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Abstract. Neisseria spp. are a transient low abundance member of the human microbiome. This species contains the very

well described pathogens, Neisseria gonorrhoeae and N. meningitidis. Recent advances in molecular typing have revealed

that this genus is more diverse than previously thought and that commensal species may have important roles in inhibiting

the growth the pathogens. This short review summates these new findings and examines the evidence that the relatively

under-reported Neisseria commensal species maybe beneficial to human health.
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In 1879 Albert Ludwig Neisser observed diplococci found within

neutrophils present in urethral exudates of men and women suffering

from gonorrhoea and gonorrhoeal conjunctivitis. This organism was

later named Neisseria gonorrhoeae and marks the first ever descrip-

tion of a member of the genus Neisseria1. The genus Neisseria

belongs to the family Neisseriaceae within the phylum b-Proteo-

bacteria2. Other genera of the family Neisseriaceae of medical

importance include Kingella and Eikinella2.

The Neisseria genus is larger and more
diverse than first thought

The Neisseria genus contains diverse species inhabiting mammals,

reptiles and environmental sites3. Members of the genus are Gram-

negative, generally diplococci. Some Neisseria species such as N.

weaveri, N. elongata and N. bacilliformis do not conform to the

general diplococcus morphology, instead existing as chains of bacilli

or filaments4. Other classical characteristics of the genus Neisseria

include lack of motility, absence of flagella, aerobic fermentation of

sugars and oxidase production. Neisseria speciation is continuously

being revised and so far there are 10 established species associated

with humans (Table 1) with a further seven recently identified from

a nasopharyngeal carriage study in an African population5. The

current robust phylogeny of this species has been developed by

applying multi-locus sequence typing (MLST)6,7. The MLST

scheme uses the single nucleotide polymorphisms in each gene to

create a unique sequence type (ST) for every isolate. STs can be

grouped into larger clusters based on their similarity to one another.

The schemes use different numbers of genes with the basic approach

using seven housekeeping genes, ribosomal MLST (rMLST) using

53 ribosomal genes8 and a core genome MLST (cgMLST) using

246 conserved loci9. This has resulted in the condensation of older

isolates classified as N. subflava biovar subflava, perflava, flava and

flavescens into a single species, N. subflava9. Isolates previously

termed N. sicca are now variants of N. mucosa9 and those previously

termed N. mucosa var heidelbergenisis are now called N. oralis10.

Genomic approaches have been more robust than matrix-assisted

laser desorption ionisation-time of flight mass spectroscopy

(MALDI-ToF) at discriminating these species due to their close

relatedness11. In the case of laboratory diagnostic identification,

whole genome sequencing is the best approach to identify an

unknown Neisseria sp.

Neisseria spp. that act as pathogens in the
human host

Neisseria spp. have multiple modes of interfacing with the human

host. N. gonorrhoeae is considered to be a true pathogen12 as it

elicits an inflammatory response upon urethral infection of the

human male and causes a delayed inflammatory response, pelvic

inflammatory disease, in women. Interestingly, although classified as

a pathogen it can asymptomatically colonise the oral mucosa and

anorectal sites that self-resolve over 4–12 months13. N. meningitidis,

the causative agent of invasive meningococcal disease (IMD), is

considered an opportunistic pathogen. Whereas N. gonorrhoeae is

highly clonal7, N. meningitidis has diversified into at least 11 clonal

complexes that are highly associated with the risk of IMD14. A much

wider array of genetic lineages are colonisers of the human host but

act as commensals as they are infrequently associated with

IMD. These two groups are broadly distinguished by the possession

of a capsule polysaccharide synthesis (cps) operon. Among many

virulence factors15, the possession of a capsule by N. meningitidis is
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a key factor enabling survival of IMD-causing bacteria within the

blood stream to cause bacteraemia and meningitis. This feature is

the basis of genogrouping isolates by quantitative real-time PCR in

meningococcal carriage studies. Isolates that are non-disease-

causing and disease-causing isolates are stratified by the presence

of a capsule null locus (cnl) and capsule transporter A (ctrA),

respectively16. Meningococcal carriage studies have shown that the

prevalence of nasopharyngeal carriage of the meningococcus ranges

from 10–30% dependent upon a variety of community and beha-

vioural factors14. However, since the incidence of IMD is much

lower than this, other factors are involved in the risk of progressing

to IMD after colonisation. This fulcrum rests on the virulence of the

isolate and the underlying health of the host17,18. Until recently,

N. meningitidis was not associated with urogenital disease and was

considered to be a transient asymptomatic coloniser of the urogenital

compartment. This concept was dramatically revised with the report

in 2017 of an outbreak of urogenital urethritis attributed to menin-

gococci closely related to an IMD outbreak clade19. A retrospective

review of published case reports of meningococcal disease has

uncovered consistent reporting of sporadic cases of horizontal

mother to child transmission in pregnancy resulting in rare cases

of sepsis, anorectal infection and conjunctivitis20.

Neisseria spp. that are low abundance,
transient commensals of the human host

In comparison to the two pathogenic species, the remaining eight

species are atypical infectious disease agents3, 21. Collectively they

Table 1. Summary of characteristics of human commensal Neisseria species.

Neisseria spp. Micro/macroscopic morphology Host Biotic relationship Site/niche Reference

N. meningitidis Gram-negative diplococcus Human Commensal and/or
pathogen

Nasopharynx
(commensal/pathogen)

19

Urethra

N. gonorrhoeae Gram-negative diplococcus Human Pathogen Mucous membranes of
nasopharynx, genital
mucosa, urethra,
conjunctiva, rectum

13

N. bacilliformis Gram-negative bacilli or filamentous rods Human (may not be
human exclusive)

Commensal Mucous membranes of
oral cavity

8,9

N. lactamica Gram-negative diplococcus Human Commensal Nasopharynx 9,39

Yellow pigment production, some strains
haemolytic on horse blood agar

N. mucosa Gram-negative diplococcus Human Commensal Nasopharynx, dental
plaque and buccal
mucosa

9

Most strains non-pigmented, some produce
grey to yellow pigment (formerly known as
N. sicca)

N. cinerea Gram-negative diplococcus Human Commensal Respiratory tract:
nasopharynx, sputum

9,40

Some strains produce yellow pigment in
colonies

Urogenital tract: vagina,
cervix, urethra and urine

Other sites: eyes, ears,
blood

N. elongata Gram-negative filamentous rods Human Commensal Nasopharynx, blood 9,24

N. oralis Gram-negative diplococcus, (may be
present in chains, formerly known as
N. mucosa var heidelbergensis)

Human Commensal Nasopharynx, blood 10

Gingival plaque

N. polysaccharea Gram-negative diplococcus Human Commensal Nasopharynx 9,41

N. subflava Gram-negative diplococcus Human Commensal Gingival crevice/upper
respiratory tract

9

Yellow colonies

Spontaneous agglutination in saline
(formerly known as N. subflava biovar
subflava,N. perflava,N. flava,N. flavescens)
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are sporadically associated with a wide variety of conditions usually

in immunocompromised patients21. Since they are not widely known

as infectious disease agents, it is also possible that the reports of their

involvement in these disease manifestations is under-reported. Nev-

ertheless, genomic comparisons of these commensal species with the

pathogenic N. meningitidis shows that they lack multiple virulence

determinants22 supporting the conclusion that they are naturally

commensal and act as opportunistic pathogens in a disregulated

host immune environment. Prevalence studies have typically exam-

ined pharyngeal carriage and have shown that all of these species are

transient low abundance (<2% abundance) members of the human

microbiome. N. lactamica has the highest prevalence of all species

and with the highest incidence in children under the age of 4 (14%)

before declining in young adults23. N. polysaccharea also showed a

similar distribution as N. lactamica but at a much lower incidence of

2%. In this study N. bergeri and N. subflava had very low prevalence

and showed no age-related variation in incidence. Co-colonisation

studies have not been performed recently, but an older study from the

1980s that used culture as the means of detection, found multiple

Neisseria spp. occurred in 57% of people while 41% of carriage was

with N. subflava alone24. The high prevalence of N. subflava appears

to be due to its role as a contributor to periodontal disease. Although

multiple Neisseria spp. are present in both healthy teeth and dental

caries samples, an increase in the abundance of N. subflava is a key

signal as the microbial community changes in composition to

become acid-secreting, resulting in tooth enamel erosion25.

The role of Neisseria spp. in the human
microbiome

Human microbiome studies have begun to unravel some relation-

ships of the Neisseria spp. within their relevant mucosal microbiome

communities. Unfortunately, Neisseria spp. are typically reported at

the genus level as variation in the 16S rRNA alone is insufficient to

speciate them. Nevertheless, some generalities can be gained from

the current literature. Numerous studies have shown that Neisseria

spp. are absent from normal flora in the vulvovaginal mucosal

surfaces of women26. This suggests that the isolation of any Neis-

seria spp. from this compartment should be investigated as a

potential pathogen related to an infection particularly urethritis3,21.

Commensal Neisseria spp. are transient, low abundance residents of

the rhinopharynx and oropharynx27 that are not associated with any

known disease-state28.

There are hints that there are complex interference patterns at

both intra- and inter-species levels that influence colonisation by

Neisseria spp. Many of these interactions have been examined

through the lens of preventing or interfering with colonisation by

the pathogens. Exposure to N. gonorrhoeae does not necessarily

result in human infection. In surveys of human disease, the risk of

contracting gonorrhoea has been linked to a syndrome termed

bacterial vaginosis, in which the microbiome has a reduced abun-

dance of Lactobacillus sp.29. Although co-culture of the two species

confirms Lactobacillus sp. will inhibit N. gonorrhoeae growth,

probiotic treatment of mice with Lactobacillus shows no efficacy

in mouse models of gonorrhoea infection30. Streptococcus pneumo-

niae has been shown to inhibit N. meningitidis using two mechan-

isms: the secretion of hydrogen peroxide31 and a neuraminidase32.

Inter-species antagonism is also a feature of the commensal Neis-

seria spp. against both N. gonorrhoeae and N. meningitidis.

N. cinerea and N. lactamica impair early colonisation steps and

reduce meningococcal invasion into host cells33,34 while N. mucosa

secretes a small molecule secondary metabolite that inhibits

N. gonorrhoeae35. However, all commensal Neisseria spp. could

kill N. gonorrhoeae through a DNA-dependent mechanism36. This

mechanism is dependent on the expression of type IV pili, which

enable the uptake of DNA into the bacterial cell. The DNA from the

commensal bacteria have a different methylation pattern and this

appears to poison the gonococcal and meningococcal bacteria33.

Direct synergism between Neisseria spp. and other species has not

been extensively reported. However, a recent innovative model of

meningococcal colonisation conducted by Audry et al.37 showed that

meningococcal colonisation of the human oropharyngeal site may

not elicit an immediate inflammatory response as the bacteria can be

trapped in the mucus layer, preventing invasion of the mucosal

epithelium. This state of homeostasis can be perturbed by

co-colonisation with other bacteria, and in this model, Streptococcus

mitis but not Moraxella catarrhalis triggered the escape of the

meningococcus from the mucus layer and invasion into the host

cells. S. mitis potentiated growth of the meningococcus by degrading

the mucins.

Future directions

In summary, the taxonomy of the genus Neisseria is continually

being redefined by modern molecular typing tools and the recent

observation that the diversity of this group remains largely unex-

plored. This genus contains species that are either pathogenic or

commensal with humans, whereas N. meningitidis contains clonal

complexes that are pathogenic or commensal. Since its discovery

142 years ago, the interest in this genus has been driven by the

medical interest in devising preventative measures against gonor-

rhoea and meningitis. Other members of this genus, such as

N. lactamica have been investigated as a probiotic intervention

strategy against IMD34, while the recent observation that commensal
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Neisseria spp. may kill N. gonorrhoeae via a DNA-dependent

mechanism has been recently patented (International Patent Appli-

cation No. PCT/US2015/048114). Future work is likely to focus on

whether commensal Neisseria spp. have a benefit to human health

and are necessary for development of a healthy immune system.
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