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In cIAI, all patients in the ME population with P. aeruginosa  infection at baseline had a 100% clinical cure rate with 

ZERBAXA plus metronidazole (n=26/26) vs. 93.1% with meropenem (n=27/29) (subgroup analysis; p values not stated).4

cIAI=complicated intra-abdominal infection; CI=confidence interval; MITT=microbiological intent-to-treat; ME=microbiologically evaluable

ZERBAXA + metronidazole had a high level of antimicrobial activity against P. aeruginosa1,2,4

ZERBAXA has a low potential for development of resistance in P. aeruginosa.1,2

 ̂in vitro activity does not necessarily 

predict clinical efficacy

ZERBAXA is stable against common P. aeruginosa resistance mechanisms in vitro^ including:2

• Overexpression of AmpC  

• Increased express of efflux pumps  

• Reduced expression of carbapenem-specific porins (OprD)

A POWERFUL 
CHOICE1,3,4

For cIAI in combination with metronidazole
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Study design in cIAI: A total of 993 adults 

hospitalised with a cIAI were randomised 

in a multinational, double-blind, phase 

3, non-inferiority trial comparing 

ZERBAXA (ceftolozane 1000 mg and 

tazobactam 500 mg) plus metronidazole 

(0.5 g) intravenously every 8 hours with 

meropenem (1 g) intravenously every 

8 hours for 4–14 days. Complicated intra-

abdominal infections included appendicitis, 

cholecystitis, diverticulitis, gastric/duodenal 

perforation, perforation of the intestine, and 

other causes of intra-abdominal abscesses 

and peritonitis.3

Primary endpoint, clinical cure, was defined 

as complete resolution or significant 

improvement in signs and symptoms of 

the index infection at the test of cure visit 

(24–32 days from start of therapy), using 

a non-inferiority margin of 10%. The 

primary efficacy analysis population was 

the microbiological intent to-treat (MITT) 

population which included all patients who 

had at least one baseline intra-abdominal 

pathogen regardless of the susceptibility to 

study drug.3

Secondary endpoint was the same end point 

in the microbiologically evaluable (ME) 

population, which included all protocol-

adherent MITT patients.3

In cIAI, clinical cure rate for ZERBAXA + metronidazole  

(n=389) was non-inferior to meropenem (n=417) in the MITT 

population at test of cure, 83% vs 87.3% (weighted difference,  

-4.2%; 95% CI, -8.91, 0.54; p value not stated).3
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Roy Robins-Browne

President of ASM

Dear fellow microbiologists

As this is my first communication with you this year, I think it’s not

too late to wish you a happy new year and all the best for 2018.

As I’ve mentioned previously, ASM aims to give our members

maximum value for their membership. Some new initiatives for

2018 include an annual teacher’s travel award, valued at $4000, to

attend the American Society for Microbiology Conference for

Undergraduate Educators (AMSCUE), which is theworld’s premier

microbiology teachers’ conference. We also have instituted 100

travel awards, each valued at $200, to make it easier for members

within 10 years of attaining their highest qualification to attend

our Annual Scientific Meeting. This year’s meeting is in Brisbane

from 1–4 July (http://asmmeeting.theasm.org.au/). The scientific

and social programs are shaping up beautifully, and I know youwill

be fired up and reinvigorated by attending. Please enter the dates

in your diary now.

We also have new awards that allow undergraduate students to

undertake a research project in an approved laboratory during the

summer vacation. Contact your State Branch for more details.

Apart from our Annual Scientific Meeting, ASM is sponsoring the

MMM (Molecular Microbiology Meeting) in Sydney this year from

11–12 April. This meeting provides a wonderful opportunity for

biological scientists who see potential translational applications

for their research, and for clinical scientists and clinicianswhowant

to hear about recent advances in biology and biotechnology.

For more information, visit http://sydney.edu.au/medicine/critica

linfection/mmm/index.php.

ASM Council has also resolved to underwrite the biennial BacPath

meeting from2019onwards. Next year’smeetingwill be inWestern

Australia at a 4-star venuenear Perth, and like all 14meetings before

it will be collegial, exciting and informative.

I amdelighted to announce the appointmentof Associate Professor

Priscilla Johanesen as our inaugural Student and Early Career

Researcher (ECR) Engagement Co-ordinator. Priscilla has long

been involved in arranging Students’Day at our annual conference

and will now take on the added responsibility of fostering the

development of student and ECR members of our Society. The

mainpurposeof her role is to engage students andECRs to improve

their overall experience by providing resources, activities and

opportunities that to bring them together and promote their

professional development. Please encourage your students to

attend our meetings and become involved in these activities.

Students who attend just one meeting a year will recoup more

than their annual subscription.

Some other ongoing initiatives involve strengthening our ties with

microbiological societies in our region, including the New Zealand

and Singapore microbiology societies. If you are interested in

attending the annual meetings of either of these societies, you can

do so at local members’ rates. We are also looking at strengthening

our ties with other biological societies within Australia, such as

the Australian Society for Biochemistry and Molecular Biology, the

Australian Society for Antimicrobials and the Australian Society

for Infectious Diseases. This may include holding a joint or over-

lapping conference with one or more of these societies.

Finally, I want to remind you that the closingdate for our annual

awards and prizes is 31 March (http://www.theasm.org.au/

awards/). Please encourage anyone you know who may be eligible

for one of these awards to apply as soon as possible.

Vertical Transmission
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Environmental microbiomes

Linda L Blackall

Email: lblackall@swin.edu.au

The March 2015 issue of Microbiology Australia1 was devoted

to ‘Mammalian microbiomes’ and this March 2018 issue on

‘Environmental microbiomes’ complements that previous one.

Additionally, authors of articles in the current issue were largely

chosen from oral presenters at the inaugural ASM-sponsored

Australian Microbial Ecology (AUSME2017) conference held

a year ago in Melbourne. That 3-day conference in February

2017 celebrated the field of Microbial Ecology.

Like the various compartments of mammals covered in the March

2015 Microbiology Australia issue, a complex suite of microbes

including prokaryotes (Bacteria and Archaea), microbial eukar-

yotes, and viruses are found in the majority of niches on Earth.

These ‘environmental microbiomes’ are vital to all global nutrient

cycles, pollution biodegradation and bioremediation, in host-asso-

ciations (e.g. of all non-mammals and in plant nutrient provision-

ing) and in ecosystem health (including in the built environment).

The generation ofmetagenome sequences, ofmetatranscriptomic,

metaproteomic and metametabolomic information and their data

analyses and interpretation continue to be major drivers in micro-

biome application.

In a recent Nature Microbiology consensus statement article2,

which catalogued global microbiome research, ‘Microbiomes’

were defined as ‘. . .host-, ecosystem- or habitat-associated com-

munities of microorganisms’, and ‘microbiome research’ was

defined as ‘. . .those studies that emphasise community-level anal-

yses using “omics technologies” ’. In the non-human related

microbiome field, major national but mostly international collab-

orative programmes have titles like Microbial Observatories, the

International Census of Marine Microbes, the International Soil

Metagenome Sequencing Consortium ‘TerraGenome’, and the

Earth Microbiome Project. Philanthropic (e.g. Gordon and Betty

Moore and W. M. Keck Foundations) and Governmental agencies

(many nations) have come together to co-fund these overarching

microbiome research initiatives whose goals are ambitious like

understanding causes of climate change in forest, grassland, and

permafrost ecosystems and constructing a microbial map of

planet Earth. The consensus article concluded that the dominant

microbiome research activities were related to human niches and/

or they focussed on basic biology research themes. The following

were identified as significant future needs: computational biology;

biorepositories for data; development of high throughput tools;

and longitudinal, functional and interdisciplinary research topics.

The practical application of microbiome research to Earth’s sus-

tainability and for improved human livelihood will involve deeper

industry and commercial involvement3.

Projections for future microbiome studies have been reported in

recent outlook manuscripts. A recent non-peer reviewed perspec-

tive piece4 proposed that distinct microbiome characteristic types

including microbial processes, microbial community properties,

and microbial membership should be linked to each other and

to higher level system processes that they impact. In another

perspective piece, Xu et al.5, argue that over the next 10 years,

microbiome research will be propelled by changes in our thinking

and in technology. It ambitiously described how microbiome

research will move to determining the state, function and interac-

tions of microbes by developing imaging and visualisation meth-

ods, individuals rather than consortia will be probed, and we will

move to data science from data analysis. The cardinal feature in

many viewpoint papers is the fact that method development has

been and will continue to be a major stimulus for studying,

comprehending, and manipulating microbiomes. An essential

part of this development is standardisation of protocols and use

of controls6.

Although human-associated ecosystems might dominate the

microbiome field2, environmental microbiome investigations have

revealed staggering microbial biodiversity and unprecedented

biochemical transformation scope – a few specific examples are

given here. In 2016 Hug et al.7 dramatically expanded and refor-

matted the tree of life, and described a whole Candidate Radiation

Phylum. Anantharaman et al.8, reported many new sub-surface

sourced microbial genomes and discovered metabolic handoffs in

simple consortia. In late 2017, Parkes et al.9 reported 7903 bacterial

genomes from public metagenome data submissions inflating the

GuestEditorial
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bacterial and archaeal phylogenetic diversity by an amazing >30%.

Great contributions to environmental microbiomes continue to

be provided by several Australian research groups9–13, as well as

groups with articles in this Microbiology Australia issue.

The articles in this Microbiology Australia issue cover a broad

range of environmental microbiome studies, largely from Austra-

lian-based researchers – demonstrating the vibrancy of the field.

The environments covered include marine (water and host-asso-

ciated), terrestrial (soil), bioremediation (wastewater treatment,

bioleaching,mining), and cultural artworks. Papers covermicrobial

processes (chemotaxis, nitrogen cycling, synergism, life without

water), biotechnological advances and opportunities, microdiver-

sity, and microbial and trait-based ecology. Numerous microbial

groups including Bacteria, Archaea, Fungi and Viruses are topics

from different contributors. It comprises a panorama of subjects

within the field of Environmental Microbiomes.
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The importance of resolving biogeographic
patterns of microbial microdiversity

Alexander B Chase

Department of Ecology
and Evolutionary Biology
University of California
Irvine, CA, USA
Email: abchase@uci.edu

Jennifer BH Martiny

Department of Ecology
and Evolutionary Biology
University of California
Irvine, CA, USA
Email: jmartiny@uci.edu

For centuries, ecologists have used biogeographic patterns

to test the processes governing the assembly and mainte-

nance of plant and animal communities. Similarly, evolu-

tionary biologists have used historical biogeography (e.g.

phylogeography) to understand the importance of geolog-

ical events as barriers to dispersal that shape species dis-

tributions. As the field of microbial biogeography initially

developed, the utilisation of highly conserved marker

genes, such as the 16S ribosomal RNA gene, stimulated

investigations into the biogeographic patterns of the mi-

crobial community as a whole. Here, we propose that we

should now consider the biogeographic patterns of micro-

diversity, the fine-scale genetic diversity observed within

a traditional ribosomal-based operational taxonomic unit.

Biogeography investigates how ecological and evolutionary pro-

cesses influence thedistributionof biodiversity and the structureof

contemporary communities1. Historically, biogeographic patterns

of plants and animals are studied at the species level and describe

large-scale patterns of species’ distributions. In contrast, the vast

majority of microbial biogeographic studies investigate patterns by

sampling the entire community at broad taxonomic designations.

Typically, these studies defineoperational taxonomic units (OTUs)

using a highly conserved ribosomal marker gene, usually the 16S

rRNAgene forbacteria andarchaea.However, thedecisionofwhich

genetic region to target, and in particular the genetic resolution of

that region, can influence the biogeographic patterns observed2.

While these conserved regions can capture a large breadth of

the microbial community, these regions, by their very nature,

limit the detection of finer-scale genetic variation. By resolving

diversity within the OTU designation, we can detect ecological and

evolutionary processes occurring at this fine taxonomic scale that

might otherwise be overlooked.

What OTU-based biogeography can

and can’t tell us
It is now well established that microbial communities assayed

by traditional OTU designations display distinct biogeographic

patterns over space and time. These patterns have been identified

in environments ranging from marine3, to terrestrial4, and to

human-associated systems5. Combinedwith abiotic and biotic data

from the sampled environment, such patterns can provide initial

hypotheses about the ecological processes shaping microbial

community assemblages6. Thousands of microbial studies now

demonstrate that OTU-based patterns primarily reflect the impor-

tance of selection of environmental conditions based on correla-

tions between microbial composition and the environment

(Figure 1a). These patterns indicate that OTUs comprising each

microbial community vary in their ability to tolerate various abiotic

and biotic conditions, suggesting partitioning of environmental

resources and niche spaces among taxa in the community.

While environmental variables explain much of the variation in

microbial composition,manystudies alsofind that somevariation is

correlated to the geographic distances between communities6.

This observation can be illustrated with a distance-decay curve, or

a negative correlation between the similarity in microbial compo-

sition with geographic distance between pairwise samples7

(Figure 1b). If this negative relationship holds after accounting for

environmental variation, then the pattern suggests that ecological

drift, caused by stochastic fluctuations in demographic patterns,

contributes to variation in community composition8,9. Further,

In Focus
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since ecological drift depends on restricted dispersal, the pattern

gives insight into the degree of dispersal limitation between the

sampled communities. A caveat to such studies is that it is impos-

sible to completely account for environmental variation, and the

environment is spatially autocorrelated.However, suchOTU-based

studies suggest that the ecological processes of both environmen-

tal selection and ecological drift contribute to biogeographic pat-

terns at this broad genetic resolution7.

In contrast to ecological processes, biogeographic patterns of

OTU-based analyses are unlikely to detect patterns shaped by

evolutionary processes. This limitation is due to the broad resolu-

tion of conserved marker genes. Variation in these genetic regions

capture relativelydistantevolutionarydivergences, especiallywhen

clustered at 97% sequence similarity. Indeed, a 3% sequence

divergence in the 16S rRNA gene, the most common level of OTU

clustering, represents roughly 150million years of evolutionary

history10, or before the origin of modern birds11. In other words,

biogeographic patterns for birds at this taxonomic level would

mask all diversification within the group. Similarly, the use of such

conserved marker genes for microbes will generally preclude

detecting biogeographic patterns emerging from evolutionary

processes, such as endemism and niche conservatism, as observed

for macroorganisms assessed at the species or population level.

What is microbial microdiversity

Studies based on 16S rRNA sequences have been instrumental in

identifying ecological patterns and their underlying processes at

relatively broad genetic resolutions. However, it is increasingly

clear that there is extensive genetic diversity within 16S-based

OTUs, so-called microdiversity, in environmental habitats12,13.

For example, a natural population of the bacterioplankton Vibrio

splendidus contained >1000 distinct genotypes, even when

clustered at >99% 16S rRNA sequence similarity14. Based on their

very nature, conserved marker genes lack the variability to resolve

fine-scalediversitywithin anOTU.Evenwith the implementationof

exact sequence variants (ESVs), the 16S rRNA gene simply cannot

resolve the fine-scale variation among closely related microbial

lineages15.Thus,different approachesareneeded to investigate the

biogeographic patterns of this vast genetic diversity.

Beyond identifying genetic microdiversity, a key question is

whether this genetic variation is phenotypically relevant16. Inves-

tigations into microdiverse marine bacterial taxa suggest that they

vary in physiological traits including preferences for particular

abiotic conditions13,17. Further, some of this trait variation within

OTU-based taxa appears to be phylogenetically conserved within

microdiverse clades18,19, although resolving the phylogeny of such

closely related strains is often difficult with 16S rRNA sequences

(Figure 2a). Instead, taxon-specific marker genes or, ideally full

genome sequences, can often resolve microdiverse clades and

revealwhich traits are shared amongparticular phylogenetic clades

(Figure 2b). For example, an analysis of strain diversity of an

abundant leaf litter bacterium, Curtobacterium, exhibited exten-

sive variation in the degree of polymeric carbohydrate degradation

and temperature preference among microdiverse clades20. Thus,

more resolved genetic and physiological studies can help to estab-

lish the phylogenetic distribution of traits.

What biogeographic patterns of microdiversity

can tell us

The presence of trait variation amongmicrodiverse clades suggests

that microdiversity will exhibit distinctive biogeographic patterns.

If this trait variation corresponds to different ecological prefer-

ences, then the environment should select for specific clades

under variable conditions. Indeed, different bacterial ecotypes,
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Figure 1. Hypothetical community analyses from OTU-based studies. (a) An ordination plot depicting community composition across three
environments with the main environmental factors driving compositional differences indicated with dashed arrows. Each point represents a
sampled microbial community, with points closer to one another indicating higher similarity in community composition. (b) Community similarity
among a collection of samples is often positively correlated to environmental similarity (grey line) and negatively correlated with geographic distance
(black dashed line, also called a distance-decay curve). The influence of strong environmental selection on the community is reflected in the positive
correlation with increasing environmental similarity, while the influence of ecological drift is reflected in the negative correlation with increasing
geographic distance between samples.
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or ecological populations, have repeatedly been shown to vary in

their spatial distribution. Thus, closely-related clades appear to

partition niche space in the environment that would normally be

masked at theOTU level (Figure 2c). For example, at theOTU level,

the globally distributed cyanobacterium, Prochlorococcus,

shows a broad preference for low-nutrient and warmer waters21.

However, microdiverse clades of Prochlorococcus exhibit distinct

spatial distribution patterns shaped by additional environmental

factors, including light availability and temperature12,17,22. Thus,

biogeographic patterns of microdiversity can elucidate the impor-

tance of key environmental parameters governing niche differen-

tiation that may not be identifiable at the OTU designation.

Perhaps even more importantly, a focus on microdiversity can

reveal evolutionary processes that would otherwise be masked at

a broader genetic resolution. Thus far, few environmental studies

have targeted microbial diversity at a fine enough scale to inves-

tigate howevolutionarymechanisms, such asmutation and genetic

drift, can lead to differential biogeographic patterns18,23. Those

examples that do exist find evidence for evolutionary processes

contributing to spatial patterns. In one such example, reduced

dispersal between hot spring populations of the archaeon ther-

mophile Sulfolobus, restricted gene flow to allow diversification to

occur among geographic regions24,25. Similarly in terrestrial soils,

dispersal limitation at regional spatial scales structures bacterial

populations of Streptomyces along a latitudinal gradient26.With the

increased availability of computational tools to study population

genomics27 and the incorporation of gene flow networks28, we

expect that more studies will consider the spatial distribution of

microdiversity. Such studies are likely to illuminate the effects of

evolutionary processes on microbial diversity in the environment,

including the presence of biogeographic barriers and the degree of

microbial endemism29 (Figure 2d).

Conclusions

Future progress in microbial biogeography necessitates moving

beyond the OTU designation. While OTU-based studies will con-

tinue to play an important role in microbial biogeography, an

intensified focus on finer-genetic diversity will uncover thus-far

unidentified ecological and evolutionary patterns. However, these

studies will require targeted sampling of particular microbial taxa

rather than the entire community. Generally, this effort will require

moving beyond targeting the 16S rRNA gene; even ESVs of this

regionwill not be able to distinguishmicrobial populations at afine

enough genetic scale. And while extensive shotgun metagenomic

and targeted amplicon sampling can reveal co-occurrence of novel

microdiversity associatedwithdistinctenvironmental conditions30,

these studies are dependent on the interpretation of genomic

potential for ecological diversity. Therefore, there is still a need
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Figure 2. Detection of ecological and evolutionary processeswithin OTUAwithmicrodiverse Clades I (green), II (blue), and III (pink). (a) The 16S rRNA
geneoften cannot resolvephylogenetic relationshipswithin a 16S-basedOTUand, subsequently, thedistributionof traits amongclades. (b) Genomic
sequences or multi-locus sequence analyses (MLSA) of marker genes can resolve phylogenetic relationships at a finer-scale revealing, in this
hypothetical example, that strainswithin clades sharemore similar traits. (c) Trait variationwithinmicrodiverse taxa canpromote resourcepartitioning
in the environment leading to fine-scale niche differentiation among clades (represented in colored dashed lines) that would otherwise bemasked at
the OTU level (black line represents the total niche for OTU A). (d) Investigating genetic differentiation within OTUs is more likely to reveal dispersal
limitation (measured by gene flowbetween clade populations) and the presence of biogeographic barriers that contribute tomicrobial diversification.
In this hypothetical example, black arrows represent gene flow between populations of microdiverse clades, where limited gene flow (no arrows
connecting green with the blue and pink populations) suggests the presence of biogeographic barriers.
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to link the genomic variation to functional traits that will define

ecotypes. The return to isolation-based studies to gather relevant

genetic and physiological information will better inform environ-

mental metagenomic studies investigating microbial microdiver-

sity. By expanding the focus to microbial microdiversity and

implementing targeted environmental studies, we can better un-

derstand the ecological and evolutionary processes generating

microbial biogeographic patterns as macroecologists have done

for decades.
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Marine viruses are the largest, but most poorly explored

genetic reservoir on the planet. They occur ubiquitously

in the ocean at an average density of 5–15� 106 viruses per

mL of seawater, which represents abundances an order of

magnitude higher than those of bacteria. While viruses are

known agents of a number of diseases in the marine envi-

ronment, little is known about their beneficial function to

corals. Herein, we briefly introduce the topic of viruses as

potential drivers of coral bleaching and disease.

Increasing prevalence of coral bleaching

and disease

Corals form a symbiosis with microscopic algae (Symbiodinium

spp.), which are the primary carbon source of their host through

translocation of photosynthates. The loss of these intracellular

symbionts is referred to as coral bleaching, causing the coral tissue

to pale and resulting in a vulnerable state of the coral animal1.

In recent years, coral bleaching and diseases have increasingly

contributed to coral mortality for a number of reasons. First, warm

seawater temperature anomalies that lead tomassbleaching events

have increased in frequency and have left corals less time to

recover2. Such temperature anomalies have been associated with

higher disease incidence, possibly due to increased activity of

pathogenic bacteria at elevated temperatures combined with re-

duced immunocompetence of stressed corals3. Second, the grow-

ing spatial scale of anthropogenic impacts on coral reefs such as

reducedwater quality4 and tourismactivities5 have also been linked

to higher disease prevalence. For example, up to 15-fold higher

coral disease prevalence was reported on reefs in the Great Barrier

Reef that had tourist platforms compared to those without5. Third,

the frequency and severity of cyclones and crown-of-thorns starfish

predation have increased; these disturbances cause breakages and

injuries to corals and provide entry points for pathogenic micro-

organisms6,7. Despite the increase of coral disease occurrence,

the tools required for rapid diagnostics are still lacking and man-

agement strategies to prevent andmitigate coral disease outbreaks

are largely inadequate8. Of prime concern is that causative agents

have not been identified for the majority of the described coral

diseases. While a few known scleractinian coral pathogens are

bacteria9, the role of viruses in coral health and disease has barely

been examined.

Virus diversity in corals

Coral-associated virus communities are highly diverse and com-

prise bacteriophages, archaeal and eukaryotic viruses10–12. Despite

this diversity, only a smaller subset of taxonomic groups are

commonly found in corals, including bacteriophages belonging to

the order of the Caudovirales, and eukaryotic nucleocytoplasmic

large DNA viruses (NCLDVs) belonging to the families Phycodna-

viridae, Mimiviridae, Poxviridae and Iridoviridae, as well as

Polydnavridae and Retroviridae10–12. The coral-associated viral

diversity shows that viruses could infect all cellular members of the

coral holobiont, i.e. the coral animal, algal symbionts and all of its

other microscopic and macroscopic symbionts.

Eukaryotic viruses in coral disease and bleaching

Althoughover 20 coral diseases have beendescribed, noneof them

are unequivocally shown to be caused by a eukaryotic virus that

directly infects the coral animal or symbiotic algae (Figure 1A).

For example, yellowband/blotchdisease (YBD)causesdegradation
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of Symbiodinium cells and has tentatively been linked to the

abundance of virus-like particles (VLPs)13. Similarly, corals affected

with white plague disease in the Caribbean have shown increased

numbers of single-strand DNA viruses14. For both diseases, asso-

ciated viruses still need to be isolated to investigate their causality

using methods such as Koch’s postulates.

Viral lysis (disintegration of infected cells) of Symbiodinium may

be responsible for some instances of coral bleaching (Figure 2).

A distant cousin of the dinoflagellate Heterocapsa circularis-

quama RNA virus, first detected with metatranscriptomics16, has

recently gained attention for its potential role in coral bleaching

(reviewed in Thurber et al.17 and Sweet and Bythell18). Transcripts

of the ssRNA viruswere shown to be present at high abundance in a

heat-sensitive Symbiodinium culture, while they were barely de-

tectable in a conspecific heat-tolerant culture, suggesting Symbio-

dinium and perhaps coral thermal tolerance is linked to the

presence of this virus19. In order to progress the research in the

field, PCR primers have been designed to assess presence and

diversity of the ssRNA virus; these primers can potentially be

modified for virus quantification during in situ coral bleaching

events20.

The potential roles of bacteriophages

in coral disease

The mechanisms by which lysogenic and lytic bacteriophages

interfere with or contribute to coral disease pathogenesis are

primarily indirect, i.e. bacteriophageson theirowndonot influence

the coral animal or Symbiodinium, but infect bacteria, which then

secondarily influence coral health.

After infection of a target bacterium, the lysogenic stage refers to

the integrationof thebacteriophage genome into thebacterial host

genome as a prophage. Bacteriophagesmay increase the virulence

of a bacterial pathogen after establishing lysogeny and transferring

new genetic material into the host bacterium. For example, the

pathogenicity of the bacterium Vibrio cholerae primarily depends

on infection by a lysogenic bacteriophage (CTXphi). The bacteri-

ophage transfers genes thatencode foroneof theprimaryvirulence

factors, in this case the cholera toxin (CT), and convertsV. cholerae

from a non-pathogenic to a pathogenic strain21. Lysogenic conver-

sion has been suggested to also increase the virulence of Vibrio

coralliilyticus (Figure 1B), because parts of the bacterium’s viru-

lence factors that are linked to the coral disease white syndrome

and coral bleaching are arranged similarly to the pathogenicity

islands of the V. cholerae prophage22.

Other lysogenic bacteriophages persist over extended periods of

time until a trigger induces a lytic cycle, e.g., an increase in

temperature or UV radiation. The lytic stage is characterised by

the replication of bacteriophages within the bacterial host, which

results in lysis of the host cell and release of newly produced

bacteriophages23. For instance, traces of bacteriophages were

detected in theCRISPRarrayswithin thegenomesof cyanobacteria,

DIRECT

(A)

(B)

(C)

(E)

(D)

INDIRECT

Figure 1. Viruses in coral health and disease. Viruses could contribute
to or interfere with disease pathogenesis, for example, through direct
(labelled A) and indirect (labelled B–D) processes. (A) Direct processes
include eukaryotic viruses that target either the coral animal or
Symbiodinium, e.g. as suggested in the case of virus-induced coral
bleaching and yellow blotch disease, the virus on its own would cause
the disease, therefore a direct interaction. (B–D) Indirect processes
include bacteriophages that interact with the prokaryote community,
which then have a secondary influence on the coral animal or algal
endosymbionts (Symbiodinium spp.). (B) A bacteriophage might
increase the virulence of an infected bacterium though horizontal
gene transfer of virulence genes, which then causes a disease in the
coral. In addition, bacteriophages may infect and lyse pathogenic
bacteria, reducing the impact of a disease (C) as part of the coral
microbiome, or (D) external from the coral holobiont, e.g. applied
manually in phage therapy. (E) A bacteriophage may also interact
with the coral prokaryote community and lyse a probiotic bacterium,
which could open up a niche for a coral pathogen. Individual images
publicly available for reuse with modification.

Figure 2. Transmission electron microscopy image of a cultured
Symbiodinium cell, thin sectioned. The chromosomes of an untreated
control strain of Symbiodinium C1 were degrading while showing the
presence of unknown filamentous virus-like particles. Chromosomes
in the image are light grey circular shaped. Filamentous virus-like
particles are indicated by the arrow. Symbiodinium strain was
cultured at the Australian Institute of Marine Science. Image courtesy:
Karen Weynberg15.
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Roseofilum reptotaenium and Geitlerinema sp., two species

dominating the black band disease mat in terms of biomass24.

These findings suggest the cyanobacteria are regularly infected

by bacteriophages and that phages may play a role in the disease

development24.

Virusesmayalsohavepositiveeffects oncoral health, suchaspurely

lytic bacteriophages25. Specific bacteriophages that target patho-

genic bacteria may form part of the natural coral microbiome and

confer some disease resistance by preventing bacteria from exces-

sive proliferation (Figure 1C)26. Lytic bacteriophages have been

applied successfully in lab-based phage therapies for the treatment

of several bacterial coral diseases, e.g., white syndrome caused by

Vibrio coralliilyticus strains27,28. Thepromising potential of phage

therapy to treat a coral disease has been showcased, for instance,

through the effective mitigation of white plague-like progression

and transmission to other corals, during both a seven-week field

experiment29 and a 21-day laboratory experiment27.

Conclusion and progress

Although viruses might contribute key aspects to coral bleaching

anddiseases,ourunderstandingof thisfieldof research is still scant.

Even less is known about the functional contribution of viruses to

coral health18. The current scarcity of coral virus-related studies can

be linked to scientific challenges associated with environmental

virus research and the difficulty to distinguish between causality

and correlationof viruseswith a coral disease. In order toovercome

these issues, future research should establish coral host-virus

model systems and consider versatile research approaches. For

instance, relevant hosts for establishing virus cultures are Symbio-

dinium to investigate coral bleaching, R. reptotaenium for black

band disease virulence models, and V. coralliilyticus for white

syndrome virulence models. Multifaceted research approaches

should include (1) viralmetagenomics to characterise anddescribe

virus communities infield-collected corals30, (2)flowcytometry for

virus enumeration31, (3) liquid and plaque assays to isolate bacter-

iophages32, and (4) bioinformatic pipelines that are designed for

virus sequence data33. Research over the next decade will likely

solve some of these issues and shed more light on the ecological

importance of viruses in coral holobiont functioning. This will

hopefully provide new ways to manage coral diseases on the reef.
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Like many organisms, bacteria regularly inhabit environ-

ments characterised by spatiotemporal heterogeneity in

the availability of resources required for growth and energy

generation, meaning they must either tune their metabo-

lism toprevailing conditionsorhave the capacity tomigrate

to favourable microenvironments1. To achieve the latter,

bacteria measure their resource landscape and suitably

direct their locomotion using a behaviour called chemotax-

is, which is the ability to guide movement up or down

chemical gradients. The capacity to perform chemotaxis is

widespread across the bacterial domain, although most of

ourunderstandingof thisphenotype isderived fromenteric

bacteria2,3. In the ocean, marine bacteria are oftenmotile4,

and in fact capable of much higher swimming speeds5

and chemotactic precision6 than these enteric models for

chemotaxis2. Here we discuss the underlying motives

and purposes for bacterial chemotaxis in the ocean,

by noting that marine bacteria experience a surprisingly

heterogeneous chemical seascape7,8, whereby chemotaxis

can provide substantial fitness advantages and even influ-

ence large-scaleprocesses includingmarineecosystempro-

ductivity, biogeochemical cycling and disease.

Chemotaxis

Motile bacteria propel themselves by rotating helical flagella

driven by molecular motors2,3. Chemotaxis by these motile cells

is achieved through the constant measurement of local chemical

concentrations using trans-membrane chemoreceptors, while a

complex signal transduction network interprets this information,

allowing cells to detect chemical gradients and regulate motility

accordingly1–3. This chemotactic behaviour ultimately allows bac-

teria to swim toward favourable chemicals and away from noxious

substances (Figure 1). Chemotaxis is one of the best-described

sensory systems in biology, with a highly developed understanding

of this behaviour acquired from well-defined model organisms,

suchasEscherichia coli2. The importanceof chemotaxis is typically
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considered within the context of highly structured microenviron-

ments, where chemical gradients are strong and stable, such as

within biofilms or in association with the internal and external

surfaces of plant and animal hosts3. However, growing evidence

suggests chemotaxis is a ubiquitous phenotype across a wide

range of environments, even within the ostensibly well-mixed and

homogenous ocean, where it is employed by diverse groups

of marine bacteria for a variety of functions including resource

acquisition and host infection9.

Marine bacteria use chemotaxis to exploit

a heterogeneous seascape

On average, every litre of seawater contains 1 billion bacteria and

several thousand different bacterial ‘species’10. These marine

bacteria control most of the oceans’ major chemical cycles (e.g.

carbon, nitrogen, and sulphur)7,11, support food-web productivity

by acting as the principal conduit for the transfer of energy and

matter from the oceans’ large pools of dissolved organic matter

to higher trophic levels12, and can exhibit important symbiotic

and pathogenic interactions with many species of marine

animals and plants13,14. However, the role of chemotaxis among

marine bacteria has been widely over-looked, largely because

biological oceanographers have traditionally measured microbio-

logical processes over large spatiotemporal scales, and incorrectly

presumed that the microscale chemical seascape experienced

by planktonic bacteria inhabiting the ocean’s water column is

homogenous.

Rather than comprising a dilute homogenous soup, from the

perspective of a chemotactic bacterium seawater is awash with

microscale chemical features that contribute to a complex

microspatial architecture7,15 that will often afford significantfitness

advantages to chemotactic cells16. Large pools of suspended

and sinking organic particles provide rich localised resource

hotspots for bacteria that can colonise them17, while the lysis,

egestion, excretion, and exudation of other marine organisms

results in a patchwork of microscale chemical gradients in the

water column8,15.

Importantly, the fluid dynamics operating at these very small scales

are extremely different to those experienced at larger scales,

meaning that, perhaps counter-intuitively, microscale chemical

gradients are not significantly mixed or dispersed by ocean turbu-

lence. Belowaminimum length scale of generally a fewmillimetres,

viscosity becomes dominant and turbulent energy is lost as heat.

The only physical force acting on chemical gradients at this scale is

molecular diffusion, which slowly dissipates gradients rather than

mixing and erasing them15. It is also noteworthy that this lack

of true mixing at microbial-scales means that no matter the bulk

levels of ocean turbulence, the passive movement of a bacterium

remains in synchrony with nearby features, so the cell will not be

‘washed past’ or ‘washed away’ from a gradient, particle or mi-

crobial associate that is suspended in the same water column9.

Hence, the physical dynamics operating at the ocean’s microscale

accommodate the persistence of chemical gradients and the utility

of chemotaxis in the water column.

Motile marine bacteria use chemotactic receptors to detect and

target a wide range of microscale chemical features in the water

column. Large pools of particulate organic carbon associated with

suspended and sinking particles, ranging from micrometre-sized

colloids to millimetre-sized marine snow aggregates are derived

from a number of sources, including the flocculation of dead

Figure 1. During chemotaxis, motile bacteria sense chemical concentrations using transmembrane chemoreceptors allowing them to direct their
movement up or down chemical gradients, often resulting in accumulation of cells near to the source of a chemical attractant.
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phytoplankton biomass and zooplankton fecal pellets. These par-

ticles typically contain concentrations of organic molecules that

exceed background concentrations by 2–4 orders of magnitude18.

Chemotactic bacteria colonise these particles at substantially

higher rates than non-motile bacteria17.

The first evidence for the potential importance of chemotaxis

among marine bacteria came from the observation that many

are highly chemotactic towards the chemical products of

phytoplankton19. This led to the hypothesis that marine bacteria

will use chemotaxis to colonise the ‘phycosphere’ – the region

immediately surrounding a phytoplankton cell that is enriched in

exuded organic substrates20 (Figure 2). The potential capacity of

bacteria to use chemotaxis to take advantage of this microenviron-

ment is notable given that marine heterotrophic bacteria obtain a

large fraction of their carbon demand directly fromphytoplankton,

consuming up to 50% of phytoplankton-fixed carbon21. Recent

studies using microfluidic experiments22 and direct microscopic

observations of chemotactic bacteria aggregating around phyto-

plankton cells16 support predictions that bacterial chemotaxis will

enhance bacterial uptake of phytoplankton derived carbon, as well

as potentially underpinning the establishment and maintenance

of important phytoplankton-bacteria relationships in the ocean20.

In addition to colonising particles and phycospheres, there is also

evidence thatmarinebacteria canusechemotaxis to takeadvantage

of ephemeral microscale nutrient patches arising from the lysis

and excretion of other microbes8. While these patches often only

span a few tens to hundreds of micrometres and persist for less

than 5–10min, the ability of chemotactic marine bacteria to very

rapidly home in on and subsequently exploit these abundant

localised sources of organic substrates has been predicted to

significantly enhance organic matter remineralisation rates in the

pelagic ocean1.

Chemotaxis at the sediment-water interface

Compared to the complex, 3-dimensional and often short-lived

chemical microenvironments occurring in the pelagic environ-

ment, the chemical landscape of the sediment-water interface at

the bottom of the water column is often much simpler. Elevated

concentrations of organic matter present on the seafloor promote

high levels of microbial activity, which in turn generates steep

vertical oxygen and nutrient gradients that are relatively stable

through time. The surface sediments are often dominated by

sulphur-oxidising bacteria, including Thiovulummajus, the fastest

swimmingbacteria recorded (swimmingup to 600mms–1)23,which

uses chemotaxis to form dense aggregations in the narrow

region where optimal concentrations of oxygen and hydrogen

sulphide co-exist.

Host associations

Thesurfacesofbenthic (e.g. corals, sponges, seaweeds) andpelagic

macro-organisms (e.g. fish) are also characterised by strong chem-

ical gradients, resulting from exudation of organic and

inorganic compounds, which in some cases can attract specific

Figure2. Thephycosphere is the regionsurroundingan individualphytoplanktoncell that is enriched indissolvedorganicsubstratesexudedby thecell
into the surroundingwater.Chemical gradientswithin thephycosphereareutilisedbychemotacticbacteria to colonise thismicroenvironment in order
to gain increased access to phytoplankton-derived organic carbon and/or establishmore specificmetabolic interactionswith the phytoplankton cell.
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bacterial partners24. Indeed, chemotaxis is sometimes central to

the establishment of host-microbe symbiotic interactions and

infection by pathogens. One of the best-studied examples is the

chemotaxis-mediated symbiosis between bobtail squid and the

light-emitting bacterium Vibrio fischeri. Very low densities of

V. fischeri are present in the water column, but they exhibit

chemotactic migration towards chitin oligosaccharides, which are

released from the squid’s light-organs and act as a signal to trigger

their colonisation25. Conversely, other vibrios are pathogens that

use chemotaxis towards fish intestinal mucus (V. anguillarum

andV. furnissii)26, or coralmucus (V. coralliilyticus andV. shiloi)27

to initiate the infection process.

From the lab to the field

The capillary assay was the first method used to quantify chemo-

taxis and is still widely used today. It uses a glass capillary filledwith

a specific concentration of a chemoattractant, which is immersed

in a homogenous bacterial suspension28. The compound subse-

quently diffuses out of the capillary and chemotactic cells respond

by migrating into the capillary. A wide variety of chemotaxis assays

have since been developed, but the most recent and sophisticated

techniques employ microfluidic devices22. These platforms enable

the generation of carefully controlled microgradients, which when

coupled with high-speed video microscopy, permit tracking of the

chemotactic swimming behaviour of individual cells. However,

until recently, all available chemotaxis assays have shared a com-

mon limitation: their use is restricted to laboratory conditions and

cultured microorgranisms. We recently developed a new device

that enables assessment of chemotaxis assays among natural mi-

crobial communities of bacteria within the environment29. Results

derived from this new in situ platform have confirmed that natural

assemblages of pelagic marine bacteria exhibit strong chemotaxis

towards amino acids29, that bacteria in the vicinity of reef-building

corals are attracted by common coral exudates such as dimethyl-

sulphoniopropionate30, and that the acquisition of specific bacte-

rial associates by marine sponges is not solely passive, but can also

be mediated by chemotaxis31.

The importance of chemotaxis in the marine

environment

Besides providing a competitive advantage to motile cells, chemo-

taxis amongmarinebacteriahas thepotential to impact anumberof

large-scale ecological andbiogeochemical processes. The initiation

of symbiotic interactions that underpin the ecological success

of some of the most productive marine ecosystems (e.g. coral

reefs, hydrothermal vents, seagrass meadows) often relies on

chemotaxis13,30. This behaviour is also involved in pathogenicity

and disease outbreaks among a wide range of marine species32,33,

both in natural habitats27 and in aquaculture settings34, sometimes

with dire ecological and economic consequences. In the pelagic

environment, chemotaxis plays an often pivotal role in all major

biogeochemical cycles, by affecting the rates and directions of key

chemical transformations1,9,20. For example, chemotaxis-mediated

particle colonisation influences controls the amount of carbon that

either sinks to the deep sea or is respired in the upper ocean,

ultimately influencing global carbon budgets35.

Summary

Rather than thehomogenousmicroscale seascape longassumedby

oceanographers, marine bacteria inhabit a surprisingly heteroge-

neous environment, with a plethora of localisedmicroniches likely

to persist in the water column, across spatial scales commensurate

with the movement of motile bacteria. The capacity to employ

chemotaxis to navigate this environment and successfully exploit

microscale resource gradients will therefore provide a significant

fitness advantage to some marine bacteria within a number sce-

narios. Many examples of highly effective chemotactic capacity

among both cultured marine bacteria and natural communities

are consistent with this notion, with several lines of evidence

suggesting that these microscale bacterial behaviour’s will likely

have a number of important ocean-scale implications.
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Emerging microbiome technologies for
sustainable increase in farm productivity
and environmental security

Farming systemsareunderpressure to sustainably increase

productivity to meet demand for food and fibre for a grow-

ing global population under shrinking arable lands and

changing climatic conditions. Furthermore, conventional

farming has led to declines in soil fertility and, in some

cases, inappropriate and excessive use of chemical fertili-

sers and pesticides has caused soil degradation, negatively

impacting human and environmental health. The soil and

plant microbiomes are significant determinants of plant

fitness and productivity. Microbes are also themain drivers

of global biogeochemical cycles and thus key to sustainable

agriculture. There is increasing evidence that with devel-

opment of appropriate technologies, the plantmicrobiome

can be harnessed to potentially decrease the frequency of

plant diseases, increase resource use efficiencies and ulti-

mately enhance agricultural productivity, while simulta-

neously decreasing the input of chemical fertilisers and

pesticides, resulting in reduced greenhouse gas emissions

and promoting environmental sustainability. However, to

successfully translate potential to practical outcomes, both

fundamental and applied research are needed to overcome

current constraints. Research efforts need to be embedded

in industrial requirements and policy and social frame-

works to expedite the process of innovation, commerciali-

sation and adoption. We propose that learning from the

advancement in the human microbiome can significantly

expedite thediscoveryandinnovationofeffectivemicrobial

products for sustainable and productive farming. This

article summarises the emergence of microbiome technol-

ogies for the agriculture industry and how to facilitate the

development and adoption of environmentally friendly

microbiome technologies for sustainable increase in farm

productivity.

The global population is expected to reach 9 billion by 2050 and an

increase of 70–100% in farm productivity is needed to meet the

demand for food andfibre. This increase in agriculture productivity

needs to be met from a shrinking arable land area due to multiple
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demands (e.g. food, fuel, fibre and climate mitigation) and land-

degradation. Current farming practices that use chemical fertilisers

and pesticides have contributed significantly to increase farm

productivity but have also contributed, in some cases, to chemical

contamination, soil degradation, loss of biodiversity and compro-

mised soil and water quality, which together impact overall envi-

ronmental sustainability and can impact human health. Agriculture

productivity faces additional major challenges including structural

decline in soil fertility (i.e. increase in inputs does not result in

proportional yield gain) and negative impact of climate change

including extreme weather events1,2. Emerging microbiome

approaches have potential to address most of these challenges as

a complimentary approach to conventional farming.

The plant microbiome, which consists of microbiota associated

with all plant compartments (e.g. root, stem, leaves, flowers, seed),

many of which have a wide and beneficial impact on plant fitness

and productivity, if exploited appropriately, can boost agricultural

productivity and environmental outcomes. The plant microbiome

affects host physiology and productivity by improving resistance

to biotic (e.g. disease and pest attack) and abiotic (e.g. nutrient and

water limitation, heavy metal contamination) stresses3. The plant

microbiome is immensely diverse and comprises mainly mutual-

istic partners wheremicrobes receive carbon and habitats in return

for supply nutrients and defense provision against plant pests and

pathogens. Manipulating the plant microbiome has great potential

to increase farmproductivity by enhancing resource (e.g.water and

nutrients) use efficiency and reducing the impact of disease and

pest incidences. Because plant and microbial associations have

evolved together for millions of years, they have well-developed

mutual recognition, association andcommunicationmechanisms4.

Identifying drivers of microbial assembly and communication

molecules can therefore significantly advance our ability to manip-

ulate microbiomes for better outcomes.

Concept of core and hub microbiome

There is growing evidence that different plant species harbor

distinct microbiomes that are significant determinants of their

survival and fitness3. However, not all plant microbiota are bene-

ficial. In fact, a significant proportion are opportunistic microbes

which are there only to exploit available nutrients and a small

number are plant pathogens3,5, whichmay dominate under certain

environmental conditions and limit crop productivity. Therefore,

identifyingbeneficialmicrobes is a criticalfirst step toharness them

to sustainably increase farm productivity. In this regard, applying

the core microbiome (persistent members of microbiota that

appear in all communities associatedwith a particular crop or plant

species under different environments and management practices)

approach is gaining scientific attention6,7. The core microbiome is

considered a critical component for essential functions for holo-

bionts (i.e. plantplusmicrobiota) as theyareenriched, selectedand

inheritedbyevolutionary steps6. The coremicrobiomeof anumber

of crops including maize, barley, rice, soybean, lettuce, and sugar-

cane have been reported7–9 with some taxa present in most of the

studied crop hosts. However, few biogeography studies have

questioned the universal distribution of taxonomic core micro-

biome under various environmental conditions. It has been sug-

gested that the microbiota recruited by a given plant genotype in

different environments seems to share greater functional than

taxonomic similarity6. According to this view, elucidating a func-

tional core microbiome either by directly looking for functional

attributes (using metagenomics such as shotgun sequencing) or

indirectly through taxonomic information (using methods such as

PICRUStandTax4Fun)will providebetterunderstandingof the role

of the microbiome in plant performance and health that can be

harnessed for improving farm productivity for multiple crops.

The identification of a coremicrobiome of various crop species will

help to identify plant-associated microbes that should be priori-

tised for further research, inclusion in culture collections, and

manipulative experiments to improve crop productivity further.

Fast moving omics technologies (genomics, metagenomics, meta-

transcriptomics andmetaproteomics) can provide the information

on key functional roles of uncultivable microbes within the plant

microbiome10 and identify those that areadaptive toenvironmental

pressures. Comparison of the core microbiomes between plant

species and genotypes within a species reveals host-driven differ-

ences in microbiome assembly. The mechanisms by which hosts

assemble microbial community are not fully understood, although

plant biochemical traits such as hormones, secondarymetabolites,

cuticle composition, root length and exudates, and plant defences

(immunity) have been identified as important determinants.

Because the cropmicrobiome, plant phenotype, and environment

interact to affect yield, comparing themicrobiomesof plants grown

in contrasting environments can potentially provide key insights of

the microbial role in plant fitness. Microbes that are especially

common in challenging environments are more likely to protect

yield under biotic and abiotic stresses. The core microbiome still

contains hundreds of microbial ‘species’ and therefore, it is

logistically difficult to manipulate the systems. To address this

challenge, a ‘hub microbiota approach’ has been used11. This

approach is based on the concept that microbiomes are a complex

and inter-connected network where different populations have

different roles and some ‘keystone or hub species’ are crucial for

maintenance of the functioning network7,11,12. Thefinding that the
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effect of host and abiotic factors can cascade through communities

via ‘hub’ microbes is important to understand the fluctuations in

community structure and functions that can be linked to plant

performance. Theoretically, these hub species are highly intercon-

nected and centre of the microbial network and therefore, chang-

ing any of the hubmicrobiome can have a significant impact on the

core and overallmicrobiome of plant species. Thus hubmicrobiota

are prime targets for in situmanipulation of the crop microbiome

for better productivity and environmental outcomes.

Current status and challenges

Use of microbes for agriculture has been practiced for several

decades, mainly in the form of bio-fertilisers and bio-pesticides.

These are mainly one-species products that either provide nutri-

ents, particularly nitrogen (e.g. use of symbiotic rhizobia or free-

living Azotobacter), mobilise phosphorus (e.g. Penicillium spe-

cies) or protect against pests; insect (e.g. Bacillus thurengenesis)

or fungus (e.g. Trichoderma viride). In recent years, a number of

start-up companies (e.g. Indigo Ag, Chr-Hansen, NewLeaf Symbio-

tics, Growcentia) and large multi-national companies (e.g. Bayer

Ltd, Nufarm, Monsanto BioAg) have commercialised microbial

products for enhancing farm productivity. In fact, microbial pro-

ducts are one of the fastest growing start-ups and are expected to

have global market of $6.4 billion by 2022. It is estimated by 2020,

there will be more bio-pesticides in the European market than

chemical pesticides and within the next few years, microbial pro-

ductswill have complementarymarkets of chemical pesticides ($55

billion1). This projection is based on the fact that current microbial

products are based on a small proportion of cultivable species

(~5% of the total microbiome) and biochemical characterisation

of whole microbiomes for agriculture products is in its infancy.

Further, themajority of cultivablemicrobes have yet to be explored

for their plant beneficial activities. For example, more than 50% of

human medicines come from natural resource13 but only 11% of

pesticides have biological origin, suggesting that most pesticidal

properties from microbes are yet to be discovered. These possi-

bilities have attracted significant investments from both govern-

ment agencies and private companies. However, to realise the full

potential, a number of technical, regulatory and social challenges

need to be addressed.

The technical challenges are significant. First, we are unable to

cultivate most environmental microbes (>95%) and that means

most microbial metabolisms involved in plant health are not yet

characterised. This heavily constrains our ability to harness them

for agriculture productivity. Second, the performance of microbial

products in field conditions has been mixed and in some cases

effective performance in greenhouse studies was not replicated in

field conditions. In several cases microbial products were not able

to colonise plants or were outcompeted by indigenousmicroflora.

Sustaining the efficiency of microbial products for the duration of

the crop cycle is another major challenge. Activities of several

microbes are influenced by abiotic (e.g. soil types, pH), climatic

(e.g. drought) and biotic (e.g. competition with indigenous micro-

flora, recognition of host-microbial interactions) conditions.

Microbes not only need to survive but colonise crop plants and

maintain activities for at least thedurationof thecropcycle. Inother

words, microbial products, in several cases, perform short of the

gold standard for industry, i.e. works in all environmental condi-

tions and at all crop stages. These are serious challenges that need

to be overcome if microbial products can be used alongside or as

a substitute to agrochemicals. In addition to these technical chal-

lenges, different collection and analysis techniques, reagents,

and parameters may introduce variations in microbiome results

further compounding the biologically relevant role of the micro-

biome in practical settings14. Equally important, with the present

‘microbiomepotential’, it should be emphasised that the structure

and function of the microbiome are only one component in the

multi-trophic cascades that determines host response. Thus, only

an integrative multivariable approach, which integrates the phys-

iology and genetics of both host and microbiome, as well as other

environmental variables (including stress such as drought), may

ensure that microbiome-based approaches are implemented to

their fullest potential to influence plant production and health.

Two key approaches for harnessing the plant

microbiomes

A simplified approach for harnessing plant microbiomes (we used

this term both for isolated consortium and in situmicrobiome) is

outlined in Figure 1. First, characterisation of plant beneficial

microbes can be achieved by the isolation from the rhizosphere,

phyllosphere or endosphere. Isolates can be screened for their

plant growth-promoting properties, and interspecific interaction

assessed. Through selection of those microbes that demonstrate

synergistic interactions between each other and with plants (as

opposed to those that are antagonistic), a core microbiome that

leads to plant and environmental benefits can be identified and

harnessed directly.

Improvised traditional approaches

Traditional methods of microbial screening and isolation and their

use in agriculture have provided some success both in nutrient

supply and pest management. However, improvement in isolation
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and screening methods has been frustratingly slow and we are still

not able to culture the vast majority of microbes. Some progresses

have beenmade, for example in formulating optimisedmedia (e.g.

shell vial procedure)15, automated sorting and imaging techni-

ques16, and use of helper strains17 to cultivate novelmicrobes from

complex environmental settings. Emerging technologies such as

genomics have allowed the cultivation of previously uncultivable

microbes by identifying special nutritional or co-factor require-

ments18. Bai et al.19 have shown that through selective screening

protocols a culture collection of microbes can be generated that

represents the majority of bacterial species that are reproducibly

detectable by culture independent community sequencing. As the

number of genomes obtained from binning of metagenomics

sequence data is rapidly growing, this genome-assisted cultivation

approach has potential to significantly improve microbial cultiva-

tion fields. Success of microbial products in field conditions can be

enhanced either by the improvement of strains or using local

microflora which are adapted to a particular region. Furthermore,

plant-assisted microbial breeding can improve the mutual recog-

nitionof host andmicrobial products that canhelp the colonisation

in field conditions.

Use of endophytes provides another avenue for better efficacy,

particularly if the endophyte can colonise in the early stage of crop

development. In such scenarios, the competition with indigenous

microflora is minimised, which improves their ability to maintain

activities. For example, Mitter et al.20 discovered that the intro-

duction of beneficial endophytes to the flower of parent plants

can drive its inclusion in the progeny seed microbiome, thereby

inducing vertical inheritance to the offspring generations. There is

growing evidence that the use of consortia provides better

performance than single species products and future products

should target this approach where multiple species can be har-

nessed1,21. However, it is important to examine the synergy of

survival, lifestyle and activities of individualmembers for successful

outcomes under field conditions. The success of these and probi-

otic approaches (see below) depends on addressing key funda-

mental questions, i.e. identificationof requirementsof recognition,

colonisation, persistence, and continuous activities of introduced

microbiota. This is a critical knowledge gap that needs to be

addressed in order to provide consistent efficacy of microbial

products. Framing ‘invasion ecological theory’ in creating unique

niches for the introduced microbes can be useful to address this

challenge.

Emerging approaches to manipulate plant

microbiome in situ

Anumber of approaches are being currently developed and trialled

to harness the whole plant microbiome without a need to culture,

including use of transgenic or more conventional approaches. For

example, using engineered plants with root traits that stimulate

beneficial microbes such as mycorrhiza; nitrogen fixers, phospho-

rous, potassium and zinc solubilisers; siderophore and phyto-

hormone producing microbes can have direct positive impacts on

farm productivities22. However, given the public perception of

transgenic plants, use of this approach for food crops remains

limited. Other non-transgenic approaches which can manipulate

the microbiome in situ are gaining more attention. These include:

(1) exploiting plant-microbial communication molecules: plants
and microbes both produce a number of communication
molecules to communicate their requirements to their part-
ners. For example, when a plant is starved of phosphorus,

Cultivable approach Non-Cultivable: In situ Microbiome
approach  

• Improved method of
microbial culture 

• Genome-assisted
approach 

• Plant-assisted microbial
breeding 

• Selective screening

• Transgenic plants

• Signalome approach

• Hub microbiota
appraoch 

• Synthetic biology

• microRNA

Improved crop productivity

Figure 1. A schematic representation of current and potential cultivable and in situ microbiome approaches to increase crop productivity.
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it produces signal molecules which rhizosphere microbes
respond to by upregulating their phosphorus-mobilising
genes23. Similar signaling mechanisms are also evident for
attack of pathogens and pests4. Plants also communicate with
each other through volatile organic compounds (VOCs) to
induce responses that facilitate colonisation with beneficial
microbes24. However, given the extremely low quantity of
signal molecules produced, only a few such molecules have
been characterised. If the detection and characterisation of
signal molecules can be improved, it will provide an important
tool to introduce a directional change in microbial activities
which is beneficial for plant performance.

(2) useofmicrobial cocktails,whichdoesnothavedirectbeneficial
impacts onplants, can increase the activity of indigenous plant-
beneficial microflora. These cocktails mainly containmicrobes
with high amounts of signal molecules.

(3) identification of hub microbiota of crop species, and their role
in microbiome assembly and activities, provides an important
tool to manipulate the whole microbiome in situ.

(4) synthetic biology provides another important tool to engineer
novel andpredictable functions in cropprobiotics, whichupon
release on a plant can enhance the activities of beneficial
microbes in a predictable fashion.

(5) in situ genome engineering tools25 can be used to directly
engineer the genome of the in situmicrobiome. Here mobile
geneticmaterials (e.g. plasmid) can be delivered to indigenous
microflora where they promote desired and directional
functions.

(6) plants have micro-RNA (miRNA) which is responsible for
regulating the structure and function of plant-microbe inter-
actions and the rhizosphere microbiome. This has been
utilised to restore healthy digestive systems26 and could be
a significant tool to target beneficiary microbes for enhanced
crop production.

We envisage that the use of microfluidics-based technologies will

be instrumental in providing unique insights into the microscale

plant-microbiome interactions in complex root microenviron-

ments by allowing dynamic imaging of these interactions. This

technology is likely to enhance the current rate of discoveries in the

field of microbiome research27 with tremendous applications to-

wards harnessing beneficial interactions in large field settings.

All above emerging technologies in combination with ecological

engineering (use of management tools such as crop rotation, non-

tillage) and plant breeding (e.g. the integration of the plant breed-

ing with a particular microbiome) has a significant potential to

manipulate host microbiomes to enhance the efficiency of con-

trolling plant diseases and increasing farm productivity2. However,

these technologies are still in their infancy and need to be further

tested for their efficacy under field conditions as well as for any

non-intended impact, for example, negative impact on overall

environmental outcomes.

Learning from the human microbiome

and future perspectives

The fundamental principle of microbial assembly in humans and

plants is identical and is based on selection enrichment and

evolutionary processes and there are important similarities be-

tween plant and human microbiomes in their functional roles.

There is growing evidence that human microbiomes play an

essential role in physiological, emotional and evolutionary aspects

and therefore overall health and fitness of humans. Plant micro-

biomes have a similar role for overall plant fitness and health

(Figure 2). Learning from the advancement in human microbiome

research (which is at a significantly more advanced stage) can

significantly expedite discovery and innovations in agricultural

microbiology because there are striking similarities in the func-

tional role between human and plant microbiomes (Figure 2).

For example, there is increasing evidence that dysregulation of

• Nutrient uptake

• Resist pathogen establishment 

• Regulate host immunity

Skin

Airway

Vagina

Stalk

Leaf

Rhizosphere soil

Roots

Gut

Minimise stresses;
• Biotic (e.g. pests, pathogens)

• Abiotic (e.g. drought, heatwave)

• Sexual health

• Reproductive success

Flower

Human Microbiome Plant Microbiome

Figure 2. Functional similarity between human andplantmicrobiomes. All aspects of humanand plant heath are influencedby resistantmicrobiomes.
For example, the gut microbiome is known to play important role in nutrient uptake, resistance against pathogen invasion and regulation of immunity
in humans. Rhizosphere microbiomes carry out almost identical functions for the plant. Similarly, there is increasing evidence that microbiomes
of reproductive organs play a critical role in sexual health and reproductive success both in humans and plants.
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human andmicrobiota is associated with multiple human diseases

includingdiabetes, colorectal cancer, liver cirrhosis28. Theessential

role of the gut microbiome in effectiveness of cancer chemo- and

immunotherapy has been found and recent studies suggest that

humans can be grouped to responsive and non-responsive groups

of therapy based on their intestinal microbiomes. More important-

ly, transfer of microbiomes from responsive to non-responsive

groups can improve the efficacy of the cancer medicines29, indi-

cating the direct role of microbiota. A similar framework can be

developed to identify the mechanisms of pesticide resistance in

weeds, insects and pathogens and intervention can be developed

(e.g. pesticide+ responsive microbiota) for effective pest control

withminimal use of chemical or biological pesticides. Similarly, the

role of gut and genital microbiomes in enteric andHIV infections is

well documented30, and if the key (core and hub) microbiota of a

crop species that protects or promotes immunity against patho-

gens can be identified, an appropriate intervention (e.g. microbial

cocktails, probiotics, microbial transplant) can be developed to

minimise the rate of infections and hence improve farm produc-

tivity. In human microbiome research, the next avenue is the

utilisation of the microbiome information to assist personalised

diagnostic assessment, risk stratification, disease prevention, and

treatment-decision-making14. Once this concept is developed and

successfully implemented, it can also be used for tailor-made

microbiome interventions in context based situations for increased

plant performance and health.

Conclusion

The microbiome approaches provide significant opportunities to

increase farm productivity in an environmentally sustainable way.

However, plant microbiome research is still in its infancy and

further research is needed to advance both theoretical and exper-

imental frameworks in order to convert potential into reality.

Systematic and concerted efforts are required to identify core and

hubmicrobiota of important crop species and how they respond to

biotic and abiotic stresses. Although use of microbial products has

been growing rapidly, transformational changes in the industry will

come fromour ability tomanipulate thewholemicrobiome in situ.

There are a number of technologies being developed but a major

challenge will be efficacy of these technologies in field conditions.

Integrating effective microbiome approaches with emerging pre-

cision agriculture, synthetic biology, satellite, big data and genomic

approaches can provide a strong framework to realise the true

potential of plant microbiome technologies in agriculture and

environmental sectors. With these challenges met, incorporating

microbiome-related interventions for increasing plant productivity

in an environmentally sustainable way, by promoting resilience/

resistance to abiotic and biotic stresses may emerge as an integral

part of modern agriculture.
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The soil microbiome, including bacteria, archaea, fungi,

viruses, and other microbial eukaryotes, has crucial roles

in the biogeochemical cycling of nitrogen (N), the mainte-

nanceof soil fertility, and theplantNuse efficiency (NUE) in

agro-ecosystems1.Recent advances inomics-based technol-

ogies (e.g. metagenomics, metatranscriptomics, and meta-

proteomics) have expanded our understanding of the soil

microbiome and their controls on specific N-cycling

processes1–3. Given the growing N-based fertiliser con-

sumption and continuous land degradation, innovative

technologies areneeded tomanipulate the soilmicrobiome

to improve crop NUE, reduce N losses and increase N res-

ervation in soil. This article discusses the research direc-

tions to facilitate the development of microbiome-

manipulating technologies for sustainable management of

N transformation processes.

Thecropnitrogenuseefficiency (NUE) inmodernagro-ecosystems

is notoriously low, asmore than 50% of N fertiliser applied is lost to

the environment through ammonia volatilisation, nitrate leaching,

and emissions of nitrous oxide (N2O), the third most important

greenhouse gas4,5. These losses aremostly driven by amyriad of N-

cycling processes (in particular, nitrification and denitrification)

that can be modulated by a broad range of soil microorganisms

(Figure 1)6,7. Conventional agricultural practices mainly rely on

agronomic measures and chemical inputs to improve NUE, which

could lead to soil degradation and loss of biodiversity, with detri-

mental consequences for soil health and ecosystem functioning8.

For example, long-term use of synthetic fertilisers, herbicides, and

pesticides can negatively influence bacteria and fungi that create

organic matter essential to plants. To meet the increasing food

demand of a global population of more than 11 billion by 2100,

there is an urgent need to discover new intervention points to

manage N-cycling microorganisms for improved NUE and sustain-

able agricultural production.

Propelled by the evidence in manipulating gut microbiomes for

improved human health, there are growing interests focused

towards the manipulation of the soil microbiome to reduce soil

erosion, to enhance plant growth and disease resistance in agro-

ecosystems, and to promote the remediation of heavy metal-

contaminated soils1,3. In this article, we discuss the currently-used

technologies and emerging microbial biotechnologies that can

manipulate the soil microbiome in situ to mitigate the processes

of agricultural N loss and improve crop NUE, leading to both

enhanced crop yield and positive environmental and social

outcomes.

Physicochemical approaches to manipulate the

soil microbiome

Physicochemical approaches have been put forward to reduce

agricultural N losses through manipulating the abundance, struc-

ture and activities of soil N-cycling microorganisms or controlling

the amount of N resources available to microorganisms (Figure 2).

Some practical tools utilised in agro-ecosystems to improve NUE

include: (1) use of synthetic nitrification inhibitors (e.g. DMPP and

DCD) to inhibit the activity of ammonia oxidisers and reduce the N

loss through N2O emission and nitrate leaching9; (2) use of urease

inhibitors (e.g. N-(n-butyl) thiophosphoric triamide (NBPT)) to

inhibit the expression of genes encoding ureases that catalyse urea

hydrolysis10; (3) manipulation of soil properties (e.g. soil pH, C:N

ratio, and moisture) by agrochemical amendments and agronomic
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practices to indirectly reshape the abundance, diversity and struc-

ture of soil microbiomes; (4) incorporation of plant residues to

enhance microbial N immobilisation and reduce the amount of

inorganic N available to soil microbes11; and (5) use of precise

nutrient management practices and high-efficiency fertilisers to

better synchronise N supply and crop N demand and reduce

N available to soil microorganisms. Tools (1) and (2) are direct

practices that impact soil microorganisms while the other three

tools are indirect practices.

The outcomes of these physicochemical technologies are variable

across soils, primarily owing to their largely unknown impacts on

soil microorganisms. For example, the nitrification inhibitor DMPP

could effectively inhibit nitrification and N2O emissions in alkaline

soils through influencing the abundance and metabolic activity of

ammonia-oxidising bacteria, but had no significant effects in many

acidic soils probably due to the fast degradation ofDMPP9,10. Other

drawbacks of synthetic inhibitors include difficulties in application,

rapiddegradation, increasedammonia volatilisation, andmigration

into the food system5,12. In addition, long-termuseof chemicalshas

detrimental environmental impacts, resulting in the accumulation

of residues in fields, loss of beneficial microorganisms, and

disruption of the plant and soil microbiota association13. An im-

proved understanding of the key functional genes, enzymes

and regulatory mechanisms of N-cycling processes, and their

responses to interactions between different climatic, soil and

biotic properties (Figure 1), should be essential to improvement

of physicochemical strategies.

Global change factors
Nitrogen deposition
Climate change
Extreme weather events
Increasing grazing
Human disturbance
Land-use change

Abiotic factors
Oxygen and water
Temperature
Acidity and alkalinity
C/N ratio and SOM
Soil texture
Climatic conditions

Soil microbiomes & nitrogen cycling

Ammonia-oxidising archaea
Ammonia-oxidising bacteria
Comammox Nitrospira
Nitrite-oxidising bacteria
Anammox bacteria
Fungal and bacterial denitrifiers
Nitrogen fixing bacteria
DNRA bacteria
Other nitrogen-cycling organisms

Abundance
Structure
Diversity
Activity
Interaction

Biotic factors

Vegetation type
Plant diversity
Grazing animals
Macro-decomposers
Root exudation

Figure 1. The soil microbiome components involved in nitrogen transformation processes are influenced by a wide range of abiotic, biotic, and
emerging global change factors as well as their interactive effects.
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Figure 2. Schematic overview of the microbiome-manipulating tools that can be used for managing the nitrogen cycling processes in agro-
ecosystems. DNRA, dissimilatory nitrate reduction to ammonium; Anammox, anaerobic ammonia oxidation.
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Plant-based approaches to manipulate the soil

microbiome

Plant physiological traits can be selected by plant breeding (cultivar

selection) or genetic modification techniques to secrete specific

compounds or signalling molecules for the direct manipulation of

the soil microbiome in situ8,11. Plants have developed intimate

relationships with their interacting soil microbiomes and the en-

vironment (termed as the ‘phytobiome’)14. Some plant and crop

roots (e.g. Fallopia spp. and Brachiaria humidicola) can exudate

organic compounds to inhibit the ammonia monooxygenase (en-

zyme capable of oxidising NH3 to NH2OH) and hydroxylamine

oxidoreductase (enzyme capable of oxidising NH2OH to NO2
–) of

ammonia oxidisers15, or to inhibit the metabolic activity of deni-

trifiers16. Screening agricultural cropswith similar traitsmay greatly

enhance our ability to improve cropNUE by using themdirectly for

in situ microbiome engineering. A conventional plant breeding

programme, however, rarely takes into account the interactions

within phytobiome14, which may result in loss of beneficial micro-

biota, disruption of symbiosis associations, and unknown conse-

quences for other ecosystem processes13. Future plant-based

strategies should integrate the knowledge of the phytobiome into

the programme, by which specific N-cycling microorganisms are

manipulated in situ without compromising beneficial microbiota

and other ecosystem functions3.

Emerging microbial biotechnology approaches

to manipulate the soil microbiome

Microbial biotechnologies have shown enormous potential in

reducingN losses viaN2Oemissions in soybean root systemswhere

denitrifiersharbouringN2Oreductase, enzymecapableof reducing

N2O to N2, were amended17. These is evidence that the application

of organic fertilisers inoculated with N2O-reducing denitrifiers

decreased N2O emissions in agricultural soils at field scales18.

However, the persistence and functionality of these inoculated

microbiota are uncertain, as most of them are unlikely to persist in

soil due to the strong competition from indigenous microbiota.

Whenusing specific bacterial ormycorrhizal inocula as a strategy to

manipulate the soil microbiome, there is an urgent need tomodify

themode of delivery to increase their colonisation potential. Some

approaches8 include: (1) use of consortia of multiple compatible

microbes, rather than single-strain formulations, to better compete

with indigenous microbiota; (2) use of synbiotics to provide sup-

port for colonisation of the inoculated strains; (3) use of slow

release systems for inocula to provide continual inoculation under

field conditions; and (4) using chemical pesticides or predators for

the indigenousmicrobiota to create new niches for the introduced

microbiota. The combination of these approaches might help to

achieve maximum benefits and improved crop NUE.

Emerging microbial biotechnology tools are proposed to precisely

manipulate the soil microbiome in situ, by adding or withdrawing

chemicals19, to regulate N transformation processes under various

conditions. Multidisciplinary approaches, especially genome engi-

neering and synthetic biology, by fully taking advantages of micro-

biome knowledge, are needed for maximising the contribution

of microbiome-based biotechnologies to sustainable management

of the N cycle. Here, we highlight the key opportunities and

research priorities to harness the soil microbiome to manage

N transformation processes:

(1) Exploration of the core soil microbiome components involved
inN cycling processes and their signalling compounds (or their
inhibitors) for chemical conversations, and how they are im-
pacted by plants, climate, soil properties, and agronomic
practices (Figure 1). These efforts will lead to the identification
of a set of functional taxa that should be prioritised for further
research, andprovidenewways throughdirectmanipulationof
the microbiome activities or via genetically engineering the
native microbiomes in situ. Microbiome-based approaches
targeting at reducing rates of nitrification and denitrification
(pathways leading to N losses) and increasing rates of dissim-
ilatory nitrate reduction to ammonium (DNRA, the pathway
capable of reserving N in soil), would have multiple benefits
such as reduced N2O emissions, increased farm productivity,
reduced water contamination, and higher farm profitability
through reduced use of fertilisers.

(2) Technological improvements areneeded todecipher the ‘dark
matter’ of microbial chemistries, as current metabolomics
studies can only match a small fraction of data to known
chemical compounds and biochemical pathways20. Quorum
sensing signals have been found to regulate the communica-
tion between ammonia oxidisers and nitrite oxidisers, and to
regulate the production and consumption of N oxide gases in
a model nitrite oxidiser21. We are just beginning to recognise
the diversity and specificity of signalling molecules, with the
advancement of integrated metabolome and proteome tech-
nologies14, and thus becomingmore reliable to developmicro-
biome-engineering strategies that could utilise the natural
signalling channels of the N-cycling microorganisms.

(3) Harnessing the emerging synthetic biology and genome edit-
ing tools to directly engineer the genomes and metabolic
pathways of indigenous soil microbiome mediating N-cycling
processes in situwith high specificity and efficacy19.We need a
comprehensive knowledge of the gene regulation frameworks
andmodelling tools (through integrating various components
ofmicrobiomedatasets, soil parameters, weather data andnew
computational methods) to predict the effects of microbiome
manipulations in situ and reliably monitor the engineering
outcomes. Precision tools such as sequence-specific gene
editing using CRISPR/Cas9 delivered by phage or conjugative
elements22, and synthetic microbial consortia engineered to
disrupt or replace existing communities, are needed for mod-
ifying microbiota and their genes in situ.

(4) The emerging in situ microbiome-manipulation tools (in par-
ticular, use of genetically modified organisms) in the natural
environment are subject to regulatory requirements and soci-
etal concerns13. Coordinated efforts and multidisciplinary net-
works of policy makers, industry stakeholders, engineers,
public and private partners, and agricultural communities will
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consolidate and translate newmicrobiome-related innovations
into practical solutions for farmers and ensure that risks asso-
ciated with microbiome research are properly addressed. In
addition to traditional agency-specific requests for proposals,
strategic funding investments by national-level interdisciplin-
ary initiatives (e.g. USA National Microbiome Initiative) could
ensure availability of sufficient resources for developing broad-
ly applicable microbiome-based tools2,19,23.

Concluding remarks and future perspectives

Although there are a range of ways in which crop NUE and

agricultural productivity could be improved by the management

of the soil microbiome, this is an area of great challenge which

requires advances in multi-omics technologies, systems biology,

synthetic biology, data analytics, standardised protocols, and

modelling, as well as new collaborative efforts among scientists,

engineers, agribusiness professionals and agricultural communi-

ties. Therefore, utilisation of existing physicochemical technolo-

gies will be the major approaches to manipulate the soil

microbiome in short or medium terms. Over a longer term, we

envision the innovation in in situ genome engineering technology

will offer precise microbiome management approaches to sustain-

ably increase agriculture productivity. These technologies will

show enormous potential inmanaging N transformation processes

andcanbe integrated intonext-generationprecisionagriculture for

site-specific management. Under a context of global change and a

growing human population, harnessing the capabilities of Earth’s

microbiomes will potentially lead to reduced chemical inputs,

improved soil and water health, and increased productivity and

sustainability of global agro-ecosystems.
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Many of the world’s most arid deserts harbour surprisingly

diverse communities of heterotrophic bacteria. These

organisms persist in surface soils under extreme climatic

conditions, despite lacking obvious energy inputs from

phototrophic primary producers. A longstanding conun-

drum has been how these communities sustain enough

energy tomaintain their diversity and biomass.We recently

helped to resolve this conundrum by demonstrating that

some desert communities are structured by a minimalistic

mode of chemosynthetic primary production, where atmo-

spheric trace gases, not sunlight, serve as the main energy

sources. Thesefindings are supported by pure culture stud-

ies that suggest atmospheric trace gases are dependable

energy sources for the long-term survival of dormant soil

bacteria. We predict that atmospheric trace gases may be a

major energy source for desert ecosystems worldwide.

Deserts are one of the largest biomes. They cover one-fifth of the

planet’s terrestrial land surface (33.7 � 106 km2) and occupy

latitudinal ranges along the tropics, Arctic, and Antarctic. Deserts

are defined as having a precipitation to evapotranspiration ratio

(P/ET) of less than 1 and can be classified as sub-humid (0.5–0.65),

semi-arid (0.2–0.5), arid (0.05–0.2) and hyper-arid (<0.05)1. With

exception of hyper-arid deserts, these regions are collectively

recognised as drylands and are critical for human development.

However, theproductivity andbiodiversity of these regions is being

increasingly threatened by anthropogenic land degradation and

climate change.

Microbial community structure in desert soils

Organisms inhabiting arid and hyper-arid desert ecosystems face

multiple physicochemical pressures, including water and organic

carbon deficit, UV radiation damage, and often extreme temper-

ature variations. Despite these stressors, these ecosystems host a

surprising abundance and diversity of microorganisms2–4. Culture-

independent surveys show microbial communities inhabiting

both hot and cold deserts are similar on a phylum level to those

inhabitingmesic soils, but are highly specialised at the species level

and strongly shaped by physicochemical factors3,5,6. Aerobic het-

erotrophs from the Terrabacteria superphylum (including

Actinobacteria and Chloroflexi) are particularly dominant in desert

soils, with Proteobacteria, Acidobacteria, and Bacteroidetes phy-

lotypes also common (Figure 1)7–13. It is thought that these

communities are integral for supporting ecosystem services in

desert regions, including nutrient turnover and fixation of carbon

and nitrogen14.
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The relative abundance and diversity of microbial taxa in desert

ecosystems shows considerable variation across multiple spatial

scales. This reflects both the influence of climatic factors and the

inherent heterogeneity of surface soils in terms of physical struc-

ture, chemical composition, and nutrient bioavailability3,14. In

desert communities, soil moisture and organic carbon content are

thought to be particularly important factors driving niche process-

es. This reflects that organic carbon derived from photosynthetic

primary production is a major energy source for the heterotrophic

microorganisms that generally dominate these communities2–4.

However, the combined effects of water deficit and damaging UV

radiation inhibit photosynthetic processes and in turn limit primary

production in arid and hyper-arid desert ecosystems. On a global

scale, plant biomass per unit area is two to threefold less in drylands

(6 kg km–2) compared to temperate ecosystems (10–18 kg km–2)15.

To withstand the physiochemical pressures of desert ecosystems,

some photosynthetic bacteria (e.g. Cyanobacteria) and algae (e.g.

Chlorophyta) have evolved cellular mechanisms to withstand the

physicochemical pressures of desert ecosystems. Notably, many

phototrophs can efficiently colonise cracks and fissures of trans-

lucent rocks and biological soil crusts2,16,17. These environmental

refugia provide desiccation buffers and protection from UV radi-

ation, allowing these specialised producers to fix carbon and

nitrogen at sufficient rates to support associated heterotrophic

communities. As a result, phototrophs are dominant primary

producers in dryland ecosystems worldwide3,16. However, cul-

ture-independent studies indicatebotharid andhyper-ariddeserts,

such as those in Atacama, Negev, and Antarctica, often harbour

diverse communities of putative aerobic heterotrophic bacteria,

despite very low abundances of Cyanobacteria and other photo-

trophs2,6,7,18. A longstanding conundrum has been how these

heterotrophic bacteria sustain energy and biomass in the absence

of obvious primary producers.

A minimalistic mode of primary production

Lacking obvious organic carbon inputs, most microorganisms

within hyper-arid desert communities seemingly persist in various

dormant states, where energy is directed towards persistence

rather than growth19. While dormancy offers microorganisms a

bet-hedging strategy to survive chemically and physically challeng-

ing conditions, it is not a cost-free state, as some maintenance

energy is required for basic cellular functions such as macromo-

lecular repair19,20. Through recent studies, we have provided

evidence that some desert surface soil communities are structured

by a minimalistic mode of primary production, where atmospheric

gases, not sunlight, serve as the main energy source21.

We analysed the surface soil microbial communities of two coastal

ice-free desert sites in Eastern Antarctica, Robinson Ridge and

Adams Flat. Both sites had limited capacity for photosynthesis and

N Aridity Index Sample Major Phyla

Actinobacteria Chloroflexi

Planctomycetes

Cyanobacteria

Eremiobacteraeota

Firmicutes

Verrucomicrobia

Gemmatimonadetes

Dormibacteraeota

Proteobacteria

Acidobacteria

Bacteroidetes

Other

Humid

Semi-arid

Hyper-arid
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Figure 1. Basemap showingmicrobial community structure of desert ecosystems in different continents. Pie charts represent the relative abundance
of major bacterial phyla of three cold7–9 and five hot deserts10–13, as determined by 16S rRNA gene amplicon sequencing. The Negev Desert chart
shows unpublished data collected by SeanBay. Themap is shaded byGlobal Aridity Index (AI), the ratio of precipitation availability over atmospheric
water demand1. Calculations are based on mean annual precipitation (MAP) and mean annual potential evapotranspiration (MAE) data from
1950–2000 and are displayed as a grid layer at a spatial resolution of 30 arc-second (~1 km at the tropics).
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were extremely low in organic carbon content. Despite this, they

harboureddiverse communities of bacteria belonging to the super-

phylum Terrabacteria, including Actinobacteria, Chloroflexi, and

two candidate phyla, WPS-2 (Candidatus Eremiobacteraeota –

desert bacterial phylum) and AD3 (CandidatusDormibacteraeota

– dormant bacterial phylum). To understand the metabolic poten-

tial of this community, shotgun metagenomics and differential

coverage binning were used to construct 23 draft microbial gen-

omes. Genes supporting energy conservation were widespread,

with the majority of the bacteria encoding high-affinity lineages of

the enzymes [NiFe]-hydrogenase and a carbon monoxide dehy-

drogenase21. Pure culture studies on multiple organisms have

shown that these enzymes facilitate trace gas scavenging to support

persistence of heterotrophic bacteria under organic carbon

starvation22–25. Gas chromatography measurements confirmed

that aerobic soil microcosms aerobically scavenged H2 and CO at

rapid rates21. For dormant bacteria, atmospheric trace gases are

favourable energy sources, given their ubiquity throughout the

troposphere, low redox potential, and high diffusivity26.

In addition, we found that bacteria from the Actinobacteria, Ere-

miobacteraeota, and Dormibacteraeota clades encoded the genes

for autotrophic CO2 fixation via the Calvin Benson-Bassham (CBB)

cycle. We validated that the soil communities encoded and

expressed type IE RuBisCO enzyme21, a recently discovered clade

of the CO2-fixing enzyme that supports hydrogenotrophic growth

in some Actinobacteria27 but is absent from known phototrophs.

The co-occurrence of these genes with high-affinity hydrogenases

and carbon monoxide dehydrogenases suggested that these com-

munities were able to fix CO2 into biomass using atmospheric trace

gases, rather than solely relying on exogenous inputs from pho-

tosynthetic organisms. To test this, we traced assimilation of
14C-labelled CO2 by these samples in microcosm experiments. We

were able to demonstrate that, under H2-enriched conditions,

chemosynthetic CO2 fixation increased up to tenfold. In contrast,

no significant stimulation was observed following light illumina-

tion21. Based on these findings, we propose that, in desert ecosys-

tems where photosynthetic organisms are excluded due to aridity,

dormant bacterial communities are sustained by atmospheric

chemosynthesis: members maintain energy and carbon needs by

aerobically respiring atmospheric H2 and CO and, in some cases,

using these gases to fix CO2 into biomass (Figure 2).

Aerobic gas scavengers

Pure culture studies have provided insights into the physiological

role and biochemical basis of trace gas scavenging26,28. For exam-

ple, our research has recently helped to resolve the biochemical

basis and physiological significance of atmospheric H2 oxida-

tion22,24,29. In the lower troposphere, H2 occurs at trace amounts

(~530 ppbv) and is rapidly cycled between sources (e.g. methane

photolysis, fossil fuel combustion) and sinks (i.e. bacterial scav-

enging, hydroxyl radical oxidation). Atmospheric H2 scavenging, in

addition to being ecologically important, is of major biogeochem-

ical significance given it is the primary sink in the global H2

cycle26,30.

To harness the energy of H2, bacteria employ specialised metal-

loenzymes called hydrogenases to catalyse the reversible reaction

H2Ð 2H++2e–31. Historically, hydrogenmetabolismwas thought

Atmospheric Chemosynthesis

Energy
source

Carbon
source

Primary
producers

Aridity

Oxygenic Photosynthesis

Actinobacteria, Eremiobacteraeota,
Dormibacteraeota

Humid Sub-humid Semi-arid Arid Hyper-arid

H2, CO, CH4

CO2, COCO2

Sunlight

Plants, Algae
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Figure 2. Schematic showing the predicted interactions between photosynthetic and chemosynthetic primary production strategies along an aridity
gradient. As aridity increases, photosynthetic primary producers become less abundant relative to specialised bacteria that use atmospheric trace
gases to generate biomass. Pictures correspond to five climatic zones from humid to hyper-arid. From left to right: Coniferous forest near Vancouver,
Canada; Shrubland near Tel Aviv Israel; Grassland near Be’er Sheva, Israel; Mitzpe Ramon, Negev Desert, Israel; hyper-arid site near Eilat, Negev
Desert, Israel. Photos taken by Sean Bay.
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to primarily occur in lowO2, highH2 environments such as oceanic

sediments, gastrointestinal tracts, and hydrothermal systems.

Reflecting this, thefirst isolatedhydrogenotrophshad lowaffinities

for H2, and the first structurally characterised hydrogenase

enzymes were highly O2-sensitive
31. However, recent studies have

demonstrated that diverse soil bacteria can aerobically respire H2

even at atmospheric concentrations22,24,32. We now know of four

[NiFe]-hydrogenase lineages (group 1h, 1d, 1f, 2a) that support

aerobic respirationandhavebiochemical adaptations to function in

the presence ofO2
33,34. Of these, the group 1h [NiFe]-hydrogenase

is a high-affinity enzyme that primarily mediates atmospheric H2

scavenging and is widely distributed in aerobic soil bacteria32,35,36,

including those in Antarctica21.

Our recent pure culture studies have shown that the survival of

bacteria belonging to dominant soil phyla such as Actinobacteria

and Acidobacteria is enhanced by aerobic respiration of H2. For

example, the model soil organism Mycobacterium smegmatis

upregulates the expression of two high-affinity hydrogenases

under carbon starvation and persists by oxidising H2 below atmo-

spheric levels. Mutant strains, lacking the genes encoding hydrog-

enase structural subunits, have a 40% reduction in survival in

carbon-limited batch and continuous cultures22,23,37. The physio-

logical role of atmospheric H2 scavenging was further tested with a

thermophilic isolate from an oligotrophic volcanic soil, namely

Pyrinomonas methylaliphatogenes K22. Following the transition

from exponential to stationary phase, this acidobacterium upre-

gulated the expression of an eight-gene operon of the high affinity

group 1h [NiFe]-hydrogenase. Depletion of its carbon sources

triggered the transition to a non-replicative persistent state sup-

ported by atmospheric H2 scavenging
24. Furthermore, pioneering

work led by the Constant group has demonstrated that exospores

of Streptomyces species express homologous enzymes and use

them to support long-term survival25,32,35.

Conclusions and future directions

It is indisputable that microbial persistence requires energy. How-

ever, atmospheric substrates such as H2 and CO have long been

overlookedaspotential energy sources.Wenowhaveevidence that

aerobic respirationof thesegases iswidespreadandhavea rationale

for the adaptive advantage this offers to dormant bacteria living in

conditions where persistence is favoured over growth. While trace

gases serve asenergy sources forbacteria in aerated soil ecosystems

worldwide, they are particularly important for microbial commu-

nities in soils with low water and carbon content, where photo-

trophs are excluded. We have confirmed that trace gases serve as

the primary energy sources supporting two Antarctic desert sites21.

Moreover, there is evidence that the enzymes mediating

atmospheric chemosynthesis are also encoded in other oligotro-

phic ecosystems, including the hyper-arid deserts of the Atacama38

and volcanic deposits of Hawaii39.

Our recentfindings in theAntarctic, aswell asongoing research into

trace gas scavenging,will form thebasis of future investigations.We

are particularly interested in answering how significant this process

is in explaining microbial biodiversity and primary production in

other desert ecosystems such as the Negev Desert, Israel and the

Atacama Desert, Chile. A key question is how does the balance

between photosynthetic primary production and chemosynthetic

primary production change along aridity gradients. These ecologi-

cal studies are being supported by ongoing work focused on

understanding the physiology and biochemistry of trace gas scav-

enging using pure bacterial cultures and purified enzymes.
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The Burrup Peninsula in north-west Western Australia is

home to one of the most substantial collections of rock

engravings, or petroglyphs, in theworld. Thesepetroglyphs

are carved through the dark coloured patina, commonly

referred to as rock varnish, into the weathering rind of the

local parent rock. Rock varnish is essentially a thin layer of

manganese (Mn) and iron (Fe) oxides and hydroxides with

embedded clayminerals, the formation ofwhich is relative-

ly poorly understood. It is generally considered to be a

hostile environment for microorganisms due to extreme

environmental conditions including low nutrient availabil-

ity, lack of water, exposure to extreme ultraviolet radiation

and intense seasonal and diurnal temperaturefluctuations.

However, despite these environmental extremes, microor-

ganisms have been found on and in rock varnish and have

been reported as playing a significant role in the formation

of rock varnish. Given this, it is likely that any change in

local environmental conditionswill influence the types and

activities of microorganisms found in and on rock varnish

and associated rock art. This article focuses on the major

influences on the microbiome of culturally important rock

art in the Burrup Peninsula and the implications of any

environmental change on the rock art itself.

The Burrup Peninsula (see Figure 1) is estimated to contain over

1million petroglyphs. These form one of the longest sequences of

art in the world, extending back probably as much as 40 000 years.

This makes the area one of the most significant rock art regions in

theworld1. The engravings are diverse in form and include those of

many animal and bird species including extinct animals (e.g.

Thylacines, the Tasmanian tiger)2. The petroglyphs (see Figure 2

as an example) on the Burrup Peninsula are carved into the rock

varnish of the parent granophyre and gabbro igneous rocks. Rock

varnish usually forms very slowly, at a rate of 1–10mm per

thousand years, particularly in arid desert environments where

rainfall is low3,4. At its most basic rock varnish can be described as a

dark coloured coating with thickness that seldom exceeds 200mm
that is composedmostly of Mn and Fe oxides that are cemented to

clay minerals in a laminated structure3. The Mn and Fe present in

rock varnish comes from a range of sources likely including the

atmosphere, precipitation, dust and from surrounding soils5,6. Mn

andFeconcentrations canvary greatly but ingeneralMn is enriched
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over Fe relative to their natural distribution with Mn oxides usually

accounting for around 20% of the total oxides7.

There is some evidence suggesting that the microlaminations in

rock varnish correlate with alterations in environmental condi-

tions3. Liu et al.8 hypothesise that Fe-rich layers are formed during

dry conditions whereas darker Mn-rich layers are formed during

periods of wet3. Precipitation and solubility of Mn is generally

controlled by pH and Eh conditions with low Eh and pH usually

leading to dissolution of Mn whereas high Eh and pH promotes

precipitation. The ratio of Mn to Fe in the varnish thus varies with

climatic conditions9. It is likely that when conditions are moist this

promotes the activity of bacteria and fungi which in turn produce

organic acids that work to decrease local pH. Field observations by

Northup and colleagues at the Black Canyon (New Mexico, US)

reported a strong correlation of visibly more substantial Mn varn-

ishing on preferential water pathways flowing on rock surfaces and

cliff faces, and in ephemeral rock pothole pools10.

Rock varnish formation
Themechanism of rock varnish formation and growth is still under

discussionwith both biotic and abiotic processes being postulated.

It has been proposed that if abiotic processes were responsible for

producing rock varnish that rates would be much more rapid than

empirical measurements suggest11. Evidence of a biological role

has been mounting5 with significant interest being generated

around likely biological mechanisms. For example the formation

of b-alanine and d-butyric acid by enzymatic carboxylation is indic-

ative of biological activity12. There is also significant evidence that

suggests that microorganisms can directly or indirectly control Mn

precipitation13,14 with biomineralisation of Mn being proposed in

a wide range of environments including hot springs15 and soils16.

The elevated concentration of Mn that is well above that of the

geological background also suggests that the formation of rock

varnish is likely a biological process. This is because Mn and Fe

compounds concentrated in bacteria and fungi become chemically

bound in the crystalline structure and external coating of the clay

minerals that cements the clays to rock surfaces17. The hypotheses

that microbial communities play a role in the formation of rock

varnish are also supported by the fact that a number of microbial

metabolic pathways use Fe and Mn as electron donors18,19.

Figure 1. Map showing the Dampier Archipelago and adjacent mainland, Pilbara region Western Australia.

Figure 2. Burrup rock with petroglyph. Image by Mike Donaldson,
reproduced with the permission of Murujuga Aboriginal Corporation.

In Focus

34 MICROBIOLOGY AUSTRALIA * MARCH 2018



The role of the microbiome
Many different bacteria and fungi have been isolated and charac-

terised from rock varnish10,20–22 but thosewith the ability to oxidise

and precipitateMn and Fe13,19 are of particular interest. Within this

group budding bacteria, for example the generaHyphomicrobium

and Pedomicrobium, have been extensively studied as they have

the ability to encrust Mn and Fe oxides within their cells23,24. These

types of budding bacteria have been identified growing on rock

varnishes found inwarmdeserts5,25 and are known to produceMn-

rich deposits on rocks present in mountain soils26, acid mine

drainage19, and caves27,28. Krinsley et al.11 reported the first evi-

dence of budding bacteria present in situ within rock varnish that

were directly enhancing Mn and Fe. The authors investigated a site

at Erie Barge Canal (New York) where rock varnish had completely

coated the quarried sandstone over the course of approximately

100 years11. This site has rock varnish that is approximately 15mm
thick and the authors conclude that only one or two budding

bacteria encrustingMnandFeoxides each yearwouldbeneeded to

generate the rock varnish11. By extrapolating from this data the

authors speculate that it would take only one budding-bacterium

every 400 years to explain a 20mm thick, 10 000-year-old warm

desert varnish similar to that found in the Burrup Peninsula11.

We can therefore hypothesise that unique and rarely occurring

environmental conditions are required to promote rock varnish

formation by specific budding bacteria, for example, optimum

moisture, UV and solar radiation exposure.

Industrial expansion: what does the future hold?
Recent expansion of industry in the Burrup Peninsula may poten-

tially upset the delicate balance of environmental conditions that

led to rock varnish formation. Acid rain andnitrogendepositionas a

result of industrial expansion has the potential to stimulate micro-

organisms that may not be compatible with rock varnish formation

and or whichmay produce organic acids that could be detrimental

to the survival of the rock varnish29,30. The combined influence of

acid rain and microbial organic acid production will decrease the

pH of the rock art environment potentially resulting in dissolution

of the Mn and Fe within the rock varnish ultimately leading to

deterioration and consequent destruction of the rock art. Research

is required to identify the specific organisms responsible for rock

varnish formation and to assess the impact of pollution on the rock

art microbiome and likely impacts on rock varnish so that we can

better understand how to protect the culturally significant rock art

present in the Burrup Peninsula.
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As the global population increases, so does the demand

for minerals and energy resources. Demand for some of

the major global commodities is currently growing at rates

of: copper – 1.6%p.a.1; iron ore: 1.4%p.a.2; aluminium – 5%

p.a.3; rare earth elements – 7% p.a.4, driven not only by

population growth in China, India, and Africa, but also by

increasing urbanisation and industrialisation globally.

Technological advances in renewable energy production

and storage, construction materials, transport, and com-

puting could see demand for some of these resources spike

by 2600% over the next 25 years under the most extreme

demand scenarios5. Coupledwith decliningore grades, this

demand means that the global extent of mining environ-

ments is set to increase dramatically. Land disturbance

attributed to mining was estimated to be 400000km2 in

20076, with projected rates of increase of 10000km2

per year7. Thiswill increase theworldwide extent ofmining

environments from around 500000km2 at present to

1330000km2 by 2100, larger than the combined land

area of New SouthWales and Victoria (1050000km2),mak-

ing them a globally important habitat for the hardiest of

microbial life. The extreme geochemical and physical con-

ditions prevalent in mining environments present great

opportunities for discovery of novel microbial species

and functions, as well as exciting challenges for microbiol-

ogists to apply their understanding to solve complex reme-

diation problems.

Major habitats in mining environments can be divided into two

main groups (Figure 1): mine sites, where ore is excavated and

crushed, including waste storage sites for overburden (rock

and soil materials removed to access the ore body), and waste

rock (sub-economic rock surrounding the higher grade ore body);

andprocessing/refinery sites,where theore is upgradedorpurified

to separate the target element or resource, includingwaste storage

sites for by-products from either aqueous (tailings) or high tem-

perature smelting (slags) refining techniques, and wastewaters

from these processes. Not covered in this article are mining-

affected environments around mining and refinery sites, which

receive inputs frommine sites in the formof dust (ore, overburden,

tailings, and the resource product), surfacewater and groundwater

discharges (wastewaters), or even solid wastes (tailings, waste

rock) which, in some cases, are exported by riverine or marine

disposal. The severity of impacts and disturbance is far lower in

mining-affected environments around the site than within the

mining or refinery sites that may generate offsite impacts, and we

have therefore excluded them from the primary mining environ-

ments (mines and refineries) to be discussed here.

Ore bodies are, by their definition, geochemical and mineralogical

anomalies, containing target resources at elevated concentrations

compared to the average in continental crusts. It should be no

surprise, then, that the excavation of these ores and exposure to

water and air generates unusual geochemical environments for

microbial communities to inhabit and modify. Even more extreme

geochemical and physical environments are created in the tailings

andwastewater streamsproduced fromoreprocessingandrefining

activities (Figure 1) as a result of the elevated temperatures and

pressures used in processing and refining, and the chemical

reagents added to enhance resource recovery. The processing

conditions effectively sterilise tailings and wastewater streams, and

the extreme geochemical and physical conditions then impose

strong selection pressures on future microbial colonisers. pH

values tend to be�4.5 or�8.5, due to the use of acidic or alkaline

refining conditions, and/or the reaction of ore or process-gener-

ated minerals producing acidity (e.g. oxidation of sulphides;
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Equation 1) or alkalinity (e.g. dissolution of hydroxides or

carbonates; Equation 2).

4FeS2ðsÞþ15O2ðgÞþ14H2OðlÞ!4FeðOHÞ3ðsÞþ8HþðaqÞþ8SO4
2�ðaqÞ

ð1Þ
CaðOHÞ2ðsÞ!Ca2þðaqÞþOH�ðaqÞ ð2Þ

Salinity, and particularly sodicity, is usually high enough in tailings

to inhibit growthof even themost salt-tolerantplant species (>4mS

cm–1) and classifies wastewaters as brackish to brine (1–35 g L–1

salt), due to the addition of various (often sodium-based) reagents

during refiningprocesses.Major biological nutrients (C,N, K, P) are

present in low to negligible concentrations, because the depth at

which ores are excavated duringmining, and their low surface area

in situ, does not allow for significant microbial colonisation and

fixation of atmospheric carbon and nitrogen, and does not expose

the ore to near-surface weathering processes that release K and P

from minerals (commonly feldspars of the general formula (K,Na,

Ca)(Al,P,Si)4O8, micas of the general formula (K,Na,Ca)(Al,Mg,

Fe)2–3(Si,Al,Fe
3+)4O10(OH,F)2, and apatite Ca3(PO4)2). Crushing

of ore to enhance reaction kinetics during refining creates tailings

materials that are prone to waterlogging, largely anaerobic, and

exhibit rapid mineral weathering rates (both chemically and bio-

logically driven)due to the largeparticle surface areas. Theextreme

pH and high mineral weathering rates release heavy metals (Pb,

Hg, Cd, Co, Sn), metalloids (As, Se, Sb, B), and other elements at

concentrations typically considered to be toxic for most plant and

microbial life.

And yet life persists! Although generally low biomass and low

diversity8–11, active microbial communities appear to be present

across all mining environments. Dominant phyla tend to be those

known to host lineages tolerant of one or more of the challenging

environmental conditions present in mining environments, such

as pH, salinity, high metals/metalloid concentrations, and lack of

organic carbon. For example, acid mine drainage and sulphidic

waste rock are dominated by Gammaproteobacteria, Betaproteo-

bacteria, Actinobacteria, Nitrospira, and Firmicutes8,12, and

alkaline tailings are dominated by Gammaproteobacteria, Firmi-

cutes, Actinobacteria, and Bacteroidetes11. However, community

composition diverges within mining environments at lower taxo-

nomic levels, where the influences of site specific factors like

ore type, environmental conditions, and process chemistry play

a greater role11.

Cultivation and isolation of novel species from mine sites has

yielded fundamental insights into processes of element cycling

(e.g. arsenic13; silver14; gold15; rare earth elements16; thiocya-

nate17), the mechanisms and origins of pH, salt, and metal toler-

ances (e.g. acid and chloride tolerance18; gold19), and microbe-

mineral interactions20. Some of these novel species are genetically

tractable, e.g. Marinobacter subterrani from an iron mine, and

are thus invaluable tools for fundamental investigations into mi-

crobial physiology and metabolism21. Others are becoming useful

tools in biotechnology; for example, an Acidithiobacillus thioox-

idans strain isolated from a copper mine that is now being used in

industrial bioleaching22. Metal-tolerant organisms frommines also

MINE SITE

Overburden Waste rock

Topsoil

NEW MINE PIT

Overburden

Mineralised zone
UNDERGROUND

WORKINGS

ACTIVE
MINE PIT

CRUSHING,
REFINING

Ore body

Wastewater Tailings

-  pH 4.5–8, low salinity

low grade ore and bedrock surrounding ore mine pit waters, refining
process waters, excess rain

and sewage water
-  pH 3–9, low salinity; more extreme if
   sulfide or carbonate/hydroxide-bearing

-  pH 0–14; high salinity

solid residues from ore
processing and refining

-  pH 0–14; high salinity

PROCESSING/REFINERY SITE

-  Low to no nutrients
-  High metals content
-  Fine clay-sized texture,
   high surface area-  High metals content

-  Low nutrients unless sewage
   effluent added

-  Low to no nutrients
-  High metals content
-  Gravel sized and larger fragments

-  Moderate nutrient content
-  Moderate metals content
-  Typical soil textures

non economic material
overlying ore

Figure 1. Major materials and environments within mine and refinery sites, with brief descriptions of typical geochemical and physical conditions
prevalent in these environments and illustrations of the twomajormodes of ore excavation (open pit and underground). Note that in situ ore extraction
(which can be used for copper and uranium) is not presented here, and that in some cases, the ore body is exposed at the ground surface rather than
overlain by soil and overburden. This is particularly common in sulphide deposits affected by supergene processes.
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hold promise amongst the range of organisms being considered in

approaches for recovery of metals, a process known as biomining,

including eukaryotic microbes e.g. Euglena mutabilis and Chlo-

rella protothecoides isolated from a copper mine23. The heavy

metal tolerances of these eukaryotes also makes them useful

bioindicators for metal contamination in aquatic systems. Such

discoveries are facilitated in mining environments, which provide

selection pressures of sufficient strength to promote the prolifer-

ation of species with these tolerances and capabilities.

At a community level, the restricted diversity present in mining

environments has proved ideal for development of new bioinfor-

matics tools, such as metagenomics from a study of microbial

communities in acidic mine wastewaters24. Understanding pro-

cesses of microbial community succession, and metabolic inter-

dependencies between species is also vastly easier at low levels of

microbial community diversity25 (although increasing metage-

nomic sequencing breadth and depth can assist for more diverse

communities; cfWrighton et al.26), and both are emerging fields of

fundamental research in mining environments and environments

impactedbyminingand refiningactivities. Thehighconcentrations

of elements which are on average present at low concentrations in

the Earth’s crust, and the lack of organic carbon to support

alternative (higher energy yielding) metabolic pathways makes

mining environments fertile ground for the discovery of novel

metabolic pathways, which at present are only hypothesised by

theoretical bioenergetic calculations for these reactions.

Already, insights from the geomicrobiology of mining environ-

ments have improved our understanding of the Earth’s geological

past and likely future, as well as supporting advances in industrial

capabilities across sectors as diverse as food processing and pres-

ervation, agriculture, mineral processing, astrobiology, pharma-

ceuticals, and human health. Given that this article is focussed on

mining environments, we will provide a couple of examples from

our research groups on application of these insights to the reme-

diation of mining environments, for two of Australia’s largest

mineral commodities, iron ore and bauxite (aluminium ore).

Accelerating iron cementation for iron ore mine

site remediation

In tropical areas, iron ore that has been formed by the long-term

weathering of banded iron formations (BIFs) is often capped by a

hard, well-consolidated iron duricrust that hosts a unique plant

ecosystem adapted to survive only in the harsh duricrust (back-

ground,Figure2a). The ironduricrust exists as anextensiveblanket

covering the relatively soft iron ore below, and because it is

extremely resistant to erosion, it often defines the landscape in

these regions as ridges and plateaus. The duricrust itself is a

ferricrete comprised of fragments of iron ore and BIF cemented

together by goethite. Effectivepost-mining rehabilitation strategies

of these ironore areas relieson re-formationof theduricrust,which

to date has not been achieved due to a lack of understanding about

how the duricrust formed, and therefore how to re-establish it.

Geochemical andmicrobial fossil evidence suggests that biological

cycling of iron has contributed to the evolution of the duricrusts

throughout geologic history, particularly the dissolution and repre-

cipitation of goethite27,28; thus, potentially, present-day biological

iron cycling could be harnessed to ‘re-form’ this duricrust on a

(a) (b) (c)

Figure 2. Cultivatingmicroorganisms responsible for iron cycling in banded iron ore formationmining environments, such as (a) northwesternWestern
Australia, underpins strategies to re-form the duricrust caprock on vastly reduced timescales. Cultivation targets include (b) termite gut microbiota,
and (c) microbial mats present in perched water pools. Photos courtesy E. Gagen.
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shorter time scale. Exploring themicrobiomes associatedwith iron

duricrusts has revealed that lakes, ponds and puddles perched on

the duricrust are a source of both iron oxidising and iron reducing

microorganisms (Figure 2c), probably working in tandem under

natural conditions and actively cycling iron. The gut of termites that

penetrate into theduricrust (Figure2b) andbuild theirnestsonand

in it has alsoproven tobe anovel sourceofmicroorganisms capable

of reducing someof themorecrystalline ironoxides in theduricrust

effectively in consortia via fermentation (unpublished data). Given

the novelty of this process and its potential application biotech-

nologically, metagenomic approaches are being used to recon-

struct the main genomes from this consortia and elucidate the

mechanisms of goethite reduction. Field-scale trials using micro-

organisms from the iron duricrust associated ecosystems are also

currentlyunderway to test theconceptof ’re-forming’ theduricrust

through accelerated biological iron cycling.

Neutralising pH in alkaline alumina refining

(bauxite) residue for tailings remediation

Aluminium is produced from bauxite (aluminium ore) by a two

stage process, involving an alkaline hydrothermal digest (Bayer

process) to release aluminium as aluminate, which is then precip-

itated as alumina (Al2O3), followedby anelectrolysis step to recover

pure aluminium metal from the alumina. The tailings produced in

the first step are known as bauxite residue, and are typically

discharged into tailings storage facilities (Figure 3a) at pH 11–13.

One of the key goals of tailings remediation is to decrease pH to

values� 8.5–9. Previous work focussed on addition of chemical

amendments to achieve this: carbon dioxide (atmospheric, or

process-derived); weak acids; and seawater. These amendments

are expensive and often most effective when completed prior to

tailings discharge, making remediation of existing tailings storage

areas difficult. Field work across bauxite residue storage facilities

up to 40 years old suggested that microbial fermentation of

organic carbon (driven by Firmicutes, a dominant phylum in

bauxite residue communities) was likely playing an important,

but neglected, role in neutralising pH11. Building on insights from

field work characterising the structure and function of microbial

communities in bauxite residues before, during, and after reme-

diation, our research group has now developed microbially driven

approaches for pH neutralisation in bauxite residue that will

enable remediation of both existing and future alkaline tailings

andwastewater streams29,30. These approaches have been success-

ful at laboratory (Figure 3b) and glasshouse scale (Figure 3c), and

in early 2018, will be tested in an industry-first field scale trial

in Western Australia.

In summary, mining environments present unusually harsh con-

ditions for biology with their extremes of pH, salinity, metals

concentrations, and nutrient availability. However, microbial com-

munities still thrive; and in many cases, often drive geochemical

cycling under these conditions. The consequences of this can be

negative (e.g. acid mine drainage, mobilisation of heavy metals)

or positive (e.g. fermentation to neutralise alkaline wastes, iron

cycling to stabilise and re-form surface duricrusts).With the rapidly

expandingmining sector, it is important that we as microbiologists

continue to strive to better understand the role of microbes in

(a) (b) (c)

Figure 3. Identification of salt- and alkali-tolerant Firmicutes and other putative organic carbon fermenters in (a) weathered bauxite residue (alumina
refining tailings) paved the way for development of a microbially driven pH neutralisation technique offering significant advantages over abiotic
approaches. This technique has now been successfully implemented at (b) laboratory and (c) glasshouse scale, and will soon be tested at full field
scale. Photos courtesy T. Santini and L. Malcolm.
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geochemical cycling in these natural and anthropogenically gen-

erated systems, and to seize opportunities to harness the novel

microbial potential available to us from these unique ecosystems.

This will not only expand our understanding of microbial diversity,

evolution, and functional capacity, but enable us to contribute to

solving some of the most urgent challenges facing the mining

industry, by developing new microbially driven technologies for

ore extraction, ore processing, and environmental rehabilitation.

This will become even more important as the mining industry

continues to explore unconventional resources such as deep

seafloor and sub-seafloor deposits, and new modes of extraction

such as in situ leaching.
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Microorganisms make a significant contribution to reef

ecosystem health and resilience via their critical role in

mediatingnutrient transformations, their interactionswith

macro-organisms and their provision of chemical cues that

underpin the recruitment of diverse reef taxa. However,

environmental changes often cause compositional and

functional shifts in microbial communities that can have

flow-on consequences for microbial-mediated processes.

These microbial alterations may impact the health of spe-

cific host organisms and can have repercussions for the

functioning of entire coral ecosystems. Assessing changes

in reef microbial communities should therefore provide an

early indicator of ecosystem impacts and would underpin

the development of diagnostic tools that could help

forecast shifts in coral reef health under different environ-

mental states. Monitoring, management and active restora-

tion efforts have recently intensified and diversified in

response to global declines in coral reef health. Here we

propose that regular monitoring of coral reef microorgan-

isms could provide a rapid and sensitive platform for

identifying declining ecosystem health that can comple-

ment existing management frameworks. By summarising

the most common threats to coral reefs, with a particular

focus on the Great Barrier Reef, and elaborating on the role

of microbes in coral reef health and ecosystem stability,

we highlight the diagnostic applicability of microbes in

reef management programs. Fundamental to this objective

is the establishment of microbial baselines for Australia’s

coral reefs.

Coral reefs represent one of the most diverse ecosystems on the

planet, providing home for an estimated 25% of all known marine

species1. Each year Australia’s iconic Great Barrier Reef (GBR)

attracts millions of tourists from all over the world and provides

$6.4 billion dollars to the Australian economy2. However, reefs

globally are facing unprecedented pressures3. During the past

three decades, the GBR has also been severely impacted by the

combined effects of climate change, crown of thorns starfish out-

breaks, coral disease, overfishing and declining water quality3–5.

Back-to-back bleaching events were experienced in 2016 and 2017

on the GBR, resulting in over 80% mortality of corals in some

regions and an estimated loss of 29% of corals across the GBR

system3,6. In addition to global pressures related to climate change,

coral reefs are also affected at local scales7. For example, theGBR is

locally affected by the run-off from 35 river basins, draining an area

of over 424 000 km2 8. Intensified agricultural land use in the GBR

catchment area has caused an increase of sediments, nutrients

and pesticides associated with terrestrial runoff, resulting in a
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significant decline in water quality, which poses ongoing chronic

and periodic acute threats to the health of the GBR9.

Coral reef monitoring and management initiatives are well-estab-

lished in Australia. For example, since the early 1980s the Australian

Institute of Marine Science (AIMS) has assessed the health of

Australia’s coral reefs via its Long-Term Monitoring Program

(LTMP). The Great Barrier Reef Marine Park Authority (GBRMPA)

has managed the GBR area for over 40 years under the Great

Barrier Reef Marine Park Act 1975. In 2015, the Australian and

Queensland governments released the Reef 2050 Long-Term Sus-

tainability Plan, outliningconcretemeasures tomanageandprotect

the GBR over the next three decades. However, despite the focus

on coral reef monitoring and management initiatives across all

levels of government and strong community engagement in many

areas, the coral reefs surroundingmuch of the Australian coastline,

like other parts of the world, have demonstrated concerning

declines in recent years3,5. One aspect that is poorly understood

yet fundamental to coral reef functioning and ecosystem resilience

is the contribution of microorganisms. Here we highlight that

incorporating microbial based monitoring approaches into coral

reefmanagement initiatives will increase our understanding of reef

ecosystem health and inform potential options for increasing reef

resilience (Figure 1).

Importance of microbes in coral reefs
Microorganisms play an essential role in coral reef ecosystem

processes and form diverse symbiotic relationships with ben-

thos-dominating macro-organisms such as corals, sponges and

algae10–12 (Figure 2). The functional role of microbes in coral reefs

include biochemical cycling of nutrients, degradation and reminer-

alisation,hostnutrition, vitaminsynthesis,productionof secondary

metabolites and host defence via the production of antimicrobial

peptides10,11. Microbes often form specific and stable associations

with their host species13 and can assist them to acclimate to the

prevailing environmental conditions14,15.

Environmental variations, such as seasonal run-off or anthropo-

genic-induced fluctuations in water quality are known to alter the

composition and function of the reef microbiome16,17. Numerous

studies have shown a clear shift in microbial community compo-

sition and function in coral reef waters and associated with dom-

inant benthic life forms (such as corals) as the health of the

ecosystem declines18,19 (Figure 3). However, despite the recog-

nised influence microbes have on coral reef health10,20, a holistic

understanding of their dynamics in coral reef ecosystems remains

elusive21. Establishing microbial baselines that characterise the

temporal and spatial microbial dynamics in coral reefs is urgently

needed to underpin rapid and sensitive assessments of declining

Figure 1. Implemented management strategies under Australia’s Reef 2050 Long-Term Sustainability Plan are guided by an integrated monitoring
approach including 1) large scale aerial surveys, 2) mooring systems and weather stations that provide data on surface (e.g. wind, precipitation,
barometric pressure, temperature) and subsurface conditions (e.g. temperature, conductivity, chlorophyll fluorescence, turbidity, oxygen, light
transmission and photosynthetically active radiation), 3) assessment of coral cover, coral recruitment, coral community composition and
coral–macroalgae ratios on a reef, 4) comprehensive water quality assessments and screening for pesticide concentrations and 5) near surface
concentrationmeasurementsof chlorophyll aand total suspendedsolidsbasedon remote sensing technologies.Currently, this integratedmonitoring
framework lacks a microbial approach and hence, excludes a considerable part of the coral reef biodiversity.
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reef health andmakepredictions about the consequences of future

environmental changes10,22.

Australia’s initiatives to establish microbial

baselines
Recent advances in next generation sequencing technologies com-

bined with an increased recognition of the crucial ecosystem roles

played by microorganisms, has resulted in a heightened commit-

ment to understand spatial and temporal microbial dynamics in

Australian ecosystems. For example, the BASE project (Biomes of

Australian Soil Environments) is the first Australian soil microbial

diversity database, providing amplicon sequencing data alongside

contextual data for more than 900 sites across Australia23. Another

example is the Australian Marine Microbial Biodiversity Initiative

(AMMBI), which was the first standardised microbial ocean obser-

vatory program undertaken at a continental scale. AMMBI aims to

provide long-term microbial sequencing data from seven different

pelagic sites around Australia, providing important baseline data

on microbial composition and function in Australian off-shore

waters. This is linked to extensive physicochemical and oceanog-

raphy data derived from the Integrated Marine Observing System

(IMOS) reference stations (www.imos.org.au), allowing both

hindcasting and forecasting ofmicrobial responses to environmen-

tal conditions. Recently the Marine Microbes (MM) project

(www.bioplatforms.com/marine-microbes/) was established as

partof the largerAMMBI initiative to samplemicrobial communities

associated with corals, sponges, seaweeds, seagrasses, seawater

and sediment from benthic sites across Australia, including

sampling locations in the GBR, Perth and Sydney. The MM project

aims to provide the first holistic microbial baseline for coral reefs

in Australia.

Microbes as indicators of coral reef health
Indicator organisms are used to effectively monitor habitat condi-

tions and environmental changes24. Biological indicators are awell-

established monitoring tool for estuarine and freshwater ecosys-

tems25,26 and alsofind application in coral reef ecosystems27. In the

context of public health, microorganisms are extensively used

as indicators to monitor drinking water supplies and the quality

of recreational waters in order to prevent gastrointestinal ill-

nesses28,29. Furthermore, recent advances in human microbiome

research have led to an increase of microbial based diagnostic and
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Figure 2. Simplified overview of microbial functions in a coral reef ecosystem. Microbes play a fundamental role in all major biogeochemical cycles
(Carbon, Nitrogen, Sulfur and Phosphorus) in the coral reef ecosystem and contribute to their host’s nutrition, waste product removal, pathogen
defence and holobiont stability.
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therapeutic approaches30. Despite the emerging predictive power

of the microbiome in human disease diagnostics30,31, the use of

microorganisms as sensitive indicators of environmental stress in

coral reef ecosystems or as predictive markers for water quality in

marine systems has remained relatively unexplored10,22. Microbia-

lisation scores are among the few attempts to monitor coral reef

ecosystem declines based on the metabolic rates of microbial

communities and reef-associated fishes32. Incorporating microbial

monitoring tools into current coral reef health assessment pro-

grams will confer significant advantages as microbes are known

to rapidly respond to changes in their environment, allowing for

early diagnosis of changingwater conditions andhost physiological

states.

Despite many potential advantages, microbial systems for moni-

toring coral reefs are still very much in their infancy and consid-

erable additional research and validationwould be required before

microbial based monitoring approaches could be applied. Addi-

tional technical considerations that remain to be addressed in-

clude: (1) How frequently should sampling occur? (2) How and

what should be sampled (e.g. seawater, sediment, microbiomes of

benthic organisms such as corals or seaweed)? (3) What types of

samples and analyses would be necessary (e.g. community profil-

ing, targeted screening for particular microbial indicator taxa and/

or functions)? and (4) How to minimise costs and increase effi-

ciency of a microbial based monitoring system to ensure real-time

assessment of reef health?

Conclusion
The important role ofmicrobes in coral reef ecosystem functioning

and their contribution to the resistance and resilience of coral reefs

has becomewidely accepted20,22. However, although Australia is at

the forefront of coral reef studies and coral reef monitoring opera-

tions, to date, microbes have not been considered in large-scale

monitoring approaches. The past few years have seen increased

interest in understanding microbial dynamics in Australia’s eco-

systems, which has led to holistic sampling efforts to establish the

first microbial baselines for soils and marine environments. We

argue that the establishment and ongoing assessment of such

microbial baselines will be crucial to understanding microbial

dynamics in response to broad ranging anthropogenic impacts.

The inclusion of microbial monitoring approaches alongside our

current coral reefmonitoring frameworkwill improve our ability to

rapidly detect changes occurring in Australian coral reefs resulting

in improved protection andmanagement of these ecologically and

economically unique ecosystems.
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Nitrogen compounds need to be removed or captured from

wastewater streams before disposal to protect our aquatic

environments from eutrophication. Particular bacteria fa-

cilitating the biological removal of nitrogen during waste-

water treatment includeammoniaoxidisingbacteria (AOB),

nitrite oxidising bacteria (NOB), denitrifiers, as well as

anaerobic ammonium oxidising (Anammox) bacteria. Ma-

nipulating these microbial communities can improve effi-

ciency in nitrogen removal. Bypassing nitrate production

by selectively inhibiting NOB reduces the need for oxygen

and the addition of external carbon for the nitrogen remov-

al. Various approaches to selectively inhibit NOB in the

nitrification process are available. Here we present an

approach using the biocide, free nitrous acid (FNA) to

selectively suppress NOB growth thereby improving the

efficiency of the nitrogen removal process.

Improving efficiency of nitrogen removal

The principal forms of nitrogen species in wastewater are ammo-

nium, nitrite and nitrate as well as organic nitrogen. Removal from

wastewater is essential before release into aquatic environments to

prevent nitrogen build up that may lead to eutrophication and

endanger aquatic life1. For wastewater treatment, biological nitro-

gen removal is favoured over physical-chemical processes due to

efficiency and cost benefits2.

Conventional biological nitrogen removal in wastewater treatment

(WWT) plants involves a 2 step biological process: autotrophic

nitrification followed by heterotrophic denitrification. These steps

result in nitrogen gas being released from the system (Figure 1a).

The nitrification step includes the oxidation of ammonia to nitrite

via ammonia-oxidising bacteria (AOB) and thenoxidation to nitrate

through the activity of nitrite oxidisingbacteria (NOB).Nitrification

is then followed by heterotrophic denitrification where nitrate is

reduced to nitrite and finally to nitrogen gas3. Here, the inhibition

of NOB activity can be beneficial for achieving lowered operational

costs for WWT.

Recently, a novel autotrophic nitrogen removal process, i.e. deam-

monification, has been developed. This consists of a partial nitri-

ficationornitritation, inwhichapproximatelyhalf theammoniumis

converted to nitrite by AOB. This is then followed by an anaerobic

ammonium oxidation (anammox) process, governed by anammox

bacteria, wherein the remaining ammonium and nitrite is con-

verted to Nitrogen (N2) (Figure 1b)4. The anammox process has

gainedmuch research traction and has been applied extensively in

Europe. It requires less energy through reduced aeration and

requires no input of organic carbon compared to the conventional

nitrification-denitrificationWWT process5–7. Nitritation, the partial

conversion of ammonium to a 50 : 50 mixture of ammonium and

nitrite, is favoured as a feed for anammox (Figure 1b). Thus, a

reduction in the activity of NOB is necessary to achieve this

favoured feed and obtain energy efficiency and reduced costs.

Hence inhibiting NOB is beneficial for achieving a more cost and

energy efficient WWT process. This applies to both the conven-

tional nitrification-denitrification and the anammox process

(Figure 1).
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Achieving selective NOB suppression

Several approaches have been applied for controlling the NOB

activity in both conventional nitrogen removal and the anammox

process. A challenge for these processes is the selective inhibition

of NOB activity and/or growth while retaining the presence of AOB

(Figure 1). Both these groups have similar slow growth kinetics but

require large substrate turnover and respiratory rates5. Various

physical and chemical methods are proposed for suppression of

NOB growth in bioreactors and include running bioreactors at

limiting dissolved oxygen (DO) concentrations, increasing the

temperature in combination with low solid retention times, and

the use of intermittent aeration. However the relatively low nitro-

gen concentrations and low temperature in mainstream wastewa-

ter make it difficult to selectively inhibit NOB while allowing AOB

to grow5. Interestingly, the addition of free nitrous acid (FNA) is

successfully shown to selectively suppress NOB activity and growth

in conditions otherwise favourable for nitrification5.

Free Nitrous Acid (FNA) suppression

of NOB growth

Theprotonated formofnitrite, FNA is abiocide that is bacteriostatic

in parts per billion and bacteriocidal in parts per million levels8.
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Figure 1. A schematic overview of the selective suppression of NOB in both (a) the conventional nitrification-denitrification process and in the
(b) anammox process, which would allow for improved energy saving during the biological nitrogen removal in WWT.
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However, different types of microorganisms exhibit varying toler-

ance to FNA8. It turns out that AOB have substantially higher

tolerance to FNA compared to NOB, and this provides opportunity

to selectively inhibitNOB9,10. Indeed, it is seen that aFNA treatment

of sludge, combinedwith lowoxygen levels, selectively inhibit NOB

andpartially inhibit AOB.This treatment achievedpartial nitritation

and produced a water composition ideal for anammox nitrogen

removal5.

Biocidal mechanisms of FNA action on various

bacteria

Improved control of such bacterial populations will be achieved

through understanding the antimicrobial effects of FNA and by

determining the counteracting responses of the different organ-

isms. Transcriptomic responses recently studied in Pseudomonas

aeruginosa PAO1 and Desulfovibrio vulgaris reveal that FNA

causes severe disruption to the bacterial energy conserving

mechanisms9,11. Additionally, Desulfovibrio vulgaris shows mul-

tiple responses to oxidative stress during FNA exposure.

The higher tolerance of AOB to FNA is intriguing given that NOB

have additional metabolic pathways to deal with high levels of

nitrite compared to AOB. Both AOB and NOB have the nitrite

detoxifying protein nitrite reductase (nirK) that converts nitrite to

nitric oxide (NO)12. However, NOB have additional nitrite reduc-

tase (nirBD) and nitrite oxidoreductase (norA/B) genes, and thus

possess the potential to convert nitrite to ammonia and nitrate,

which could better alleviate toxic nitrite levels. Recently, a meta-

proteomic investigation revealed that FNA induced oxidative stress

upon a nitrifying community. However, AOB was able to tolerate

elevated levels of FNAcompared toNOBdue to a superior oxidative

stress response13.

Concluding remarks

Determining the mechanisms of FNA action in both AOB and NOB

is important to establish a deeper understanding of the difference

in tolerance of these 2 groups of highly relevant nitrogen removal

bacteria. Suchunderstanding is significant for optimising strategies

for improved reactorperformanceand for reducing theoperational

costs involved in the nitrogen removal WWT process.
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Whilst bioleaching is primarily used to recover minerals

from low-grade ores, the increasing demand for Rare Earth

elements combined with supply chain concerns is opening

up new avenues of extraction from mine tailings, waste

products and recyclable materials. Exploration of new,

novel and economically viable techniques are required to

manage the coming shortage and volatility of global mar-

kets with more environmentally sound alternatives to tra-

ditional mining operations holding the key.

The exploitation of microbes in the industrial application of bio-

leaching has been underway since the 1950s1 due to their ability to

mobilise minerals from ore bodies, with either heap leaching

implemented for the recovery of Cu, Zn, Ni2 or stirred tank reactors

for U or Au3. With fewer discoveries of large high grade mineral

deposits occurring4 it is anticipated that demand for raw minerals

will outstrip reserves for not only these elements, but also for Rare

Earth Elements (REEs). REEs are fundamental components of

mobile phones, lasers, electric batteries and superconductors5.

With dwindling supplies of high grade REE stocks, ever increasing

demand for new technologies and a push for themining industry to

‘go green’, the processing of lower grade ores, recycling of elec-

tronic waste and treatment of discarded mining by-products using

bioleaching applications is proving attractive. Due to this the use

and application of bioleaching techniques is expanding as they are

more cost efficient, less energy intensive and employ more eco-

friendly techniques2.

REEs (15elementswith atomicnumbers ranging from57 to71)6 are

located amid carbonates, placer deposits, pegmatites and marine

phosphates7. However, current bioleaching applications utilise the

autotrophic oxidation of ferrous and reduced sulphur compounds

for mineral release and subsequent recovery, which are found in

low amounts in REE ore bodies. Nevertheless, studies of REE

mineral extraction from phosphate ores by bioleaching are in their

infancy8–10. These bioleaching activities utilise acidophilic and

heterotrophic phosphate solubilising microorganisms (PSMs),

those often employed to increase soluble phosphate levels in

agricultural settings. Species currently identifiedwith the potential

to recovery REEs from phosphate laden ores include Pseudomo-

nas, Acinetobacter, Bacillus, Microbacterium, Aspergillus, Peni-

cillium and Cladosporium10. Primarily, the focus of REE

bioleaching investigations have utilised pure cultures on sterile

ore andhave resulted in varied rates of recoverydependingonboth

the microbial species employed and mineralogical characteristics

of the ore used.

For example, the fungal species Penicillium tricolorwas shown to

leach 30–70% of available REEs from red mud9 compared to

Bacillusmegaterium,which leached less than1%frommonazite11.

Industrial operations with ferrous and sulphide ores often involve

two or more species due to the leaching chemistry requirements,

size of the processes and the inability to maintain sterility. It has

been shown that mixed acidophilic populations increase recovery

rates of copper12 compared to pure cultures. Our research initially

conducted with pure cultures13 (Figure 1) demonstrated low

recovery rates of REEs from a concentrated Western Australian

monazite, whereas when bioleaching was performed using non-

sterile ore complete with the native population and an introduced

PSM (Figure 2), REE leaching rates increased tenfold with some

species14. These leaching rates were much greater than those

recorded with either pure cultures or the native consortia alone.
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Cultures with a fungal starter organism such as Penicillium sp. had

higher leaching rates than those commenced with a bacterial

isolate such as Enterobacter or Pseudomonas sp. As the indige-

nous microbial population present on the ore is expected to be

limited in number2, the addition of a heterotrophic PSM aids in

initiating leaching processes during the early operating phases.

Unlike the chemolithoautrophic pathways employed by the mi-

crobial consortia for growth during ferrous and sulphide leaching

operations, heterotrophic leachingof REEphosphates requires the

addition of a carbon source, usually in the form of glucose, which

can be cost prohibitive on a large scale. The provision of molasses,

a waste product generated from sugarcane refining is a financially

more viable possibility that will meet microbial growth needs for

optimum ongoing leaching. Fermentation of glucose by an intro-

duced heterotroph to the non-sterile leaching environment results

in the manufacture of numerous ligands, predominately organic

acids including acetic, citric, formic, oxalic and pyruvic depending

on the PSM employed, which drives a significant portion of the

REE leaching process. This initial consumption of glucose by the

introduced species and the resultant availability of secondary

metabolites can enable the growth of heterotrophic, mixotrophic

and acidophilic microorganisms already existing on the ore, with

the presence of native Firmicutes notably increasing leaching

rates14. In this symbiotic association, with the generation of

secondary carbon compounds, a lowered pH environment is

10 μm

Figure 1. Scanning Electron Microscopy of pure cultures of Enterobacter aerogenes employed during bioleaching trials of sterile Mount Weld
Monazite concentrate for the recovery of REEs. No indigenous microbes were identified during this leaching process.

10 μm

Figure 2. Scanning Electron Microscopy of non-sterile monazite bioleaching experiment inoculated with a starter Penicillium sp. After an 8-day
incubation, establishment of native bacilli species and production of exopolysaccharide substanceswere detected alongwith fungalmatter adhered
to the monazite.
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established and as the system stabilises with increased numbers of

indigenous species, the need to add further glucose is reduced.

As it has been demonstrated that the native consortia alone are

capable of REE leaching albeit at very low levels, initiation of

indigenous activity appears to require one or more unknown

metabolites that arise as a result of the inoculant species fermenting

glucose.

The uptake of bioleaching as a viable alternative to traditional

methods for the recoveryofREEshasbeen slowdue to the inherent

unknowns in a biological based system and the uncertainty in value

for money returns. In Australia there are currently no commercial

REE bioleaching projects using heterotrophic or mixotrophic

microorganisms despite Australia having one of the largest REE

deposits in theworld15. Toencouragemoremining corporations to

opt for a more environmentally friendly approach to REE recovery,

extensive research needs be undertaken to determine not only the

best PSM to ‘prime’ the system, but also to examine the complex

interactions occurring between the introduced PSM and native

consortia. Armedwith this evidence, optimisation of REE bioleach-

ing operations (Figure 3) is an obtainable goal with improved

leaching rates likely to allow the construction of long term reactor

systems with decreased operating costs and lower environmental

impacts.
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Figure 3. Stirred tank bioleaching reactors set-up for optimisation of REE recovery from phosphate bearing ores.
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Ecology is the study of the interactions amongst organisms

and their environment1. In microbial ecology, a major goal

is to understand how environmental microbiomes impact

ecosystem health and function. This desire to mechanisti-

cally link micro and macro processes is increasingly

highlighting the importance of functional ecology, which

aims to develop an understanding of relationships using

functional traits, as opposed to species names. A functional

trait may be any morphological or physiological trait that

influences the performance or fitness of an individual in a

given environment, such as regeneration time, size, antibi-

otic production or motility2. Although it is not possible to

measure a given trait for each individual within an environ-

mental microbiome, community-level functional traits can

be derived from the communitymetagenome either direct-

lyviashotgunsequencingorpredictively (forbacteria) from

16S rRNAprofiles3. Inunderstandingenvironmentalmicro-

biomes, functional traits haveuniqueproperties that canbe

utilised to (1) compare microbiomes using an ecological

framework, (2) understand processes governing communi-

ty assembly, and (3) build predictive ecological models.

Functional comparisons of environmental

microbiomes

Functional traits are not necessarily conserved across phylogenet-

ically closely-related taxa, but rather are conserved amongst organ-

isms with similar life strategies. As such, trait-based comparisons of

environmental microbiomes can be used to elucidate repeated

ecological patterns across microbiomes even if they are taxonom-

ically distinct. For example, if one was attempting to understand

ecological similarities amongst geographically dispersed

microbiomes from comparable ecosystems (e.g. wetland micro-

biomes),onemayfindthat thecommunities containvastlydifferent

suites of species. In this instance species names alone cannot be

used to identify ecological trends uniting these microbiomes.

However, because the microbiomes are from similar ecosystems,

it is likely thatwithineachmicrobiomedifferent specieswill employ

similar life strategies to survive and thus exhibit similar functional

traits. In this way, functional traits can identify meaningful ecologi-

cal patterns across taxonomically distinct microbiomes.

Linking micro to macro: understanding of

processes governing community assembly

The concept that environmental filters act on traits – not species –

can be used to interpret how environmental parameters alter

microbiomes in an ecologically meaningful way. The twin-filter

hypothesis proposes that a two-step filtering process acts on local

species pools: a primary ‘ecological filter’ increases the trait sim-

ilaritywithin a community by selecting for similar life strategists (i.e.

environments characterised by severe nutrient stress will select

for traits that produce stress-tolerant life strategists); secondary

‘proximal filters’ then select against traits which affect survival but

are not integral to the broad life strategy (e.g. variation in tolerance

to environmental toxins or resistance to local pathogens and

predators), creating dissimilarity within the local subset of species

and generating the final community structure (Figure 1)4. By

examining which traits are enriched by a given environment, or

environmental parameter, we can begin to hypothesise how a

community is experiencing that environment and why different

communities diverge in their ecology. For example, Wood et al.5

demonstrated that the community-level changes induced by the
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presence of a plant rhizosphere were due to the selection of traits

linked to microbial competition for resources (i.e. antibiotic pro-

duction, siderophore production). Similarly, DeLong et al.6 dem-

onstrated the presence of contrasting ecologies between

communities from the phototrophic zone and from near-ocean

floor depths, with foraging traits selected for in the phototrophic

zone, whilst survival (stress tolerance) traits were characteristic of

communities at depth.

Building trait-based predictive models

Functional traits can be incorporated into ecological classification

frameworkswhich aim topredict howenvironmentalmicrobiomes

will change over time. Grime’s CSR theory is an ecological classi-

fication framework that groups traits in terms of three broad life

strategies: competitive, stress tolerance and ruderal (colonisation)

life strategies6. Each life strategy group is an umbrella term that

encompasses multiple functional traits which achieve the same

outcome (Table 1). For example, stress tolerance traits may be

defined as any trait that constitutes an investment in the mainte-

nance of organismal biomass. In plants this may be the production

of thorns or chemical compounds to deter herbivory. In an envi-

ronmental microbiome this may manifest as an increase in the

prevalence of DNA repair pathways or genes involved in the

production of free radical scavengers.

The CSR theory proposes that organisms face a three-way resource

trade-off between the investment inC, S or R life strategies, which is

governed by the levels of stress (due to resource availability) and

disturbance present in an environment4. The theory predicts that

when stress and disturbance are minimal, the investment of

resources into competitive traits confers a selective advantage that

outweighs the loss in fitness due to reduced investment in other

adaptive strategies, such as stress-tolerance or colonisation

Ecological filter Proximal filter

Local species pool Similar life strategists Realised community

(Convergent selection) (Divergent selection)

Figure 1. Schematic representation of the twin-filter hypothesis4. The local species pool provides a source of species that can potentially enter a
community. An ecological filter acts on life-history associated traits, selecting for species that exhibit similar life strategies (e.g. stress tolerators,
competitors, colonisers). Secondary ‘proximal filters’ suchas toxins, predators or the typeof carbonpresentdeterminefinal community composition.

Table 1. CSR theory definitions used to classify traits as competitive, stress-tolerant or ruderal, adapted fromGrime andPierce4. Selectedmacro and
microbiological functional traits are given as examples of traits that can be associated with each C, S or R definition.

Trait definition Macro (plant) example Micro example

Competitive trait:
Traits facilitating the monopolisation of local
resources

High chlorophyll concentration
Large leaves
Large canopy
Allelochemical production
Large root spread

High membrane transporter density
Siderophore production
Biofilm formation
Production of antimicrobial compounds
Filamentous growth

Stress-tolerant trait:
Traits facilitating survival in chronically
underproductive environments

Slow growth
Mechanical defenses (spines)
Chemical defenses
Detoxification mechanisms
Production of free radical scavengers

Slow growth
Altered membrane chemistry
Melanin/pigment production
Increased DNA repair ability
Production of free radical scavengers

Ruderal trait:
Traits facilitating the rapid re-establishment of
a population

Short life cycle
High photosynthetic capacity
High seed number
High seed dispersal ability

Rapid growth
Increased capacity for central metabolic flux
Overwintering structures (e.g. sclerotia)
High spore dispersal ability
Motility
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potential (Figure 2). In these communities, competitive interac-

tions– andorganismswith traits that contribute toacompetitive life

strategy – will prevail. Conversely, the theory predicts that stress-

tolerance traits and life strategieswill prevailwhenstress ishigh (i.e.

resources are limited) but disturbance is low. Stress tolerant life

strategists tend to be slow growing and are adapted to retaining

resources. Finally, when stress is low but disturbance is high the

theory predicts that ruderal traits, which pertain to re-colonisation

potential, will confer a selective advantage and ruderal life strate-

gists will prevail.

Theuseofecological theories, suchas theCSRhypothesis,presents

a clear route towards developing predictivemodels which could be

incorporated into ecosystem-level conservation and management

practices. Indeed, even though CSR theory has its roots in plant

ecology, the core principals are recognised as being applicable

to microbial communities7–9. A current barrier to developing

predictive trait-based models is that ecological interpretations of

microbial traits often rely onprevalent opinions from the literature,

rather than on empirical data. For example, the production of

antimicrobial metabolites is generally considered to be a compet-

itive trait10. However, compounds recognised for their antibiotic

activity in vitro have been shown to influence biofilm formation

in Bacillus subtilis suggesting their primary role may be cell–cell

communication11.

Future research using controlled microcosms with defined gradi-

ents of resource availability (stress) and disturbance are needed

to confirm ecological assumptions about functional traits. Trait

screening using controlled conditions can also be used to identify

core predictor traits that can routinely and robustly discriminate

between environmental microbiomes with contrasting ecologies.

Ultimately, the development of broad ecological theories that

facilitate the classification and comparison of microbiomes from

disparate environments will assist in realising the full potential

of large-scale collaborative initiatives, such as the TerraGenome

project12, the Earth Microbiome project (EMP)13 and Australia’s

Biomes of Australian Soil Environments (BASE)14 project.
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Recently, the role of the plant-associated mycobiome (i.e.

the fungal community) in influencing the competitive suc-

cess of invasive plant species has received increasing atten-

tion. Fungi act as primary drivers of the plant invasion

process due to their ability to form both beneficial and

detrimental relationshipswith terrestrial plant species.Here

we review the role of the plant mycobiome in promoting or

inhibiting plant species invasion into foreign ecosystems.

Moreover, the potential to exploit these relationships for

invasiveplant control and restorationofnative communities

is discussed. Incorporating fungal community ecology into

invasion and restoration biologywill aid in themanagement

and control of invasive plant species in Australia.

Alien invasiveplant species represent anever-increasingworldwide

problem. The expansion of invasive species in non-native ranges

can dramatically alter the structure and population dynamics of

the invaded community, with the negative impact of invasive

plants on ecosystem structure and function resulting in changes

tonative vegetationcompositionandproductivity, nutrient cycling,

soil characteristics, and even human well-being1.

Many factors regulate exotic species naturalisation and invasion

success, including the ability to rapidly access resources, allelop-

athy, and the modification of ecosystem processes (reviewed in

Levine et al.2). However, an increasing body of evidence suggests

a pivotal role for the plant-associated mycobiome (i.e. the fungal

community) in influencing the competitive success of invasive

species3–6. Fungi are important terrestrial ecosystem components,

acting as mutualists, pathogens, decomposers, and food sources.

Because of their primary role as drivers of many ecosystem func-

tions and their ability to establish intimate relationships with

terrestrial plant species (e.g. mycorrhizal fungi or leaf endophytes)

(Figure 1), fungal communities can critically influence plant

fitness and survival and, hence, their colonisation and invasion

patterns5,7.
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Understanding the mechanistic interactions underpinning the

invasion process is predicted to be particularly important for

Australia, where invasive species pose not only a threat to the

biodiversity of its unique vegetation, but also an economic prob-

lem8. Following accidental and deliberate introductions after

European colonisation of the continent, approximately 2700

exotic plants species are now considered established within the

continent, with almost 250 having been declared harmful or being

under some form of legal control measure9. In terms of economic

burden, the control of alien plant species is calculated to cost

approximately AU$4 billion annually for agriculture alone10. The

cost associated withmanaging native plant communities, although

difficult to estimate, is predicted to also be considerable.

Given the environmental and economic implications of invasive

plant species control, the need to find effective strategies for

the prevention, early detection, and eradication of invasive species

now represents a priority inmany economic and scientific agendas.

Here we discuss the role of the plant mycobiome in promoting

or inhibiting invasive plant species incursion into foreign ecosys-

tems, and propose ways through which these relationships can

be exploited for invasive plant control and native communities

restoration.

Mechanisms and effects of fungi-plant

interaction during invasion

Pathogenic relationships: The interactions between invasive

species and their fungal communities are complex, with invasion

success often being defined by the nature of such relationships.

For example, during invasive plant establishment, pathogenic

fungi can form novel associations detrimental to the invasive

plants11. This possibility is usually amplified if the invasive and

native plants are not phylogenetically related, resulting in specific

targeting of the invasive species, and thus prevention of invasion

through inhibition (Figure 2). In contrast, successful invasion is

often promoted by the loss of detrimental microbes, such as

pathogenic fungi, particularly when they are not present in the

newly colonisedhabitat12. Invasive species can also act as reservoirs

for microorganisms that are pathogenic for the invaded commu-

nity, with a consequent enhancement of the negative impact of

invasion on the native vegetation, as observed during the invasion

of non-native Spartina alterniflora and its fungal pathogen

(Fusarium palustre) on native Chinese saltmarsh plants. This

instance implies the ability of the invader population to resist or

tolerate native pathogens within the invaded areas, causing an

increase in pathogen loads detrimental to the native community13.

Foliar endophytic fungi

Arbuscular mycorrhizal fungi
Ectomycorrhizal fungi

Root pathogenic fungi

Foliar epiphytic fungi

(grow asymptomatically inside
the cells of plant roots, stems

and leaves)

(grow in symbiotic association with the plant roots;
release iP and iN to the plant in exchange for C) (grow in symbiotic association with the plant roots;

release iP, N and iN to the plant in exchange for C)

(grow on the surface of plant leaves)

Figure 1. The plant-associated mycobiome. Fungi live in close association with many plant compartments, where they carry out different functions
(see Peay et al.7). iP, inorganic phosphorous; N, nitrogen; iN, inorganic nitrogen; C, carbon.
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Symbiotic relationships: An equally important aspect of the plant-

fungi relationshipduring the invasionprocesspertains to the roleof

symbiotic interactions, suchasmycorrhizal interactions.Mutualism

preservation is often vital for the invaders, and the occurrence of

such beneficial interactions in the invaded habitat can be enhanced

by the presence of native arbuscular mycorrhizal fungi with low

endemism and low specificity in their range of associations14.

Invading plants able to form novel symbiotic associations are also

typically more successful. This strategy is particularly relevant for

arbuscular mycorrhizal plants, which tend to establish novel asso-

ciations in their exotic range, resulting in increased fitness and

enhanced invasiveness15, such as in the case of the invasive North

American species Ambrosia artemisiifolia. Alternatively, the co-

introduction of associated symbionts in the colonised habitat may

favour the invasive plants5. Co-introduction is usually due to the

transport of infected plants or propagules, or from the transloca-

tion of contaminated soil. The presence of a suitable symbiotic

partner, either native or alien, can significantly enhance invader

fitness in the newly colonised habitat, as observed in the case of

non-native willows introduced with their native fungal symbionts

in Southern Australia riparian systems16.

In some instances, co-introduced symbionts may also be able to

modify the native microbial community structure, including

PLANT–FUNGI
INTERACTIONS
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INVASION
OUTCOME MECHANISM

Invasive plants are sensitive
to the native pathogens

Invasive plants release
pathogens in the native
community

Invasive plants don’t depend
on obligate mutualistic
symbioses

Invasive plants depend on
obligate mutualistic
symbioses

Invasive plants can form
novel relationships in the
invaded range

Invasive plants can disrupt
mutualistic relationships in
native communities

Invasive plants may benefit from the
occurrence of fewer co-evolved
pathogens in their invaded range
(Enemy Release Hypothesis)

Native pathogens novel to introduced
plants contribute to biotic resistance
and prevent invasion (Biotic
Resistance Hypothesis)

Alien pathogens from alien plants
colonise native plants in the native
range, enhancing invasion and
invasion impact (Accumulation of
Native Pathogens Hypothesis)

Invasive species that are less
dependent on mutualistic symbionts
are favoured

The lack of an appropriate symbiont in
the invaded range may limit invasion
success. However, the spread of
invasive plants may be assisted by the
occurrence of mutualists already
present in the invaded range or co-
introduced

Novel mutualistic associations may
increase the invading plant fitness and
enhance invasiveness

If limited fungal partners are shared
with native species, invasive plants
can not support native fungi in the
absence on the native host, resulting
in the loss of fungi that are specific
and beneficial to natives

Figure 2. Role of the plant mycobiome in facilitating and/or constraining plant invasion success. The outcomes of the invasion process are
represented by arrows pointing up or down, indicating favourable or disadvantageous conditions for the establishment of alien plants, respectively.
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substantial loss of belowground diversity and native mutualists,

with detrimental repercussions for the native host’s fitness. Such

invasive processes can result in negative modifications of the

functional attributes of the invaded system5. For example, the

invasion of non-ectomycorrhizal communities by ectomycorrhizal

plants causes both a decrease in soil carbon and a co-release of

nutrients from the soil17. Plant-fungus co-invasion may also cause

shifts in the total plant biomass; a change either enhanced by the

increase in mutualistic fungi18 or decreased by the pathogenic

invaders19,20. Both the biomass shift and the plant compositional

modification can critically alter important ecosystem processes in

the native community invaders19,20.

Implications for management

A better understanding of plant-fungi interactions can have impor-

tant repercussions for themitigationof negative impacts of invasive

plants and the design of better restoration strategies5. Novel

microbe-mediated approaches for invasive plant control may in-

clude the inhibition of fungal symbiotic relationships that provide

competitive advantages to invasive plant species (e.g. through the

introduction of pathogenic microbes or inhibition of beneficial

fungi)4,21. Inparticular, the co-introductionofnativepathogenshas

been proposed as an effective strategy to manage alien plant

species. An example of the successful application of fungi as

biocontrol agents is represented by Phragmidium violaceum,

used to control invasive blackberry trees in Australia22. Similarly,

the rust fungus Uromyces pencanus has been proposed as a

promising biocontrol agent to reduce the spread of Nassella

neesiana (Chilean needle grass), a grass species invasive to the

southern hemisphere23.

In addition to the invading plant management, the plant-myco-

biome relationship can be harnessed to mitigate the legacies of

disrupted fungal communities resulting from processes such as

plant-fungi co-invasion. Effective restoration strategies may be

represented by manipulations targeted to increase the fitness of

native plants. Particularly, the effectiveness of using native inocula

to improve theestablishment, growthanddiversityofplants in their

native range has been demonstrated in many instances (e.g. see

Maltz and Treseder24), offering an alternative approach to the

native community re-establishment. In this sense, national initia-

tives such as the ‘Biomes of Australian Soil Environments’ (BASE)

project25 may offer a useful baseline to explore the Australian

microbial biodiversity andmap theoccurrenceof suitablemicrobial

partners in potential reintroduction ranges, thus facilitating the

selection of reintroduction locations that support a fungal com-

munity similar to the native plant community of origin26.

Conclusions

In the past decade, a mounting body of evidence from ecological

studies has contributed to unravelling the pivotal contribution of

the plant-fungi interaction in mediating the successful plant inva-

sion. Much of this novel insight converged to recognise that

invasion dynamics cannot be understood or predicted without a

thorough characterisation of the relationships occurring between

invasive and native plants together with their respective micro-

biomes5,21.We thereforebelieve that approaching theplant-fungus

relationships during invasion ecology studies in a mechanistic

framework represents a fundamental prerequisite to better under-

stand the processes underpinning the competitive success of

invasive plant species, and thus design effective and long-lasting

management and restoration strategies. Particularly, the charac-

terisation of the microbial diversity and temporal variability, in-

cludingendophytesandrhizospheremicrobes, relevant toboth the

invasive and native plants at different growth stages, as well as the

identification of their functional role and their effect on plant

growth, development and tolerance21, will represent the founda-

tion to design effective microbiome manipulation strategies and

predict possible invasion outcomes. Exploring new venues to

protect and restore native vegetation communities may be partic-

ularly relevant for Australia, a continent where many terrestrial

systems are experiencing a rapidly increasing environmental pres-

sure related to climate change, habitat loss and fragmentation, and

growing human populations. Further research focused on eluci-

dating the impact of linked plant-fungal invasions in the context of

ecosystem-level andcommunityassemblyprocessesholdspromise

to provide a solid scientific framework to predict invasion trajec-

tories, and thus improve the outcomes of alien plant invasion

management approaches.
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2017 ASM Tri-State Scientific Meeting

Paul Sideris, Conference Chair

The 2017 ASM Tri-State Scientific Meeting was held in conjunction

with the ASM Parasitology and Tropical Medicine SIG Parasitology

Masterclass during September 2017 at the Novotel City in Darwin,

NT.

The ASM Tri-State Scientific Meeting has been initiated and sup-

portedby theSAandNTandWAASMbranches forover25years. It is

held every 3 years and organised alternately between SA/NT and

WA. This year it was SA/NTs turn to organise the meeting. The aim

of Tri-State is to effectively bring ASM to the Australian Top End

providing NT ASM members and colleagues with an informative

meeting on scientific and clinicalMicrobiology uniquely relevant to

northern and central Australia incorporating local and indigenous

issues. The format of the meeting is always relaxed, casual and

intimate with the opportunity to also provide delegates with

networking opportunities they otherwise may not have.

In order to attract more delegates, it was decided this year to

combine the Tri-State meeting with another meeting. As parasitol-

ogy is also relevant to the Top End, the Parasitology and Tropical

Medicine SIGwere approached andweremore than happy to form

with us to provide back to back meetings.

The LOC consisted of the following: Paul Sideris (SA), Chris

Ossowicz (SA), Peter Traynor (SA), Harsha Sheorey (VIC), Stephen

Kidd (SA/NT Branch Chair), Phil Giffard (NT), RebeccaWake (WA),

Pam Smith (NT) and Brooke Taylor (NT).

The international speakers included Professor Harvey Rubin from

theUniversity of Pennsylvania USA,Dr RichardBradbury fromCDC

in the US and Dr Bert Mulder from The Netherlands. The Scientific

Program for Tri-State included sessions on Mycobacteria, Scabies,

Bacterial Skin infections in the Top End, STDs, Antimicrobial

Sensitivity Testing, Microbiology in the Congo, Australia’s Pre-

paredness for Emerging and Exotic Vector-borne Diseases and the

Energise the Chain global project. All the speakers were excellent

and relevant and the audience was engaged and inspired.

Both meetings were well attended; 56 delegates attended the Tri-

State Meeting and 54 attended the Parasitology Masterclass (PMC).

The majority attended both meetings. All in all it was an excellent

and very successful meeting enjoyed by the delegates and pre-

senters alike.

Local ABC Radio requested an interview with Harvey Rubin. The

interview discussing the Energise the Chain project can be heard at

the following link: http://www.abc.net.au/radio/darwin/programs/

afternoons/phone-towers-saving-vaccines-and-children/8986070

The LOC together with SA/NT ASM are extremely grateful for

funding provided by ASM to hold this meeting. We are also

extremely grateful for the sponsorship provided by ThermoFisher

Scientific and Cell Biosciences. Without this contribution of funds

it would not be possible to hold meetings such as this that benefit

our members enormously.

ASMAffairs
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