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Cellular signalling by SARS-CoV-2 spike protein 
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ABSTRACT 

Following the release of the SARS-CoV-2 genome, the spike protein was identified as the key viral 
protein mediating cell entry. In addition to its critical function in delivering the viral genome to 
the host cytoplasm, the spike protein is able to activate diverse cell signalling pathways, leading 
to notable cellular responses, including inflammation, cellular remodelling, and immune evasion. 
The spike protein is associated with the induction of a ‘cytokine storm’ characterised by elevated 
levels of proinflammatory cytokines like IL-6 and IL-1β. Moreover, the spike protein deregulates 
TGF-β and E-selectin, leading to fibrotic injury and tissue scarring in cellular remodelling, notably 
in pulmonary tissues. Finally, the spike protein plays a role in immune evasion, disrupting Type I 
interferon responses. Understanding these diverse interactions and effects is crucial for compre-
hending the pathogenesis of COVID-19 and developing effective therapeutic strategies.  
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SARS-CoV-2, the viral cause of COVID-19, remains a global threat to human health. The 
spike protein is a glycoprotein encoded by SARS-CoV-2 that mediates membrane fusion and 
entry into host cells primarily by binding to ACE2. ACE2 expression is highly restricted to 
specific cell types and largely defines cells that are susceptible to infection although 
alternative ACE2 pathways have been described.1–4 Current vaccination strategies are 
also based on delivery of the spike protein through various technologies, which have proven 
highly effective at reducing transmission, infection, hospitalisation and mortality.5–7 

Beyond cell entry and adaptive immune priming, the spike protein also modulates various 
host cell signalling pathways which ultimately contributes to the pathology and spread of 
the virus (Fig. 1). These effects can be seen as ACE2-dependent or ACE2-independent, 
suggesting the spike protein has roles outside of binding. For example, the spike protein is 
sufficient to induce highly inflammatory cytokines, which may contribute to the multi-
system inflammatory syndrome, otherwise known as a ‘cytokine storm’ observed in COVID- 
19. In addition, the spike protein mediates key changes to the cellular microenvironment 
that contribute to fibrotic and vascular pathologies. Emerging evidence suggests the spike 
protein also plays a critical role in subverting host immune signalling to avoid host 
defences. This review will examine functions of the spike protein independent of ACE2- 
mediated entry, and how these contribute to COVID-19 pathology. 

It is important to note that during infection, various subunits and forms of the spike 
protein can be released and presented to host cells to elicit differing effects (Fig. 2). The 
spike protein resides on the surface of SARS-CoV-2 virions as trimers. Spike-protein- 
mediated entry requires two critical cleavage events. Firstly, prior to infection and 
binding to ACE2, the spike protein is cleaved into subunits S1 and S2 by furin-like 
proteases. Subsequently, the cleavage of S2′ subunit by the cellular serine protease 
TMPRSS2, which results in delivery of the viral genome into the cytoplasm.3,8–10 

While the spike protein’s role in entry by ACE2 has been extensively described, the 
modulation of cellular signalling by the spike protein, and its downstream effects, is an 
expanding area of interest. Here we descriobe three major cellular responses to the spike 
protein: inflammation, cellular remodelling and immune evasion. 

Inflammation 

In COVID-19, various proinflammatory cytokines and markers of tissue damage are 
elevated and associated with severe disease, infection complications and mortality. 
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Such cytokines include, but are not limited to, IL-1β, IL-6, 
IL-10, TNF, and IFN-ɣ.12 Secretion of proinflammatory 
IL-1β, IL-12 and TNF is mediated through the Pattern 
Recognition Receptor (PRR) Toll-like Receptor 4 (TLR4) 
and NF-κB.12 Recent studies have identified that spike pro-
tein in isolation can bind to TLR4 and activate downstream 
NF-κB signalling, and ultimately drive expression of inflam-
matory effector genes.13 Purified spike protein trimers 
directly bind TLR4 and induce IL-1β expression in a dose- 
dependent manner.14 The spike protein S1 subunit interacts 
with TLR4, and in conjunction with IFN-ɣ, drives expression 
of proinflammatory IL-1β to induce the differentiation of 
proinflammatory M1 macrophages in vitro.15,16 Additionally, 
spike protein S1 subunit directly interacts with the Leucine- 
rich repeat domain of TLR4, and in a mouse model of cardiac 
infection, S1 subunit increased expression of IL-1β and IL-6 to 
induce inflammation.17 A subsequent study identified a role 
for the spike protein S2 subunit in the induction of proin-
flammatory cytokines IL-6, IL-1β, TNF-ɑ and chemokines 
CXCL1, CXCL2 and CCL2 in human and murine macro-
phages.18 Here, TLR signalling was activated by the spike 
protein in TLR4 knockout macrophages, but not TL2 knock-
outs, suggesting a conflicting dependence on TLR2 rather than 
TLR4, contrary to previous studies.18 

IL-6 has emerged as a key cytokine in driving a hyper- 
inflammatory state during COVID-19, especially in severe or 
complicated disease.12 Although clinical trials have failed to 
show improvement from the use of IL-6 antagonists, it 
remains evident that the cytokine plays a key role in the 
development and progression of disease.19 Administration of 
both polyI:C and the spike protein into ACE2-expressing mice 
found that IL-6 was induced nearly 100 fold.20 Accordingly, 
transfecting the spike gene into epithelial cells results in 
induction of phosphorylated NF-κB, MAPK and secretion 
of IL-6.21 Importantly, IL-6 trans-signalling may be a key 
contributor to inflammation-related pathologies.22 During 
trans-signalling, soluble IL-6 receptors bind IL-6, forming a 
complex with gp130 that ultimately allows cells not expres-
sing the IL-6 receptor (IL-6R) to respond to IL-6.22 The 
spike protein has also been shown to activate the ADAM-17 
protease, thereby releasing soluble IL-6R, which may increase 
IL-6 and IL-6R levels in COVID-19.21 Furthermore, an in vitro 
trans-signalling model demonstrated that exposure to culture 
fluid from epithelial cells transfected with the spike protein 
was sufficient to induce IL-6 signalling in endothelial cells, 
which do not express transmembrane IL-6R.21 

Taken together, these studies highlight the role of the 
spike protein in triggering rapid induction of inflammatory 
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Fig. 1. Different spike protein subunits activate different forms of cell signalling. The spike protein is presented as a trimer on the 
surface of SARS-CoV-2 virions. The spike protein itself is divided into two subunits, S1 and S2, with S1 encompassing the Receptor 
Binding Domain (RBD), which initiates ACE2-dependent cell entry, and S2 containing the fusion peptide required for fusion with the 
host cell membrane. The furin-protease site located between the subunits is unique to SARS-CoV-2, absent in other viruses in the same 
clade. 11 Both full-length spike protein and its component subunits modulate different cell signalling pathways with diverse effects.    
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effector genes and signalling molecules that are hallmarks of 
COVID-19 and correlate with disease severity. 

Cellular remodelling 

Major complications of COVID-19 include fibrotic injury 
and tissue scarring. Transforming growth factor-β (TGF-β) 
is considered the master regulator of fibrosis and tissue 
remodelling in both homeostasis and disease. In the context 
of COVID-19, TGF-β, along with multiple other pro-fibrotic 
cytokines, serves as a biomarker for lung injury.25–27 

TGF-β has also been observed to cause endothelial barrier 
dysfunction following both full-length spike protein and the 
spike Receptor Binding Domain (RBD) treatment.28 This 
spike-protein-induced barrier hyperpermeability, an effect 
observed previously with flavivirus non-structural protein 1 
(NS1), has been speculated to promote viral dissemination 
and pathogenesis.29 Furthermore, it was observed that 
spike-protein-induced endothelial barrier dysfunction 
in vitro and vascular leakage in vivo, driven by an upregula-
tion in glycosaminoglycans (GAGs), integrin and TGF-β 
signalling.28 Cellular remodelling in this study activated 
by the spike protein was also independent of ACE2. 
Pulmonary endothelial cell damage in COVID-19 is also 
tied to paracrine cell signalling. Similar to TGF-β, S1 subunit 
treatment activates VCAM-1 and ICAM-1 pathways, which 
contribute to cell vasculopathy. Spike-protein induction of 
VCAM-1 and ICAM-1 leads to increased expression of 
E-selectin and risk of blood clotting.30–32 

Apart from its role as the key mediator for entry, ACE2 
contributes to spike-protein-associated vascular remodelling 
and fibrosis. As a part of the renin–angiotensin system (RAS), 
ACE2 controls the hydrolysation of the peptide angiotensin ii 

to the less inflammatory and pro-fibrotic angiotensin(s) 1–7 
during homeostasis. However, this balance is disrupted during 
vasoconstriction and fibrotic injury.33 In the case of the S1 
subunit interaction with ACE2 during viral entry, ACE2 is 
downregulated, generating an imbalance in the levels of 
angiotensin ii and leading to an inflammatory response, oxi-
dative stress, vasoconstriction and fibrotic activity.34,35 

Similar to live viral infection, multiple methods of presenting 
the spike protein to cells, including full-length spike protein, 
ectopic expresison of S1 subunit, and pseudotyped virus infec-
tion, are shown to decrease ACE2 expression.34,35 Notably, 
differences in ACE2 supression were observed between the 
two studies. Spike-protein treatment reduced ACE2 expression 
in vitro whereas both treatment and pseudotype virus- 
expression of the spike protein provided the same effect 
in vivo.34,35 Additionally, angiotensin ii blockers increase 
viral replication in SARS-CoV-2 susceptible cell lines, presum-
ably due to an increase in available ACE2.36 

Immune evasion 

The history of SARS-CoV-2 variants highlight the spike pro-
tein as the critical target in immune recognition and driver 
of enhanced transmissibility and infectivity. In addition, it is 
becoming increasingly evident that the spike protein itself is 
able to suppress host-cell Type I Interferon antiviral 
responses. Specifically, S1 subunit treatment activates the 
signal transducer and activator of transcription 1 (STAT1) to 
block association with Janus Kinase 1 (JAK1), leading to 
reduced IFN-α and IFN-β expression.37,38 A separate study 
demonstrated that spike and membrane proteins coopera-
tively decreased IFN-mediated activation of NK cells while 
enhancing TGF-β activity.39,40 
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Fig. 2. Different modalities for investigating spike-protein activity. Cells are induced to express the spike protein in vitro by 
transfection or in vivo by mRNA nanoparticle complexes and adenovirus vectors. Post protein synthesis, spike protein forms 
trimers cleaved at the furin-protease cleavage site between S1 and S2 subunits. 23 Synthetic spike protein treatment and 
pseudotyped virus infection replicate the spike protein binding with ACE2. Live viral infection presents the spike protein to 
the cell surface and the intracellular environment during virus replication. Additionally, soluble spike protein is present in patients’ 
sera for up to 12 months post-infection. 24    
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Ectopic expression of the spike protein reduces JAK-STAT 
activation of IFN activity in cells and spike gene transfection 
specifically blocks the RIG-1-induced activation of IFN-β 
with the aid of N protein.41 Associated with this finding, 
cells transfected with the spike gene led to an increased 
susceptibility to infection by other RNA viruses.37 IFN-α 
and IFN-β levels are characteristically low in severe 
COVID-19 patients compared to mild cases and the activity 
of spike protein to deregulate IFN production may explain 
this observation.39 

Epidermal Growth Factor Receptor-Mediated (EGFR) 
signalling, a pathway known to crosstalk with TGF-β, is upre-
gulated following treatment with S1. EGFR signalling also 
activates ERK1/2 and AKT kinases and enhances the expres-
sion of Survivin, a critical inhibitor of apoptosis.42 Further, the 
spike protein exhibits anti-apoptotic activity in hematopoietic 
stem cells, triggering Caspase-1 and Nlrp3 and leading to a 
hyperinflammatory and pyroptotic state.43,44 

Discussion 

The spike protein has gained much attention for its role in 
cell entry and as a target of neutralising immunity. Here, we 
discuss entry-adjacent roles of Spike in initiating an inflam-
matory ‘cytokine storm’, triggering barrier dysfunction, and 
silencing host immunity to promote and sustain infection. 

Multiple experimental modalities have been used to 
explore the spike protein as a functional ligand, sometimes 
with contrasting results. These treatments are often linked 
to different stages of SARS-CoV-2 infection, where the spike 
protein can either be presented upon entry into cells, intra-
cellularly during protein synthesis, or in sera from infected 
patients as its constituent subunits. The spike protein and its 
subunits can be present extracellularly and intracellularly 
during and post-infection, which may affect how a cell 
responds to this ligand. One study found that in patients 
with post-acute sequelae, spike protein antigen can persist 
for upwards of 12 months.45 By contrast, the spike protein is 
not detected in the serum of patients 9 days following pri-
mary vaccination, and is undetectable following a secondary 
vaccination. 

Furthermore, different subunits of the spike protein 
themselves are linked to specific signalling effects, but it 
remains unknown how each component affects signalling 
and whether they act independently or cooperatively. 
Additionally, the cellular machinery required to respond 
the spike protein or subunits to mediate non-entry function 
has not been defined. For example, ACE2 is inessential for 
induction of TGF-β.28 It is therefore highly plausible that 
different cell types will exhibit a range of responses, and 
may exceed the cell population susceptible to infection. 

We are clearly only beginning to uncover the mechanisms 
by which the spike protein can deregulate cellular signalling 
pathways. Here we have reviewed roles for the spike protein 
in addition to its primary function in mediating cell entry 
and how these activities may affect COVID-19 pathology. 
We also highlight that cells can be exposed to the spike 
protein through various methods and forms, and that these 
may have distinct disease implications. 
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