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Advancing coral microbiome manipulation to build long-term 
climate resilience 
Talisa DoeringA,*, Justin MaireA, Madeleine J. H. van OppenA,B and Linda L. BlackallA  

ABSTRACT 

Coral reefs house one-third of all marine species and are of high cultural and socioeconomic 
importance. However, coral reefs are under dire threat from climate change and other anthro-
pogenic stressors. Climate change is causing coral bleaching, the breakdown of the symbiosis 
between the coral host and its algal symbionts, often resulting in coral mortality and the 
deterioration of these valuable ecosystems. While it is essential to counteract the root causes 
of climate change, it remains urgent to develop coral restoration and conservation methods that 
will buy time for coral reefs. The manipulation of the bacterial microbiome that is associated with 
corals has been suggested as one intervention to improve coral climate resilience. Early coral 
microbiome-manipulation studies, which are aimed at enhancing bleaching tolerance, have shown 
promising results, but the inoculated bacteria did generally not persist within the coral micro-
biome. Here, we highlight the importance of long-term incorporation of bacterial inocula into the 
microbiome of target corals, as repeated inoculations will be too costly and not feasible on large 
reef systems like the Great Barrier Reef. Therefore, coral microbiome-manipulation studies need 
to prioritise approaches that can provide sustained coral climate resilience.  

Keywords: assisted evolution, coral bleaching, coral microbiome, microbiome manipulation, 
probiotics. 

The threat of climate change to coral reefs 

Tropical coral reefs are biodiversity hotspots, protect our coastlines from floods and 
storms, are socioeconomically important because they provide employment and support 
several industries, and have high cultural and spiritual value. However, tropical coral reefs 
are disappearing due to the impacts of climate change, which is causing a gradual increase 
in sea surface temperatures (SSTs), and also an increase in the frequency, intensity and 
duration of summer heatwaves. Higher-than-usual SSTs in combination with high 
irradiance levels, which often occur during these extreme summer events, are the main 
cause of mass coral bleaching.1 Coral bleaching is the loss of dinoflagellate photosymbionts 
(Symbiodiniaceae family) from coral tissues. Since Symbiodiniaceae provide corals with 
most of their energy, bleaching is often followed by coral starvation and death, and reef 
degradation.2 On the Great Barrier Reef (GBR), seven large-scale bleaching events have 
occurred since 1998, and <2% of the GBR has never bleached.3 Effective bleaching 
mitigation and restoration approaches that will buy time for coral reefs until global 
warming is curbed are therefore urgently required. Accelerating evolutionary processes to 
enhance coral bleaching resilience through assisted evolution4 is being explored as one 
option, which includes the manipulation of the coral bacterial microbiome.5 

The coral host together with its associated microorganisms, including bacteria, 
archaea, Symbiodiniaceae and other protists, viruses and fungi,6 are referred to as the 
coral holobiont. Coral-associated bacteria are diverse and believed to play important 
roles for the holobiont such as cycling nutrients,7 producing essential vitamins and amino 
acids, regulating the bacterial community and warding off pathogens.8 The composition 
of coral-associated bacterial communities is sometimes correlated with heat tolerance of 
the coral host,9 suggesting a bacterial role in the coral heat stress response. 

There are currently three hypotheses that explain the cellular mechanisms under-
pinning coral bleaching. The oxidative stress theory posits that high SSTs and irradiance 
impair the Symbiodiniaceae photosystem, triggering an overproduction of toxic reactive 
oxygen species (ROS) that leak into coral cells where they cause a cellular cascade that 
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results in the separation of Symbiodiniaceae from the host.10 

The second hypothesis suggests bleaching is triggered by an 
accumulation of ROS and damage to the Calvin–Benson– 
Bassham cycle, due to the host not meeting the CO2 demands 
for the faster-growing algal endosymbionts under elevated 
temperatures.11 The third hypothesis poses that heat stress 
heightens host catabolism, which increases available ammo-
nium for Symbiodiniaceae, fuelling algal growth and carbon 
usage.12 This results in carbon limitation of the host and 
phosphorus limitation of Symbiodiniaceae, causing damage 
to the algal photosystem and its membranes13 and, again, 
leading to the overproduction of ROS, which triggers 
bleaching. Thus, potentially relevant bacterial traits for 
microbiome manipulation to boost thermal bleaching resil-
ience include the neutralisation of ROS by antioxidants or 
the supply of carbon to the host to minimise its starvation. 

Microbiome manipulation as a tool to 
enhance coral climate resilience 

Here, we define microbiome manipulation as the directed 
alteration of the microbiome by humans, with the overall goal 
to provide host health benefits. This can be achieved by 
approaches such as probiotics or the transplantation of micro-
bial communities. Microbiome manipulation is a common 
approach in medicine, including, for instance, the use of 
fecal microbiome transplantation to treat Clostridium infec-
tions.14 However, microbiome manipulation in corals is still at 
an early stage. Generally, its feasibility has been demonstrated 
by showing that the composition of coral-associated bacterial 
communities can be modified through bacterial inoculation.15 

Initial coral microbiome-manipulation studies have focussed 
on disease treatment, such as white pox disease,16 or on the 
bioremediation of oil pollution.17 Recent microbiome- 
manipulation studies to enhance coral bleaching resilience 
are promising, although clear correlations between the 
presence or abundance of inoculated bacteria and coral 
bleaching tolerance have not been proven yet. One study 
determined that bacteria isolated from corals and surround-
ing seawater had putative beneficial functions such as antag-
onistic activity against a common coral pathogen, activity of 
the ROS-scavenging enzyme catalase, and potentially con-
tributed to sulfur and nitrogen cycling (by determining the 
presence of genes involved in the pathways).18 Inoculating 
the coral Pocillopora damicornis with this bacterial cocktail 
partially inhibited thermal coral bleaching and pathogen infec-
tion.18 A similar study selected candidate probiotic bacteria 
from Mussismilia hispida by screening for the same attributes 
as above, and showed that administering the probiotic mix to 
M. hispida reduced bleaching and improved recovery after 
thermal stress.19 An additional study showed short-term 
bleaching mitigation of previously heat-sensitive corals 
after they were inoculated with a microbiome obtained 
from heat-tolerant corals from the same species.20 Even 
though all three studies applied no-inoculum controls, 
increased bleaching tolerance might stem from the bacterial 
cocktail acting as a source of nutrition for the coral host 
growing heterotrophically. Integrating non-beneficial or dead 
bacteria as an additional negative control that might act as a 

food source without providing any other benefits may help 
decipher the impact of heterotrophic feeding v. microbiome 
manipulation on thermal tolerance. A recent study inoculated 
the coral model sea anemone Exaiptasia diaphana with either 
a consortium of bacterial strains with high ROS-scavenging 
abilities, a negative control that contained closely related bac-
terial strains with no ROS-scavenging abilities (to control for 
the effect of heterotrophic feeding), or a no-inoculum control.21 

The inoculated bacteria were lost from the E. diaphana host 
prior to heat stress application precluding any conclusions on 
their impact on bleaching resilience to be drawn. 

Overall, these studies showed limited and short-term 
uptake of some of the inoculated bacteria,20,21 or restructuring 
of the bacterial community composition following inocula-
tion.18,19 However, no study has demonstrated long-term 
uptake and temporal stability of the inoculated bacteria, 
although divergent microbiome communities were observed 
in coral juveniles 4 months after a single microbiome trans-
plant from each of four different species of adult corals, 
including one adult coral that was conspecific to the larval 
recipients.15 To provide long-term benefits and to create a 
sustainable solution to build coral bleaching resilience, puta-
tive beneficial coral bacteria need to form a temporally stable 
association with the coral host, thereby limiting the need for 
repeated inoculations across vast geographical scales. 

Using stably associated bacteria for 
long-term benefits 

Several aspects need to be considered to ensure uptake and 
persistence of inoculated bacteria by the host to guarantee 
long-term beneficial effects on holobiont performance (Fig. 1). 
First, we recommend focussing on bacteria that are stably 
associated with the host. Although corals associate with a 
high portion of ephemeral bacteria, there is a smaller portion 
that forms a more temporally stable symbiosis with the coral 
host.22 Stable members of the coral microbiome are more 
likely to be found in the coral tissues,23 where some are 
described to form bacterial aggregates,24 and sometimes 
they are vertically transmitted to coral offspring. A successful 
example from another biological system is the use of the 
vertically transmitted, intracellular bacterium Wolbachia to 
reduce the spread of the viral disease, dengue. When intro-
duced into Aedes aegypti mosquitoes, Wolbachia provides 
arboviral protection to mosquito hosts and spreads quickly 
and efficiently through wild populations following the 
release of infected mosquitoes, without the need for further 
intervention.25 This is despite A. aegypti not being a natural 
host for Wolbachia. Therefore, temporal stability of bacteria 
within the host microbiome should be studied over longer 
timescales (e.g. months and longer), as most previous experi-
ments have tested a duration of 24 h,20 5,19 1118 and 
35 days,21 except for one study testing over 4 months,5 and 
over multiple generations. 

Second, we propose to source bacteria from coral micro-
habitats where beneficial functions are required. One of the 
key mechanisms in bleaching involves the overproduction of 
ROS by Symbiodiniaceace in host gastrodermal cells. Therefore, 
ROS-scavenging bacteria that closely associate with 
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2 Inoculating corals with stably associated bacteria
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health and  tness

Bacterial genomic analysis
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Work"ow of previous coral microbiome manipulation studies

(b) Proposed work"ow of future coral microbiome manipulation studies

Fig. 1. Conceptual figure describing (a) the workflow of previous coral microbiome-manipulation studies that aimed to 
enhance coral bleaching resilience and (b) our proposed workflow for future studies. Previous coral microbiome- 
manipulation studies (a) started with (1) the identification of coral-associated bacteria with putative beneficial functions 
by performing bacterial genomic and phenotypic analyses, or by sourcing putative beneficial bacteria from thermally 
tolerant coral host phenotypes. This was followed by (2) inoculating corals with identified putative beneficial coral- 
associated bacteria or filtered seawater (negative control), exposing treated corals to heat stress or ambient temperatures 
and examining bacterial uptake and short-term stability, as well as determining coral holobiont health and fitness. We 
propose (b) for future coral microbiome-manipulation studies aiming for long-term coral bleaching resilience to start with 
(1) identifying stably associated bacteria by examining the transmission mode of bacterial candidates throughout different 
coral life stages and their temporal stability within adult corals. Subsequently, we propose to (2) inoculate corals with stably 
associated bacteria to test bacterial uptake and long-term stability, as well as investigating the location of the bacterial 
candidates within the coral holobiont. Here, we also propose to test the effect of different bacterial densities, inoculation 
frequencies, administration modes and coral life stages on the bacterial uptake and stability. Afterwards, we propose to 
(3) identify putative beneficial functions of stable coral-associated bacteria by bacterial genomic and phenotypic analyses. 
If functions of interest of stable bacteria are insufficient, we recommend experimental evolution to enhance their functional 
potential. If multiple strains are chosen, we also propose to test for interspecific interactions including effects on growth 
rates and the efficiency of the putative beneficial functions of interest. Finally, we advise to (4) inoculate corals with putative 
beneficial stable coral-associated bacteria, filtered seawater (first negative control), and heat-killed bacteria (second 
negative control), expose them to heat or ambient temperatures, assess coral health and fitness and track the uptake 
and temporal stability of inoculated bacteria within the coral holobiont. Created with BioRender.com.    
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Symbiodiniaceae or are present in the gastrodermis would be 
relevant. Some bacteria co-localise with Symbiodiniaceae in 
culture and in hospite26,27 and may play a role in 
Symbiodiniaceae and coral health.28 

Once stable members from coral microhabitats are identi-
fied, the next critical step for candidate selection will be to 
understand their functions, especially with regards to coral 
bleaching and climate resilience. This can be achieved through 
genomic analyses and phenotypic assays. If candidates of 
interest exhibit limited functional ability, such as low ROS- 
scavenging abilities, laboratory evolution experiments may be 
used to enhance their abilities, for example through long-term 
exposure to oxidative stress conditions.29 

In summary, the selection of bacterial candidates based 
on their temporal stability and location within the coral 
holobiont, followed by their bleaching mitigation functions 
are critical steps in developing microbiome-manipulation 
techniques that aim to build long-term bleaching resilience. 
Since recent models predict that environmental conditions 
will become unsuitable for coral reefs by 2035,30 the next 
decade will be crucial to curb greenhouse gas emissions and 
develop effective and sustainable conservation methods to 
buy time for corals. 
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