutations relative to germ-line

immunoglobulin gene sequences38. While two reports from autopsy

studies suggest a lack of germinal centres in fatal COVID-1939,40,

another study did not find abnormal lymph node architecture if

tissues with autolysis were stringently excluded41, so that the role of

germinal centres is unresolved.

What do we know from other coronavirus
infections?

A study from the Netherlands found that most children were

seropositive for antibodies to the nucleocapsid of NL63 by ages

3–642. However, detailed measurements of anti-NL63, or anti-229E

or anti-OC43 antibodies, using longitudinal serum samples from

adult males over 30 years, shows a pattern of boosted antibodies

typically every 1–3 years, presumed to be due to intermittent re-

infections, with waning of antibody levels between re-infections43.

It is also possible that, in these recurrent infections, viral muta-

tion in circulating strains might be as important as waning anti-

bodies, but this is unknown. In the case of HIV-1 infection, chronic

viral replication is partly enabled by escape mutants from nAb and

chronic germinal centre responses44. Therefore, newly arising mu-

tant SARS-CoV-2 strains that can escape nAb32 will be globally

important.

There have been few published studies of memory T cells specific

for endemic coronaviruses, and these have shown quite low levels of

IFN-g ELISPOT responses in PBMC, to spike proteins from NL63,

229E or OC4345, or to nucleocapsid from SARS-CoV-1 in survivors,

17 years after recovery46. Notably, these T-cell responses were

undetectable in approximately half of the patients studied, which

contrasts with the higher prevalence of specific antibodies.

T-cell responses in SARS-CoV-2 infection

Many studies have addressed the early dynamics of the T-cell

immune response to SARS-CoV-2 infection47,48. During the acute

infection, activated, proliferating T cells are readily detected by

either flow cytometry33–35 or single cell RNA sequencing49, as

previously well described for antigen-specific lymphocytes during

various other human acute viral infections22,23,50,51. Most experi-

mental studies of murine antiviral T cells have concentrated on the

acute cytotoxic CD8 T-cell response28, but eventually it was found

that a later germinal centre and nAb response was critical to full viral

clearance52.

Importantly, then, CD4 T-cells responses to SARS-CoV-2 anti-

gens were generally more prevalent in COVID-19 patients than CD8

responses47,48, although both CD4 and CD8 activated cells are found

in some but not all acute patients at day 734. Most studies have used

PBMC ELISPOT assays to quantify SARS-CoV-2 specific T cells,

but others have used the intracellular cytokine assay or the AIM

assay of upregulation of activation markers47,48, similar to our

original OX40 assay53, to ascribe responses to CD4 or CD8 T-cell

subsets. We have confirmed the presence of SARS-CoV-2 specific

CD4 T cells in recovered patients in the ADAPT Study at St

Vincent’s Hospital, Sydney, using the OX40 assay, but like other

studies, have found that about half of healthy non-COVD-19 con-

trols had responses to pools of peptides from the full SARS-CoV-2

spike protein sequence, presumably cross-reacting with endemic

coronaviruses54.

SARS-CoV-2 specific memory CD4 and CD8 T cells were still

present in recovered patients at 9 months after symptom onset in one

study55, and at 6-8 months in another study, with an apparent half-

life of only 3–5 months56.

We have also concentrated on proliferative CD4 T-cell responses

to the receptor binding domain (RBD) of the SARS-CoV-2 spike

protein, which we only found in COVID-19 patients and which were

highly correlated with the patients’ serum anti-spike IgG and IgM

antibodies and nAb. Proliferative CD4 T-cell responses will likely

allow rapid expansion of RBD-specific CD4 T cells in vivo, on re-

infection, or vaccination, which will help rapid expansion of RBD-

specific memory B cells and boost nAb levels. It has not yet been

reported whether the new vaccines induce long-term proliferative

memory CD4 T cells.

However, the T-cell response could also possibly be detrimental,

since many of the cytokines associated with acute respiratory

distress syndrome (ARDS) may involve T cells, particularly those

recruiting neutrophils to the lungs, including IL-17 produced by

Th17 CD4 T cells57. Infected alveolar macrophages may also

amplify damaging T-cell pro-inflammatory responses58, and it has

been speculated that development of highly activated cytotoxic

T cells may also cause damage by widespread killing of infected

epithelial cells in the lung59.

Recently, two early studies of real-world post-vaccine protection

in Israel60 and in healthcare workers (HCW) in the UK61 have
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reported that vaccine effectiveness was 51% and 72%, respectively.

The latter study concluded that HCW will still require PPE and

physical distancing, as well as regular testing for asymptomatic

infection.

Conclusions

There are many important questions that so far remain unanswered

including: (1) whether pre-existing cross-reactive antibodies or

T cells influence the outcome of infection; (2) whether, overall,

antibodies, T cells and inflammatory cytokines are beneficial or even

detrimental; (3) the longevity of natural and vaccinated immune

responses; (4) whether individuals with weaker responses are still

protected; and (5) whether SARS-CoV-2 mutant strains can evade

neutralising antibodies, and could T-cell immunity compensate?

Both short-term innate immunity and the later-to-develop adap-

tive immunity dictate outcomes to infection, and longer-term adap-

tive immunity in conjunction with vaccination, will determine

whether COVID-19 becomes a relatively benign seasonal illness.
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