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Fluorescence lifetime imaging microscopy (FLIM): a 
non-traditional approach to study host-microbial symbioses 
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ABSTRACT 

Corals and their photosynthetic endosymbiotic algae (Symbiodiniaceae) produce a strong auto-
fluorescent signal that spans the visible to near-infrared (NIR) spectrum. However, this broad- 
spectrum emission hinders the use of fluorescence in situ hybridisation (FISH) for the study of 
bacterial heterogeneity within the different niches of corals and Symbiodiniaceae, because FISH 
fluorophores also fluoresce within the visible to NIR spectrum. A solution to this impediment is 
to use fluorescence lifetime imaging microscopy (FLIM). The ‘lifetime’ property of fluorophores is 
a feature that enables sample (e.g. coral/Symbiodiniaceae) autofluorescence to be distinguished 
from FISH-labelled bacteria. In this manner, the location of bacteria around and within 
Symbiodiniaceae can be quantified along with their identity and spatial distribution. Furthermore, 
the ‘lifetime’ of the host and associated microbe cellular autofluorescence can be analysed in terms 
of endogenous fluorophore composition (e.g. metabolic co-factors, aromatic amino acids) and 
serves as information for symbiotic versus parasitic host-microbe association.  
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Introduction 

Our understanding of microbes is largely based on classical phenotypic assays, advanced 
multi-omics, and optical microscopy methods. The discovery of genetically encoded 
fluorescent proteins (e.g. green fluorescent proteins), alongside advances in chemical 
fluorophore synthesis, has enabled exogenous incorporation of fluorescent molecules into 
a range of microbes, and development of fluorescence microscopy methods to visualise 
particular species within a complex biological system.1 However, fluorescence labelling 
and visualisation of multiple microbial species within a mixed community remains a 
challenge, because of difficulties in establishing pure cultures2 that are required for probe 
optimisation, and the presence of broad spectrum autofluorescence from different 
chemicals present in microbial consortia. In this review we explore how fluorescence 
in situ hybridisation (FISH) coupled with fluorescence lifetime imaging microscopy 
(FLIM) presents a unique opportunity to circumvent the latter technical hurdle in 
uncovering the in situ location and identity of bacteria in Symbiodiniaceae. 

Fluorescence microscopy in microbial studies 

FISH is a method that was first used to visualise bacteria in 19893 and it involves the 
hybridisation of fluorescently labelled oligonucleotides (~20 nucleotides) to the 16S 
rRNA or 23S rRNA in ribosomes, so that specific bacteria can be detected and their 
spatial location determined.1,4 The fluorophores commonly available for FISH exhibit 
excitation–emission properties that span the visible to near-infrared (NIR) spectrum. 
However, since this spectral range overlaps with the broad spectrum autofluorescence 
of samples such as cyanobacteria or algae,5 microbial biofilms,6 and coral or 
Symbiodiniaceae cells,7 selection of suitable FISH fluorophores to localise bacteria within 
these environments via conventional epifluorescence or confocal laser scanning micro-
scopy (CLSM) has proven difficult. Nonetheless, there is a strong interest in the use of 
fluorescence microscopy methods that can distinguish FISH fluorophores from sample 
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autofluorescence. In addition to FISH-based visualisation of 
microbes, fluorescent dyes have been used to directly count 
microbes in environmental samples,8 study microbial respira-
tion activity using redox dyes,9 determine proteins involved in 
peptidoglycan synthesis using synthetic fluorescently labelled 
D-amino acids,10 and evaluate oxidative stress using enzyma-
tically cleavable fluorophores.11 

Fluorescence lifetime imaging microscopy 

A fluorescence microscopy method that offers the opportunity 
to distinguish FISH fluorophore emission (and fluorescent 
dyes more broadly) from sample autofluorescence is fluores-
cence lifetime imaging microscopy (FLIM). FLIM is a method 
that measures the fluorescence lifetime of a fluorophore’s 
emission rather than its fluorescence intensity. The fluores-
cence lifetime of a fluorophore is defined as the time spent in 
the excited state upon absorption of a photon, before emitting 
the photon and returning to the ground state (Fig. 1a). FISH 
fluorophores typically exhibit a fluorescence lifetime on 
the order of nanoseconds, depending on their individual 
chemical structure and molecular environment,12 and in 
most cases this time is distinct from the fluorescence life-
times of autofluorescent chemicals in a host organism, for 
example, Symbiodiniaceae (Fig. 2a, c). Thus, FLIM offers the 
capacity to readily detect FISH-labelled microbes within 
Symbiodiniaceae autofluorescence (Fig. 2b), despite their 
significant spectral overlap. Additionally, the fluorescence 
lifetime of holobiont (the collection of a host and its associ-
ated microbiome) autofluorescent endogenous chemicals 
(e.g. metabolic co-enzymes, structural proteins, vitamins, 
pigments and amino acids) can be determined and analysed 
to inform on the different molecular environments that host 
FISH-labelled bacteria. In particular, moieties of chlorophyll 
a, phycobiliproteins, nicotinamide adenine dinucleotide 

(phosphate) (NAD(P)H), flavins, aromatic amino acids, por-
phyrins13 all contribute to the fluorescence lifetime recorded 
throughout a holobiont, and these signals can be used as a 
label-free record of host and/or symbiont physiology. 

FLIM imaging of FISH-labelled bacteria can be achieved 
using fluorescence (typically CLSM) microscopes and the 
time- or the frequency-domains (Fig. 1b, c). In the time- 
domain, the detection of fluorescence is coupled to the 
excitation source that is pulsed (one or two-photon) and a 
detection unit that can measure the arrival time of the 
emitted photons (e.g. via use of time-correlated single pho-
ton counting (TCSPC)). The successive photon arrival time 
within each FLIM image pixel is then represented in the form 
of a histogram and fitted to an exponential (or multi- 
exponential) that reports the characteristic fluorescence life-
time.12 In the frequency-domain, the excitation source is 
sinusoidally modulated and the detection unit measures the 
phase delay and change in amplitude that the fluorescent 
emission undergoes with respect to the excitation source 
(demodulation). Both time- and frequency-domain data can 
be transformed into a phasor representation (Fig. 1d) which 
is a fit free approach for lifetime analysis that facilitates 
multiple-component analysis within each pixel of a FLIM 
image.11 A representative phasor plot associated with 
Symbiodiniaceae and FISH labelled bacteria is shown in  
Fig. 2d. 

Use of FLIM in microbial studies 

So, what does this mean for microbiologists? Although FISH 
can enable taxonomic affiliation, quantification and localisa-
tion of probed microbial communities, distinguishing FISH 
probe fluorescence from host (e.g. Symbiodiniaceae) auto-
fluorescence can be provided by FLIM (Fig. 2). The in situ 
determination of physiological and chemical processes 
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Fig. 1. (a) Schematic of molecular 
fluorescence (Jablonski diagram). An elec-
tron in the ground state (blue circle) upon 
absorption of a photon is excited to 
higher electronic state, where upon vibra-
tion relaxation, it emits a fluorescent pho-
ton (purple circle) and returns to the 
ground state. The fluorescence lifetime 
is the time spent in the excited state. 
(b) and (c) principle behind measurement 
of a fluorescent molecule’s lifetime in the 
time- (b) versus frequency- (c) domain. 
(d) Graphical representation of the 
fluorescence lifetime recorded in the 
time or frequency domain transformed 
into a phasor within a phasor plot.    
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requires metabolic probing of cells,4 which can be done by 
FLIM of endogenous metabolites. The lifetime property of 
fluorophores is influenced by the fluid viscosity, pH, temper-
ature and ion concentration in the fluorophore vicinity, which 
provides information about fluorophore behaviour and func-
tion.12 This is vital for monitoring cellular heterogeneity and 
changes in the local microenvironment of microbes. For 
example, NAD(P)H is an important co-factor in numerous 
biosynthetic pathways and has a characteristic lifetime 
signature at 340 nm excitation, 470 nm emission. The auto-
fluorescence lifetime of free (0.4 ns) and enzyme bound 
NAD(P) (1–5 ns) can be monitored using two-photon excita-
tion in a FLIM setup providing information on the physio-
logical variation among microbial cells.14 

Monitoring the metabolic activity of NAD(P)H is a par-
ticularly promising method to study host invasion15 by 
beneficial (symbionts) and detrimental microbes (e.g. patho-
gens). For example, the acquisition of Symbiodiniaceae by 
coral larvae or early recruits is an important stage in the 
establishment of symbiosis. The variation in fluorescence 
lifetimes of endogenous compounds, including NAD(P)H 
and chlorophyll a, could help to determine physiological 
fitness of Symbiodiniaceae during its colonisation phase. In 
corals, climate change and other environmental disturbances 
are hypothesised to cause oxidative stress due to excessive 
build-up of reactive oxygen species (ROS), which leads to the 
separation of Symbiodiniaceae from the host,16 known as 
coral bleaching. The autofluorescence of endogenous NAD 
(P)H has been used for co-localisation and quantification of 
oxidative stress using two-photon-FLIM.17,18 Monitoring of 
enzyme-bound and free NAD(P)H dynamics is particularly 
important given the hypothesised role of NAD(P)H oxidase 
in ROS production in corals and Symbiodiniaceae.19 These 
approaches could be implemented for visualisation and track-
ing of spatiotemporal dynamics of ROS to better understand 

their role in coral bleaching. FLIM could also be used to link 
bacterial associations (intra-versus extracellular endosym-
bionts) with Symbiodiniaceae by measuring the in situ hetero-
geneity during varying physicochemical conditions such as 
of temperature, pH,12 and oxygen gradients20 at the single- 
cell level.21 

Another procedure that can measure elemental distribution 
in a sample is nanoscale secondary ion mass spectrometry 
(NanoSIMS),22 which involves use of stable isotopes and 
FISH to visualise the incorporation of labelled substrates 
into single microbes in complex microbial communities. 
However, FLIM is a non-invasive procedure in comparison 
to the destructive technique of NanoSIMS. 

The study of microbes in a spatially constrained environ-
ment using a fabricated microfluidic platform23,24 combined 
with FLIM can aid in understanding biogeochemical processes 
at the microscale level, even in mixed microbial scenarios. 

Several labelled and label-free FLIM detection approaches 
using specific (e.g. FISH) or non-specific fluorophores (e.g. 
Syto 13, DAPI, Hoechst 33342) and autofluorescent moieties 
(e.g. NAD(P)H and chlorophyll a) are outlined in Table 1. 

Final remarks 

Real time FLIM of labelled (via FISH) and label-free (via 
endogenous autofluoresence) microbes will provide a deeper 
understanding of the succession of endosymbionts within a 
host. The success of this prolonged live cell FLIM experiment 
will depend on the photostability of fluorescent probes and 
the stability of viable microbial cells. In recent years, advance-
ment has been made in the use of photostable quantum dots 
(QDs), which are nanoparticles with long fluorescence 
lifetimes. QDs can be conjugated to FISH probes adding 
stability and flexibility to conventional FISH and FLIM. 
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Fig. 2. Symbiodiniaceae (Breviolum minutum) and associated bacteria. (a) Epifluorescence microscopy image of bacteria (yellow 
arrow) associated with B. minutum (blue arrowhead). Bacteria were labelled with the EUBmix probe suite targeting the 16S rRNA 
using FISH and labelled with ATTO 647N. The image was taken at excitation 640 nm and emission 656–806 nm. Any bacteria 
intracellular in B. minutum are masked by B. minutum autofluorescence (blue arrowhead). (b) Fluorescence lifetime imaging of 
intra- (white arrows) and extra-cellular (yellow arrow) bacteria (green colour) after FISH with EUBMix probe labelled with 
DY490 (laser excitation 488 nm, emission 500–550 nm). Four B. minutum cells (no visible autofluorescence) containing intra-
cellular bacteria (green colour) are marked by blue arrowheads. (c) Fluorescence lifetime imaging of B. minutum autofluorescence 
(same four cells as in (b), blue arrow heads) (laser excitation 488 nm, emission 580–640 nm). Note that DY490 emission 
maximum is at 551 nm, so bacteria labelled with EUBMix-DY490 would not be visible at these conditions. (b) and (c) are 
fluorescence lifetime images pseudo-coloured according to the palette defined in the phasor plot (d). In the phasor plot the linear 
combination of fluorescence lifetimes that underpin DY-490 labelled bacteria green versus B. minutum autofluorescence are 
defined by a green and pink-red palette (respectively). Scale bar = 10 µm.    
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Additionally, the linear association between the QD’s fluores-
cence lifetime and pH could be exploited to monitor intra-
cellular pH in response to cellular disturbances. The study 
of endogenous metabolic co-enzymes, structural proteins, 
vitamins, pigments, and amino acids by their autofluores-
cence via FLIM has been a major experimental approach in 
the eukaryotic biomedical field but has not yet been widely 
employed in prokaryotic fields. Endogenous autofluorescent 
chemicals permit label-free detection of microbial associa-
tions, including studying actively dividing cells, in environ-
mental scenarios. We envisage that the quantitative 
information obtained by phasor-based FLIM analysis of 
these probes, combined with multivariate tools can help 
discriminate between symbiont enriched and/or depleted 
zones in natural ecosystems. 

The additional modalities of FLIM such as Förster reso-
nance energy transfer (FRET) that measures differences in 
the lifetime of a fluorophore arising from either donor and 
acceptor molecules, will pave the way to understanding phys-
ical interactions between symbiont and host cell or between 
two different microbial cells in consortia. In FRET, the fluo-
rescence emission shift occurs in instances where donors 
transfer energy (due to physical proximity and interaction) 

to acceptor fluorophores. The FLIM-FRET technology is a 
promising means of studying environmental microbial asso-
ciations (e.g. protein or metabolite translocation between 
symbiont and host or between two different microbes) and 
is yet to be explored.  
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