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Dena Lyras

President of ASM

Last year was a very difficult year for many of you, and the anxiety,

lockdowns and travel restrictions that we faced left us feeling unsure

and grieving for a world we lost. We were all disappointed by the

unprecedented postponement of our meeting in 2020. Until a few

days ago, we thought that we would be able to hold our 2021 meeting

in a face-to-face format – it is crushing that we now cannot do that.

I am sad and upset that we will not be able to come together this year

in the way we had anticipated.

However, a positive outcome from the restrictions of the last year

was the development of excellent online conferencing tools. Our

meeting this year was to be our first hybrid meeting, with the

expectation that it would be delivered both face-to-face and online.

Our contingency planning involved the scenario which has arisen

and we have therefore switched the conference to a full online

format, which also allows regional members and those not able

to travel to attend the meeting. This conference format is new and

gives us the opportunity to learn and socialise in different ways.

I anticipate that some things will work and others will need

refinement – we are all learning as we go!

I am proud of the hardworking and dedicated Local Organising

Committee team which has spent the last three years putting

together a wonderful and diverse scientific and social program for

our enjoyment. I would like to congratulate and thank them for

their tireless work during a very difficult few years, and sympathise

with them over our thwarted plans.

I would also like to thank our ScientificExecutiveCommittee, State

Branch Committees, and EduCon Committee for their work towards

developing and delivering online events; their efforts have gone a long

way towards bringing our community together during a very difficult

time and will bring lasting change to the Society.

I also encourage you to attend the World Microbe Forum, a

worldwide online meeting being held on 20–24 June 2021

(https://www.worldmicrobeforum.org/). The theme of this meeting is

Microbial Science Knows No Borders and it is a collaborative effort

between nine Microbiological Societies from around the world,

includingours, anddiscounted registration is available to ourmembers.

I thank A/Professor Kate Seib for the prominent role she has played in

leading the organisation of the Australian arm of this meeting. The

program is diverse and has something for everyone – do take amoment

to have a look at the program on the website.

Finally, I extend my heartfelt congratulations to the recipients of

our ASM awards for 2021. Please take a moment to view the gallery

featuring our award recipients on our website. You can read a short

biography of each recipient by clicking on their photo and we

provide links to their LinkedIn profiles so you can easily send them

your congratulations. Our winners are as follows – congratulations!

David White Excellence in Teaching Award – Meredith Hughes

Frank Fenner Award – John Atack and Nichollas Scott

Jim Pittard Early Career Award – Danielle Ingle and Jennifer Wood

Distinguished Service Award – Melissa Brown, Deirdre Mikkelsen

and Jacqueline Schooneveldt

Teachers Travel Award – Thiru Vanniasinkam

Nancy Millis Student Awards – Laurine Kaul, Cheryl Sia, Elizabeth

Peterson, Sarah Cahill, and Korakrit Imwattana

Don’t forget togo toournewASMCommunityportal,which allows

members to connect with one another, to join special interest groups,

have discussions withmemberswho have similar interests, and to keep

up to date on all ASM matters. To join the ASM community, go to

https://community.theasm.org.au/ and click on the icon at the top RHS

of the screen to set up your profile. Select ‘Communities’ from the

banner menu to join a Special Interest Group community. Our other

platforms, including ourwebsitewww.theasm.org.au,ASMonTwitter,

@AUSSOCMIC, or on Facebook, are also very active. We encourage

and welcome your engagement using any option that suits you.
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Human and microbial interactions that influence health outcomes

Charlene Kahler and David Smith

Welcome to this edition of Microbiology Australia on human and

microbial interactions that influence health outcomes.

As we understand the microbial world in all its diversity, we are

now aware more than ever, that there is an amazing spectrum of

interactions between the microbial community and the human body,

which influences chronic health conditions. In the preceding decade,

many large-scale studies have established that there is homeostasis

between the host and microbiome which results in a tendency to

resist change in order to maintain a stable, relatively constant

internal environment. This relationship is maintained by a complex

web of interrelationships in the microbiome itself, which secreted

metabolic products that are detected by the host as a means of

sampling the environment. When the microbiome is perturbed, a

dysbiotic relationship between the two systems results in deleterious

effects on human health such as the development of allergies,

chronic inflammatory syndromes and even behavioural changes.

In this issue, we have short articles describing what we currently

understand about the microbiome of the human gut and the cervi-

covaginal compartments. Dr Erin Shanahan explains how the gut

microbial ecosystem is primarily altered by nutrient availability and

that diet therefore represents an important asset in therapeutically

altering the gut microbiome. Dr Willa Huston describes the role of

the cervicovaginal microbiome, which is extremely important for

maintenance of an acidic environment, preventing pathogenic col-

onisation, and modulates inflammation by cross-kingdom signalling.

Thus, the composition of cervicovaginal microbiome plays an

important role in health outcomes for women particularly in relation

to vaginal infection, pregnancy, and fertility. Dr Jeff Keelan extends

this theme by examining the potential of microbial profiling as a

means of identifying women at risk of early pre-term birth which

will assist in early interventions to improve neonatal survival.

A further two articles explore the concepts of using our knowl-

edge of the human microbiome to inform novel intervention strat-

egies for disease by using closely related species as a means of

preventing unhealthy microbiome communities from developing.

Dr Lea-Ann Kirkham describes the multiple mechanisms that are

now being deployed to intervene in otitis media, which is caused by a

polymicrobial biofilm in the inner ear. In my article on the Neisseria

genus, I provide an update on recent expansion of this genus and

provide a commentary on the importance of the commensal species

in this group as a potential source of probiotics to inhibit menin-

gococcal carriage and gonorrhoea.

As our understanding of the human microbiome and its role in

developing tolergenic immune responses has matured, it has also

become clear that historical infections affect the intensity of disease

outcomes from certain infections. Dr Allison Imrie describes this

feature in relation to outcomes for dengue infections. Cross reactive

T-cell responses may drive either resolution of the infection or drive

a life-threatening haemorrhagic response. Similar themes may

emerge as we understand SARS-CoV-2 responses and why some

people have mild symptoms while in others it is life threatening.

Professor Ian Macreadie explores the role of dietary cholesterol and

the use of statins to moderate the outcomes from a variety of

respiratory viral infections including influenza and SARS-CoV-2.

Last, we have two articles providing an update on two difficult

to treat multi-drug resistant pathogens, Helicobacter pylori by

Professor Barry Marshall and Burkholderia pseudomallei by Dr

Tim Inglis.

Biographies
The biography for Associate Professor Charlene Kahler is on page 83.

Clinical Professor David Smith,

BMedSc, MBBS, FRCPA, FACTM,

FASM, FFSc(RCPA), is a graduate in

Medicine from the University ofWestern

Australia and trained in Medical Micro-

biology in Perth. He is a Medical Virol-

ogist at PathWest Laboratory Medicine

WA at the QE2 Medical Centre in Perth,

Australia,where he is aDirector of theArbovirusResearchLaboratory.

He is also a Clinical Professor in the Faculty of Health and Medical

Sciences at theUniversityofWesternAustralia. Professor Smith serves

on a number of state, national and international committees and

advisory groups, and is currently Chair of the National Arbovirus and

Malaria Advisory Committee. He has a particular interest in public

health issues, including mosquito-borne viruses, influenza and other

respiratory viruses, and emerging infections.
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Munching microbes: diet–microbiome interactions shape gut health
and cancer outcomes

Emma ToddA, Reem ElnourA,*, Rebecca SimpsonB,*, Miguel CastanedaC,* and Erin R ShanahanA,D

ASchool of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
BMelanoma Institute Australia, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
CSchool of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
DTel.: +61 2 8627 7113; Email: erin.shanahan@sydney.edu.au

Abstract. The gut microbiome describes the complex community of microorganisms that populate the gastrointestinal

tract. Gut microbes in the large bowel utilise both dietary-derived nutrients, such as host-indigestible carbohydrates (fibre)

and excess protein, host-derived nutrients (intestinal mucin), and also interact with the by-products of digestion such as bile

acids. They transform these compounds into a series of metabolites that can profoundly shape host physiology both locally

and systemically. These metabolites can fundamentally alter host outcomes, promoting either gut health, or sub-optimal

conditions in the gut that contribute to poor health, including increased risk of cancer. The microbiome of an individual has

also been shown to impact response to cancer treatment strategies, including both treatment efficacy and side-effects in

the gut and more systemically. This makes the microbiome a powerful potential tool for therapeutic purposes, once we

overcome the challenges associated with individual variation in microbial community composition. As the gut microbial

ecosystem is primarily altered by nutrient availability, diet therefore represents an important asset in therapeutically altering

the gut microbiome.

Received 30 March 2021, accepted 20 May 2021, published online 17 June 2021

Consumption of a sub-optimal, Western-style diet (WD) – containing

proteins fromprocessedmeats, saturated fats, refinedgrains andsugars,

while lacking plant-derived, fibre-containing components1 – has been

identified as a key driver of various disadvantageous health states such

as colorectal cancer (CRC)2–4, obesity5, Crohn’s disease6, and irritable

bowel syndrome (IBS)7. Researchers have been seeking to understand

the mechanisms behind these significant associations, including the

impact of diet on the microbiome and the relationship between gut

microbes and their host, particularly the epithelial barrier.

When examining the relationship between diet and the gut

microbiome it is important to consider the nature of the gut envi-

ronment and nutrient availability from the perspective of microbes.

After digestion and absorption in the small intestine (Figure 1), the

nutrients available to microbes in the large bowel are those unable to

be digested by host enzymes, those surplus to requirements, or

derived from host cells. Different microorganisms will have varying

preferences and capabilities for consumption of dietary or host-

derived carbohydrates and proteins8,9. Interactions between nutrients

and the ratios of macronutrients available are also important in

favouring the growth of microbes with particular nutritional strat-

egies10. Therefore, in the context of the large bowel, which is the

primary site of microbial fermentation in the gut, overall dietary

intake will shape microbial community composition.

The intestinal epithelium and mucosal layer is a key site of

interaction between the host, dietary nutrients and gut microbes11. It

is a physical and immunological barrier and plays a fundamental role

in the maintenance of host health and disease prevention. The layer

of epithelial cells separates the luminal contents of the gut, including

microbes, from the underlying tissue12. The epithelial layer itself is

protected by a mucin layer, which prevents direct contact with

microbial cells (Figure 2). A number of microbes are able to cleave

mucin molecules and therefore gut microbe-mediated mucin turn-

over is part of healthy gut function13.

One consequence of fibre-deprived diets such as the WD is

decreased abundance of fibre-degrading microbes, and their bene-

ficial metabolites, including short chain fatty acids (SCFAs) such as

butyrate, acetate and propionate. SCFAs are key microbial metabo-

lites involved in immune regulation and gut barrier integrity. While

butyrate and propionate are dominantly utilised locally in the gut or

liver, acetate can readily be detected in systemic circulation suggest-

ing that it could also modulate immune function at more distant sites.

These SCFAs can bind to key receptors including GPR43 and

GPR109A on intestinal epithelial cells, which promotes epithelial

barrier repair and turnover via NLRP3 inflammasome activa-

tion14,15. Butyrate is also the primary energy source for epithelial

cells and is vital in modulating host immune responses14,16 and

*These authors contributed equally.
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maintains the epithelial barrier by decreasing epithelial permeability

through upregulating tight junction proteins (Figure 2), including

zonula occludens protein 1 and members of the claudin protein

family17. SCFAs can also promote the differentiation and accumu-

lation of regulatory T-cells (Treg) in the gut, central to the main-

tenance of immune tolerance18,19.

While fibre is the dominant dietary-derived nutrient source in the

large intestine, some microbes are able to utilise glycoprotein-rich

mucins as an alternative energy source20, including Akkermansia

mucinophila and members of the Bacteroides genus13. Mucin turn-

over is critical for maintaining intestinal integrity, although a tight

balance between mucus degradation and renewal is required, with an

essential role for mucin-degrading microbes. However, fibre-

deprived environments select for microbes with the ability to utilise

mucins, and can lead to excessive degradation of the mucus layer

exposing the underlying epithelial cells to luminal antigen, promot-

ing inflammatory responses (Figure 2). Furthermore, as mucin is an

endogenous source of sulfur, an additional outcome of excessive

mucin degradation is increased production of hydrogen sulfide (H2S)

by sulfate-reducing bacteria such as Bilophila spp. andDesulfovibrio

spp. H2S is a genotoxic compound that has been shown to damage

DNA and trigger chromosomal instability21.

Increased levels of primary bile acids are also associated with the

WD, required for emulsification of dietary fat (Figure 1). While

much of the bile acid pool is reabsorbed in the ileum, bile acids are

subject to extensive microbial metabolism including deconjugation

of amino acids taurine and glycine, and conversion to secondary

bile acids (SBAs)22. Certain SBAs such as 3-oxolithocholic acid

Small intestine

Large intestine

Monosaccharides (e.g. glucose)
Polypeptides/amino acids

Vitamins & minerals
Complex polysaccharides (e.g. fibre)

Dietary fat 

Mono-
saccharides

Amino acids

Fats

Vitamins &
minerals 

Waste products

Bile acids

Bile acids
↓

Secondary bile
acids 

Discarded cells
↓

Monosaccharides
+ amino acids 

Fibre
↓

Short chain
fatty acids 

Sulfur
compounds

↓
H2S

Figure 1. Digestive processes and microbial metabolism in the small and large intestine. Digestion and absorption of monosaccharides, amino
acids and lipids occurs in the small intestine. Host-indigestible carbohydrates (fibre), along with unabsorbed nutrients and by-products of
digestion pass into the large intestine where the majority of gut microbes are present. Microbial metabolic processes in the large bowel results in a
variety of metabolites that can be beneficial or detrimental for gut health.
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and isoallolithocholic acid have immunomodulatory properties,

inhibiting the generation of T helper 17 cells and promoting

the differentiation of regulatory T cells respectively23. The SBA

3b-hydroxydeoxycholic acid also shapes the gut immune response

by inhibiting the ability of dendritic cells to activate adaptive

immune cells, leading to an increase in regulatory T cells in the

colon24. Activation of the bile acid receptor TGR5/GPBAR1 has

also been shown to promote macrophage polarisation towards the

anti-inflammatory M2 phenotype, and reduce the expression of

inflammatory genes in a mouse model of colitis25. The immuno-

regulatory effects of these SBAs may be beneficial in mitigating

inflammatory bowel diseases, and may help to prevent the devel-

opment of colorectal cancer. However, other microbe-transformed

bile acids such as deoxycholic and lithocholic acid have pro-

carcinogenic properties (Figure 2) and predominantly act via the

downregulation of p53, a tumour suppressor gene, and the gener-

ation of ROS to induce DNA damage and genomic instability,

eventually resulting in increased cell proliferation26,27. Furthermore,

during SBA production, sulfur-containing taurine is available for

H2S generation22.

Therefore, the synergistic effect of the removal of fibre and high

levels of saturated fat in the diet, as seen in the WD, can lead to

reduced epithelial barrier function, erosion of the mucosal layer,

inflammation and an increased susceptibility to luminal pathogens

and carcinogens. The altered nutrient availability can also result in

unfavourable gut microbiome compositions that have the potential to

drive inflammation within the gut, therefore resulting in poor gut

health.

In addition to inflammation-associated disorders of the gut such

as IBD, these impacts on the gut epithelium are relevant to both local

and systemic cancer outcomes. Locally, colorectal cancer (CRC) is

linked to long term consumption of a WD28. CRC risk is determined

by complex diet–microbe interactions, where the production of toxic

microbial metabolites are capable of driving pro-carcinogenic

Tight junctions (ZO1,  
CLDN2)

Goblet cell

Gut epithelial 

cell

Mucus layer

Outer mucus layer

T-reg immune cells

Inhibition of 

inflammation

Fibre degrading 

microbes

Fibre

SCFAs 
(e.g. butyrate)

DNA damage from 

H2S

H2S

Excess amino 

acids

Bile acids

Secondary bile

acids

Increase in proliferation due to 

DNA damage and chromosomal 

instability

“Leaky gut”

ñPermeability due to 
òSCFA maintenance
    of tight junctions

Translocation of
luminal antigens

Generalised inflammation
from microbial metabolites + lack of SCFA

Degrades mucin 

layer

Figure 2. Dietary intake and nutrient availability shapes the balance between pro and anti-inflammatory properties of the gut microbiome.
(A) In healthy, high fibre environment, microbes will degrade complex carbohydrates resulting in SCFA production. Healthy mucin turnover occurs
through interaction with mucin degrading microbes. Optimal intestinal barrier function and immune regulation are favoured. (B) In diets lacking
dietary fibre, and high in fats and/or protein, there is reduced production of beneficial short chain fatty acids, degradation of the mucin layer
through excess microbial degradation, and production of potentially detrimental metabolites. This can result in increased permeability of the
intestinal barrier leading to inflammation and excess proliferation of epithelial cells.
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responses that transform the epithelium29. In addition, increased

epithelial permeability permeability – often referred to as ‘leaky gut’

(Figure 2) – enables the translocation of luminal antigens across the

epithelium, promoting a local inflammatory response, while disrup-

tion to the mucus layer exposes stem cells to microbial metabolites

that promote cell replication30. The outcome is uncontrolled prolif-

eration of epithelial cells, resulting in tumour formation. However,

predicting which individuals are most at risk of CRC development

remains a challenge and further understanding of individual micro-

biome profiles, and how these interact with dietary intake, is

required.

More recently, systemic impacts of the gut microbiome in the

context of cancer immunotherapy distal to the gut have been

identified. Immunotherapy acts to induce the immune system to

target and eliminate cancer cells and has been used in various

cancers including melanoma, lung and renal tumours31–33. Emerging

evidence indicates that higher fibre consumption is associated with

improved response rates to therapy34, and the microbiome represents

a promising target to overcome therapeutic resistance35 and reduce

side-effects such as colitis36. While the specific taxa linking response

to treatment across cohorts lack consensus31–33, shared functional

properties such as fibre fermentation and mucin turnover that support

intestinal epithelial barrier integrity may be the underlying common

features. However, whether fibre supplementation will be effective

at modulating the microbiome in a feasible timeframe to improve

treatment responses requires further investigation.

Although diet is well established to shape the composition of the

microbiome, how an individual responds to a particular dietary

intervention is dependent on the composition of an individual’s

baseline microbiome. For example, individuals have been shown to

respond differently to supplementation with the same type of

fibre37,38. This has been linked to interspecies competition and

functional redundancy within microbiome39. Inter-individual varia-

tion therefore presents a significant challenge in terms of designing

effective therapeutic dietary interventions, as variable responses

dependent on the assemblage of the microbiome would be expected.

Additionally, different types of fibre are known to have different

prebiotic effects, for example, not all fibre sources are equally

capable of stimulating SCFA production40,41. Given the impact of

inter-individual variation impact of an individual’s baseline micro-

biome a ‘one-size fits all’ approach will likely be ineffective, rather

more personalised approaches will be necessary to enhance the

reproducibility and success of nutritional interventions in the clinic.

While a significant body of research has emerged in this area,

there remains much to be understood. What mechanisms underly the

various host–microbe interactions at the epithelial interface, in

response to different diets, in a clinical setting? How do individual

gut environments and microbial ecosystems impact responses to

treatments such as immunotherapy? Can tools be created to predict

and modulate these outcomes? Understanding these issues could

enable the implementation of personalised medicine, where the

individual’s native microbiome, genetics, and dietary history could

be considered prior to implementation of medical interventions,

resulting in greater treatment effectiveness and fewer side-effects.
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Cervicovaginal microbiota and women’s health outcomes
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Abstract. The human cervicovaginal microbiome has an important role in the health and homoeostasis of the female

reproductive tract. A eubiotic microbiome is typically dominated with lactic acid producing bacteria and is categorised

into five community state types. Issues arise when the microbiome becomes dysbiotic, with the microbial composition

shifting to contain a greater relative abundance of strict and facultative anaerobes. This shift will lead to several adverse

changes in the vaginal environment including compromised epithelial cells, cell death, inflammation, and greater suscep-

tibility to infection. These changes are associated with various adverse outcomes including infections, preterm birth, and

infertility. In this review, we discuss how the cervicovaginal microbiome influences these outcomes and possible future

directions of treatment and research.
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Introduction

The human microbiome is a unique collection of microorganisms

that colonises the body and has an important role in health and

homeostasis. The cervicovaginal microbiome is particularly distinc-

tive as it is frequently dominated by Lactobacillus with decreased

diversity of other bacteria, unlike what is seen in other sites such as

the gut1. The cervicovaginal microbiome is extremely important to

the host tissue as it maintains an acidic environment, preventing

pathogenic colonisation, and modulates inflammation by cross-

kingdom signalling1. Thus, the composition of the cervicovaginal

microbiome plays an important role in health outcomes for

women, particularly in relation to vaginal infection, pregnancy,

and fertility.

The eubiotic microbiome

Early culture-based studies identified Lactobacillus as the dominant

bacteria in the vaginal microbiome and recognised that it may play a

key role in maintaining the health of the female reproductive tract2.

Molecular-based techniques, including relatively recent next gen-

eration sequencing, have been used to obtain an in-depth under-

standing of vaginal flora and to classify microbiota into broad

profiles termed community state types (CST)3,4. Four CSTs are

dominated by a species of Lactobacillus; Lactobacillus crispatus

(CST I), L. gasseri (CST II), L. iners (CST III) and L. jensenii (CSTV).

CST IV is characterised by various strict and facultative anaerobes

and is typified by the absence of a dominant Lactobacillus species.

The CSTs have varying levels of stability and transitions between

CSTs are associated with composition, menstrual cycle, and sexual

activity4. Lactobacillus produces lactic acid, maintaining vaginal pH

at �4.5, promoting a selective environment for acid tolerant bacteria

whilst suppressing pathogenic colonisation (Figure 1). Lactic acid

has an immunomodulatory function, acting directly on epithelial

cells to promote an anti-inflammatory response via the production

of interleukin (IL)-1 receptor antagonist, as well as promoting

the production of pro-inflammatory mediators and antimicrobial

peptides (Figure 1)5.

The dysbiotic microbiome

Dysbiosis is defined as a change in microbiota composition relative

to the community of commensal bacteria seen in a healthy state6.

There are no specific bacteria universally seen in dysbiosis but it is

frequently associated with increased relative abundance of Gard-

nerella, Prevotella, and Atopbium7,8. This shift in composition

results in a decrease in lactic acid, with an increase in short chain

fatty acids, amines, and pH (Figure 2)9. Dysbiosis is also associated

with several detrimental changes in the cervicovaginal environment

including alterations in the cytoskeleton, increased cell death, an

imbalance in the concentration of antimicrobial peptides and

increased production of pro-inflammatory cytokines (Figure 2)10.

These changes are thought to leave the tissue susceptible to infection

and inflammation.
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Bacterial vaginosis

Bacterial vaginosis (BV) is the most common vaginal infection,

characterised by dysbiosis and the associated metabolomic changes.

BV often is asymptomatic, but women may experience symptoms

such as discoloured vaginal discharge, and a ‘fishy’ odour. The

prevalence of BV is variable between different populations but

worldwide prevalence is approximately 30%, with prevalence in

Australia considerably lower at 4.7%11. Treatment with oral or intra-

vaginal antibiotics is only recommend for women experiencing symp-

toms. However, after treatment, reoccurrence is common with up to

60-80% of women experiencing reoccurrence within 12 months after

treatment12. Recent research has now shifted to investigating the vari-

ables associated with reoccurrence, specifically microbiota composi-

tion, to improve the treatment outcomes for women with BV13.

Sexually transmitted infections

Dysbiosis of the cervicovaginal microbiota is known to increase the

risk of acquiring a sexually transmitted infection (STI). Numerous

longitudinal studies have determined that high microbiota diversity

increases the risk of acquiring an infection14. A possible mechanism

that increases susceptibility may be an inflammatory response to

diverse bacteria. Gosmann et al.15 investigated the association

between the microbiome, inflammation, and human

immunodeficiency virus (HIV)-acquisition in a prospective cohort

study of South Africa women. They determined that women with

polymicrobial microbiomes dominated with anaerobes, had in-

creased activated mucosal CD4+ T cells, and four-fold greater risk

of HIV infection. They suggested that the target cells were respond-

ing to the microbial diversity, which in turn increase host suscep-

tibility15. A similar response is also hypothesised to be involved in

human papillomavirus infection, but is yet to be investigated16.

Another mechanism involved in the susceptibility is the modulation

of cellular functions. Ceccarani et al.17 investigated the changes in

the microbiome and metabolome during Chlamydia infection. In

comparison to a healthy state, they showed clear changes in com-

position occurred during infection, specifically a decrease in lactic

acid. Similarly, Edwards et al.18 showed D (-) lactic acid produced

by the microbiome may prevent cellular proliferation, protecting

against Chlamydia infection. They suggested that a eubiotic micro-

biome modulates cell function preventing Chlamydia infection

in vitro. These studies support that via direct metabolic profiles and

cross talk involved in host cell responses, the cervicovaginal micro-

biome influences the risk of STI acquisition.

Eubiosis

Maintains
mucosal layer Antimicrobial

peptidesLactic acid (pH ≤ 4.5)

Inhibition of pathogenic
colonisation

Immune
modulation via

IL-1RA production

Protection and repair of
epithelium via inhibition of

histone deacetylase activity

Lactic acid producing bacteria (Lactobacillus sp.)

Non-lactic acid producing bacteria

Figure 1. Eubiotic microbiome. Bacteria maintain the mucosal layer,
release antimicrobial peptides, and lactic acid. Lactic acid lowers the
pH, preventing pathogenic colonisation, and modulating the immune
response, protecting the epithelial layer. Created with BioRender.com
(https://biorender.com/).

Dysbiosis

Breakdown of
mucosal layer

Production of
amines

Short chain fatty
acids (pH ≥ 4.5)

Selective for strict and
faculative anaerobes

Production of
pro-inflammatory

mediators

Compromised
epithelial layer

Lactic acid producing bacteria (Lactobacillus sp.)

Non-lactic acid producing bacteria

Figure 2. Dysbiotic microbiome. There is a breakdown in the
mucosal layer, and the production of amines and short chain fatty
acids, increasing the pH. This creates an environment selective for
strict and facultative anaerobes, a pro-inflammatory response in the
tissue, and compromises the epithelium. Created with BioRender.
com (https://biorender.com/).
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Pregnancy

The composition of the cervicovaginal microbiome has been asso-

ciated with increased risk of adverse outcomes in pregnancy such as

preterm birth. Preterm birth is defined as either a live or still birth

after 20 weeks’ gestation but before 37 weeks19. During pregnancy,

hormonal changes alter the composition of the cervicovaginal

microbiota resulting in an increased abundance of Lactobacillus.

Several studies have shown that women with a diverse, non-Lacto-

bacillus dominated microbiome are at a greater risk of preterm

birth20,21. However, there is no defined profile of bacteria associated

with adverse outcomes and results from each study greatly vary due

to the population and study design. Kosti et al.22 recently conducted

meta-analysis to address these issues and created a microbial sig-

nature associated with preterm birth. They successfully identified a

lack of Lactobacillus as a predictor of preterm birth, alongside

several species that had been previously reported. Interestingly,

they identified an association between preterm birth and the presence

of Olsenella and Clostridium sensu stricto, which had not been

previously reported22. Overall, these promising results show the

potential for novel diagnostics that could guide interventions to

improve pregnancy outcomes for women at risk.

Infertility treatment

Infertility is defined as the inability to attain a clinical pregnancy

after 12 months of regular unprotected intercourse19. In vitro ferti-

lisation (IVF) is now the most common procedure used to treat a

range of infertility issues23. However, in Australia, the success rate

of IVF procedures is reported as approximately 30% with little

improvement over the past 5 years24. Poor outcomes of IVF have

been associated with the composition of the cervicovaginal micro-

biome in several studies, although these studies often have a small

sample size and mixed quality of methodologies. Initially Hyman

et al.20 associated diverse vaginal bacteria with poor IVF outcomes

and suggested that the composition of the microbiome at the time of

embryo transfer may be an important factor in the success of IVF

treatment. Since this initial study there have been several others that

have associated increased diversity of cervicovaginal microbiota and

the presence of specific bacteria, with IVF failure25–27. However,

there is no defined profile of microbiota associated with poor out-

comes in IVF treatment, mostly due to the lack of larger studies. To

understand the pathogenesis of this relationship, Fu et al.28 con-

ducted a study to assess changes in the microbiome and metabolome

in association with the outcomes of IVF failure. They determined that

there was a lack of key metabolites necessary for embryo development

and implantation such as glycerophospholipids and benzopyran in those

who experienced IVF failure, and in turn these metabolite differences

were associated with different compositions of microbiota. While this

study shows some promising results, the pathophysiology involved in

this relationship is yet to be fully explored.

Future directions

It is clear the cervicovaginal microbiome plays a key role in health

outcomes for women, with dysbiosis commonly observed in a range

of adverse events. However, the mechanisms underlying these

relationships are not well understood. Future microbiome and meta-

bolome models will provide a method of representing these inter-

actions in vitro. Delgado-Diaz et al.29 used key metabolites

associated with a Lactobacillus dominated microbiome and

BV-associated microbiome to model the response of cells. This

showed the immunomodulatory effect of lactic acid, but also showed

that a lack of lactic acid and high concentrations of short chain fatty

acids would stimulate increased production of pro-inflammatory

cytokines. Thus, the approach of using an in vitro model is a

promising method to better understand the microbiome and host

cell interplay at a molecular level. Furthermore, large studies are

necessary to determine predictive biomarkers of adverse outcomes,

and to inform development of treatments such as probiotics for

targeted treatment of the microbiome.
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Abstract. Preterm birth (PTB) is a significant health problem globally, with an estimate of 15 million cases annually.

Approximately 10% of neonates born early will die prematurely, while a subset will develop severe life-long morbidities.

Unfortunately, preterm birth’s syndromic nature has evaded prevention strategies, and it continues to impose a high burden on

healthcare systems and families. The role of vaginal bacteria in triggering biomolecular causes of PTB has been recognised

for years. However, translating this knowledge to practical diagnostic and therapeutic strategies has remained elusive. New

techniques in high-throughput sequencing have improved our understanding of the nature and role of the vaginal microbiome

during pregnancy. Several multi-ethnic andmulti-geographical studies into the vaginal microbiome have identified five distinct

bacterial profiles termedcommunitystate types (CSTs),oneofwhich ispositivelyassociatedwithdysbiosisand increased riskof

PTB. In a small pilot study of first-trimester vaginal microbial DNA obtained from pregnant women at high-risk of PTB, we

compared the CST profiles generated using standard 16S amplicon sequencing with shallow shotgun metagenomics (SSM).

Bothmethods identified thepresenceof thefiveCSTsashasbeen reportedpreviously, although themetagenomicdata showed

greater taxonomic resolution and more accurate CST assignation. These findings suggest that SSM is a cost-effective and

potentially superior alternative to 16S sequencing for vaginal microbiome analysis.
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Introduction

Preterm birth (PTB), defined by the World Health Organization as all

deliveries between 20–37 weeks of completed gestation, is a com-

plex syndrome. The condition is divided into four groups based on

gestational age (GA) at of birth: extreme PTB (<28 GA), very PTB

(28-32 GA), moderate PTB (32-34 GA) and late PTB (34-37 GA)1.

PTB impacts the lives of 15 million families annually, with an

approximate 10% mortality rate in the first month after delivery2.

Despite advances in neonatal care and improved survival and

reduced morbidity, preterm infants are at high risk of developing

metabolic disorders and debilitating neurological conditions, such as

blindness, deafness, neurodevelopmental delays, and behavioural

issues well into adulthood3. A recent meta-analysis of PTB hospi-

talisation costs in the US, Canada, and The Netherlands reported that

the individual healthcare costs for extreme PTB were between

$111 152–$576 972 per delivery4.

PTB is a syndrome that is both difficult to predict and to prevent5.

Multiple methods and approaches for PTB prediction have been

developed and evaluated, with varying success6–9. Similarly, pre-

ventative treatments are limited and lack the required efficacy,

applicability and precision. Women identified as at high risk of

PTB (typically due to either a previous PTB and/or a short cervical

length defined as <25 mm) typically receive one of two clinically-

recommended preventive interventions at the discretion of the

treating obstetrician, namely exogenous progesterone (vaginally,

orally or intramuscularly) or cervical cerclage surgery10.

A meta-analysis from 2018 with large high-risk pregnancies

cohorts report that vaginal progesterone (VP) use resulted in a

pooled relative risk ratio (RR) of 0.29–0.68, while cervical cerclage

had a RR of 0.64–0.7011. The effectiveness of VP appears to be

particularly robust in high-risk women with short cervical length

(<25 mm), as has been recently demonstrated in the EPPPIC

meta-analysis12.

PTB has long been known to be associated with ascending

intrauterine infections originating from a dysbiotic (sub-optimal)

lower vaginal tract microbiome5,13,14. In 2–27% of pregnant women,

the microbiome composition shifts to an increase in species
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diversity, leading to a dysbiotic vaginal microbiome associated with

a disease state. Several studies have now show that an increase in

bacterial diversity is linked to reproductive tract inflammation and

increased risk of PTB15–19. Despite numerous studies investigating

the predictive usefulness of vaginal microbiome analysis, the diag-

nostic utility of this approach remains elusive. In a recent large study

of low-risk Australian women, a high-risk microbial profile in the

2nd trimester was identified based on the presence/absence and

combinations of known bacterial species18. Notwithstanding this

study’s clinical relevance to PTB management, it is important to

point out that this particular work is based on analysis of a selected

number of risk-associated bacteria, not the entire microbiome per se.

In 2011, Ravel and colleagues classified the vaginal microbiome of

healthy reproductive-age women into five distinct community state

types (CST), conditional on the dominance of oneof fourLactobacillus

spp. or lack thereof. CST-I is dominated by Lactobacillus crispatus,

CST-II by Lactobacillus gasseri, CST-III by Lactobacillus iners,

CST-IV by diverse anaerobic bacteria resembling the clinically

diagnosed condition of bacterial vaginosis (BV), and CST-V by

Lactobacillus jensenii20. The robustness of CST classifications has

since been confirmed in many human microbiome studies, regardless

of ethnicity, geographical location or sequencing methodology21.

More recently, the Ravel laboratory developed the tool

‘VALENCIA’ (VAginaL community state typE Nearest CentroId

clAssifier), which unbiasedly affirmed the presence of the original

broad five CST profiles while defining an additional set of 13

subCST groups22. Importantly, VALENCIA links CST profiles with

clinical descriptors across multiple ethnicities, plus provides

researchers with the ability to accurately differentiate between

known subtypes of CST-IV. The new CST-IV classification now

takes into account the presence and abundance of Lactobacillus spp.

and the following clinically essential bacteria: Gardnerella vagina-

lis, Bifidobacterium spp., Atopobium vaginae, Prevotella spp.,

Enterococcus spp., Streptococcus spp., and Staphylococcus spp.22.

Notably, in the context of the vaginal microbiome, studies have

shown that CST-IV and CST-III dominance early in pregnancy

increase the risk of PTB18,23, and it is now believed that microbial

diversity assessment and CST profiling may help screen women for

PTB risk17. Despite solid evidence associating PTB with CST sub-

optimal profiles, it is worth mentioning that most of the evidence was

from studies with a predominantly Caucasian cohort. In African

American cohorts, the associated significance was weak or disap-

peared altogether24.

With the acceptance of ethnicity as a significant confounding

factor, we know that vaginal microbiome dysbiosis is a substantial

risk factor for uterine ascending infection, which has been causally

linked to up to 40% of all preterm births5. However, the techniques

used to generate microbiome data are often constrained by limited

financial and bioinformatic resources, limiting their clinical and/or

diagnostic utility. Therefore, employing methods that increase

taxonomic resolution at a reasonable cost have the potential to

enable CST profiling to be conducted for PTB risk prediction and

treatment in high-risk pregnancies, as well as increasing the accu-

racy and resolution of the data.

Presently, the vaginal microbiome is typically studied via two

DNA-based approaches and one RNA-based strategy: metabarcod-

ing (DNA), metagenomics (DNA) and, to a lesser extent, metatran-

scriptomics (RNA, not discussed further)25. Metabarcoding (also

known as metataxonomics or amplicon sequencing) is the most

commonly used technique for microbiome analysis, partly due to its

simplicity, but primarily because of the low cost (typically <$100 per
sample) and well established analysis pipelines (e.g. USEARCH/

DADA2). Amplicon sequencing involves the PCR amplification of a

small hypervariable region or regions (250–500 bp) of the taxo-

nomically informative 16S rRNA gene expressed in all bacterial

species. Typically, microbiome specialists would design primers that

can amplify a set of variable regions that allow the taxonomic

discrimination and identification of bacterial genera – in some cases

to the species level; this is necessary for CST profiling, although bias

can be introduced through primer design, the selected 16S rRNA

gene region and its coverage25. To eliminate obvious bias, primers

may need to be redesigned to increase the species detection within the

same taxonomic kingdom,or if separate domains are tobe targeted, such

as when characterising the prokaryotes, fungi and microeukaryotes

communities present in the human vaginal tracts25,26.

In contrast, metagenomics or shotgun sequencing has significant

advantages over amplicon sequencing. It can remove detection bias

by sequencing all DNA present in a sample, providing taxonomy to

strain-level accuracy. Furthermore, it provides the researcher with

the ability to assess metabolic functional potential of the genomes

by conducting pathway analysis based on the sequenced genes.

Although standard shotgun sequencing has advantages over

amplicon sequencing, it carries some critical disadvantages: (1) the

amount of DNA required is at least 1 mg; (2) analysis is expensive
($500–$1000 each); and (3) there is a requirement to have access

to specialist bioinformatics resources and high-performance

computing27.

We have recently completed a pilot study assessing the taxo-

nomic resolution resulting from a recent methodological advance

in metagenomic analysis called shallow shotgun metagenomics

(SSM)28,29. In SSM a sample is typically sequenced to a depth

<1 million reads, which is an order of magnitude or more lower than

the depth expected in a standard metagenomics study (depth between

10 million to 2.5 billion reads)29. The reduction in sequencing depth

reduces the cost of SSM to those similar to amplicon sequencing,

while retaining broad taxonomic coverage at higher taxonomic

resolution with functional genetic information. Hillman and collea-

gues recently showed that a sequencing depth as low as 100 000

reads can mirror >90% of the alpha diversity and gene functional

capacity relative to that mapped by ultra-deep metagenomics28.
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These attributes make SSM ideal for the study of microbiomes in

large, longitudinal cohorts.

SSM also has two important practical limitations. Firstly, if a

sample type contains a very high host:microbe DNA ratio, such as

found in blood or tissue biopsies, then SSM may not be the method

of choice, because the dominance of host DNA will swamp the reads

assigned to microbes and low abundance species may be missed.

Secondly, there are bioinformatic constraints, as most available tools

are not designed to meet the particular requirements of SSM-

generated data; this can result in the generation of false positives

and negatives. Additionally, the entire metagenomics field is limited

by the availability of high-quality genome databases due to the

infancy of this field. Thus, rare or non-sequenced organisms are

reported as negative or unassigned, potentially losing important

taxonomic information and compromising interpretation. Although

these points are all important limitations to consider in study

design, in some microbiomes such as the skin or the vaginal

microbiome (our research area) that contain a higher host DNA but

low-to-medium biomass, SSM may still offer significant advantages

due to the medical importance of identifying bacteria, fungi, viruses

and micro-eukaryotes to species or strain resolution, which is not

provided by amplicon sequencing.

In this study, we compared the bacterial taxonomic profile of

SSM to standard 16S amplicon sequence in the context of the vaginal

microbiota. The comparison was made using two sample sets: (1) a

mock vaginal community consisting of six vaginal bacterial species

with an even abundance of 16.7% to validate the robustness of the

pipeline; and (2) DNA from 22 high vaginal swabs collected from

women at high risk of PTB during their first trimester in Perth,Western

Australia; the swabs were obtained from the Western Australian

Pregnancy Biobank, with informed consent and institutional ethical

approval.Our swabs yieldedDNAconcentrations between 1–40ng/mL;
two samples and the negative controls did not have enough DNA for

sequencing, and thus were eliminated from analysis. The host DNA in

the remaining 20 samples acquired on average 89% of the MiSeq

Illumina sequenced reads, leaving only 2.1 million reads for the

analysis of 20 samples (plus a mock community control).

Mock community analysis

First, we gauged the performance of our methods using the Amer-

ican Type Culture Collection (ATCC) standardized even abundance

vaginal bacteria mock community (ATCC MSA-1007 medically

relevant species). The sequencing comparison yielded a highly

correlative bacterial composition (Figure 1). The data generated by

amplicon sequencing (using primers targeting the v4 16S rRNA gene

region) vs. SSM showed excellent taxonomic agreement, although

there were some minor differences in relative abundance. However,

it is worth mentioning that the (515f/806r) v4 primers used here were

designed to enable detection of all six species and thus would be

expected to amplify them preferentially. Mycoplasma hominis was

markedly underrepresented in the Met (metagenomics) group where

it represented only 1% of total species, while in the Amp (amplicon)

group it was detected at 19% – very similar to the expected 16.7% in

the mock community. We attribute this discrepancy in theMet group

to the unavoidable stochasticity/compositionality introduced during

sequencing, where the abundance of a species can be heavily skewed

at random. Additionally, in this study we applied a completely PCR-

free library preparation method to avoid amplification bias; however,

this approach required a considerable amount (>100–1000 ng total)

of starting genomic DNA, more than that provided with the ATCC
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The table on the right corresponds to the relative abundance on a scale from 0–1 (rounded to 2 decimal places).

In Focus

MICROBIOLOGY AUSTRALIA * JUNE 2021 71



product (4 ng/mL). This does not offer a full explanation as to why

the rest of the species in the mock community were not also detected

at lower proportions than expected. We believe the difference is

most likely driven by the fundamentally different genome-based

reference database and tool used to assign taxonomy in SSM

compared to the widely used extensive options available for bacterial

amplicon sequencing. Interestingly, other studies comparing the

outcome of mock communities and metagenomics also showed that

amplicon sequencing seem to provide closer compositional agree-

ment30. Importantly, this artificial situation would be unlikely to be

replicated in a real-life analysis of complex, natural bacterial

communities.

Vaginal swab analysis

Although the amplicon method showed considerable agreement on

the taxonomic assignments of mock species, the SSM approach

when applied to vaginal samples provided a species or strain level

taxonomic assignation with high confidence as required for accurate

vaginal CST determination. Figure 2 shows the relative abundance

of the top 30 species in the 20 vaginal samples according to the two

methods. While there was general agreement in the relative

abundance of the most common species, several less abundant

species were absent in the Amp group (e.g. Neisseria gonorrhoeae).

In addition, amplicon sequencing could not resolve the genus

Bifidobacterium to species level, while SSM identified the species

as B. longum. We also found that L. iners abundance was overrep-

resented in amplicon sequencing profiles. In contrast, SSM was able

to resolve the same samples to either L. jensenii or L. ultunensis

dominance. Enrichment of L. iners detection in the Amp group can

be explained by preferential primer amplification.

As shown by amplicon sequencing, taxonomic uncertainty can be

problematic to vaginal microbiome profiling, because it can distort

the accurate picture of community composition and structure. In our

analysis of CST profiles, we identified that these inaccuracies can

result in CST-V or CST-IV being wrongly labelled as CST-III. This

was evident in the sample from one patient (M65), whose profile was

dominated by L. ultunensis as detected by SSM, but designated

CST-III by amplicon sequencing (refer to Figure 3).

Although the detection of atypical CST types such as those

dominated by species L. ultunensis/amylovorus posed a challenge

during the allocation of CSTs, the fact that Gardnerella vaginalis

seems to co-exist in these atypical communities prompted us to
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allocate them to CST-IV (mixture of facultative anaerobes with a

moderate abundance of G. vaginalis). We took this approach to help

in differentiating the atypical group dominant samples from other

Lactobacillus dominated CST types commonly associated with

vaginal microbial health. Although amplicon sequencing generates

considerably lower taxonomic resolution than SSM, we believe it

remains helpful as a tool for vaginal microbiome characterisation

because it can broadly differentiate between CST types on Lacto-

bacillus spp. dominance. Nonetheless, this comparison highlights

the limitations of using amplicon sequencing in accurately distin-

guishing between closely related CST profiles such as those dom-

inated by the Lactobacillus genus.

In conclusion, our pilot study suggests that shallow shotgun meta-

genomics is a superiormethod compared to amplicon sequencing in the

context of species-level vaginalmicrobiome characterisation related to

health anddisease. Importantly,while standard (deep)metagenomics is

cost-prohibitive for large studies, in this pilot study we show that the

benefits associated with sequencing all DNA in a sample can be

achieved at costs similar to amplicon sequencing. Our study also

suggests that the vaginal microbiome data and CST demographics

generatedbyhigh-resolution shotgunmetagenomicsmayneed to be re-

examined in the context of microbial health and disease risk. Our

follow-up work intends to improve our microbiome data accuracy and

confidence by complementing shallow metagenomics laboratory

workflowwith a site-specific, multi-kingdom reference database com-

bined with alternative bioinformatics algorithms.
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Targeting host-microbial interactions to develop otitis media therapies
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Abstract. Otitis media (OM; middle ear infection) is the most common reason for pre-school children to visit a doctor, be

prescribed antimicrobials, or undergo surgery. Recent Cochrane reviews of clinical trials have identified that antibiotics and

grommet surgery are only moderately effective in treating OM, with recurrent or persistent infection observed in one-third of

children. Research efforts are focusing on developing improved therapies to treat OM and prevent disease recurrence. The

recurrent nature of OM is mostly due to the persistence of bacterial pathogens within established biofilm in the middle ear.

Promising novel therapies are harnessing host-microbe interactions to disrupt middle ear biofilm and permit antibiotics to

work more effectively. New approaches are also being developed to prevent OM, including new vaccines and mining the

host respiratory microbiome to develop novel bacterial therapies. This review describes how our improved knowledge of

human and microbial interactions is driving development of OM therapies to improve health outcomes for children in

Australia and worldwide.
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Globally, there are ~709 million cases of acute otitis media (OM),

~31 million cases of chronic OM and 21 000 deaths from OM

complications each year1. In Australia, almost every child will

experience an episode of OM by their second birthday. One quarter

of Australian children will suffer from recurrent or persistent OM

and hearing loss, for which grommet surgery is recommended to

improve hearing and reduce the risk of infection. Approximately

35 000 surgeries for OM are conducted each year in Australia2.

Acute OM (AOM) involves inflammation of the eardrum, which

is often painful and associated with fever. Children that suffer from

recurrent AOM (three episodes in 6 months or �4 in 12 months) are

usually referred for grommet surgery (Figure 1a). In some children

bacteria are never fully cleared and mucous (generated by the child’s

immune response to presence of bacteria) persists behind the ear-

drum; this is known as OM with effusion (OME) or ‘glue ear’.

Figure 1b (and Video S1, available as Supplementary material to

this paper) shows aspiration of the sticky glue from the middle ear by

an ENT surgeon. OME can occur without a preceding AOM episode.

Persistent ‘glue’ in a child’s ear results in conductive hearing loss

and if left untreated can have a devastating impact on a child’s

learning, and social and emotional well-being2,3. This complication

disproportionately affects Aboriginal and Torres Strait Islander

children, who suffer the highest reported rates of OM and associated

hearing loss in the world – more than double the incidence in non-

Aboriginal Australian children2.

Potential OM pathogens (otopathogens) reside in the nasophar-

ynx and adenoids, usually as asymptomatic colonisers. Transition

from colonisation of the upper respiratory tract to middle ear

infection often involves a preceding respiratory virus infection,

which aids otopathogen ascension to the middle ear through pro-

motion of bacterial proliferation and increased mucous production4.

Nontypeable Haemophilus influenzae (NTHi), Streptococcus pneu-

moniae and Moraxella catarrhalis are the leading otopathogens5.

We have shown that these otopathogens survive in the ‘glue’

(biofilm) in the middle ear6,7 (also shown in Figure 2), where they

are up to 1000 times more resistant to antimicrobials and can evade

host immune defences8. Recently, we have demonstrated that chil-

dren with bacterial otopathogens detected in their middle ear at the

time of grommet surgery are three times more likely to require repeat

OM surgery9. Thus, ensuring that otopathogens are cleared from the

middle ear at the time of first grommet surgery could be a strategy for

preventing disease recurrence. Preventing the first episode of OM

would be even better.

Current treatment strategies for OM

Antimicrobials

Cochrane reviews of randomised clinical trials (RCTs) have indicated

that treating AOM and OME with antimicrobials only has a modest

benefit on the symptoms of OM10. Long-term low-dose antibiotic

treatment has been shown to prevent occurrence of AOM in high-risk

children11, but this must be balanced against the risk of adverse effects

such as diarrhoea. Antibiotic use, particularly prolonged low-dose use,

can also contribute to the growing threat of antimicrobial resistance.
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Surgery

Evidence on the effectiveness of OM surgery for OM is poor; a

Cochrane review of five RCTs revealed only low-quality evidence

for the benefits of grommet surgery12. While grommets do improve

hearing in the short-term, they can also block with pus or lead to

persistent otorrhoea (runny ears)13. Furthermore, disease often

recurs in children, with >30% of patients returning for repeat

grommets13. While private surgery waitlists for grommet surgery

are only 4 to 6 weeks, the current wait time for grommet surgery at

public Australian hospitals is unacceptably long at two years. This is

an exceptionally long time for a child to suffer from reduced hearing,

which can have major impacts on speech development, education

outcomes and social and emotional wellbeing2,3.

Currentclinicalpreventativestrategies forOM

Vaccines

Vaccination remains the gold standard for preventing infections.

However, because NTHi has high strain diversity and no

polysaccharide capsule, and S. pneumoniae has high serotype di-

versity, it is challenging to develop effective OM vaccines. Currently

no OM-targeted vaccines are licensed14.

Probiotics

Both orally and nasally delivered Lactobacillus and a-Streptococci
species can have a moderate untargeted impact on recurrent OM15.

However, there is no evidence that probiotics protect against initial

episodes of OM (Cochrane review of 16 RCTs)15.

Development of novel therapies to treat OM

Thermoresponsive ototopical gels

Hydrogels that are liquid at room temperature and gel-like at 378C

can be used for controlled delivery of OM therapies. Otiprio� is a

new licenced therapy that delivers the antibiotic ciprofloxacin over

10–14 days in a thermoresponsive gel16. This gel can be applied into

the middle ear at the time of grommet surgery, removing the need

for parental application of antibiotic drops and thereby enhancing

(a) (b)

Figure 1. Grommet insertion and removal of effusion from the middle ear. (a) Otoscopy image of a grommet (small plastic tube) surgically
inserted into the tympanic membrane for treatment of acute otitis media or otitis media with effusion (OME) (image courtesy of Clinical
A/Professor Jafri Kuthubutheen). (b) Aspiration of middle ear fluid ‘glue’ from a child with OME, via an incision in the tympanic membrane and prior
to grommet insertion (image courtesy of Professor Harvey Coates AO).

37.5 µm 37.5 µm

(b)(a)

Figure 2. Maximum projection Confocal Laser Scanning microscopy images demonstrating presence of biofilm in middle ear effusion from a
child undergoing grommet surgery for recurrent acute otitis media. (a) Live/dead staining of middle ear effusion demonstrating presence of live
bacteria (green) surrounded by extracellular host DNA (red) within mature bacterial biofilms. (b) Fluorescence in situ hybridisation on the same
middle ear effusion demonstrating multi-species bacterial biofilms using the following 16s rRNA probes: universal bacterial probe (red),
S. pneumoniae (green), and H. influenzae (grey) plus Hoechst 33342 staining for all DNA (blue). S. pneumoniae and other unidentified
bacteria were observed within biofilms throughout the host DNA in the middle ear fluid. Scale bar = 37.5 mm.
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compliance. However, antibiotics, even when delivered in a slow-

release gel, will have limited effect on established biofilms.

Anti-biofilm treatments

Since the discovery of biofilm in the middle ear of OM patients17, it

is now widely accepted that persistence of infection and recalci-

trance to treatment is predominantly driven by biofilm. Biofilms in

the ears of children with OM are composed of a combination of host

and microbial factors that protect the otopathogens6. Researchers are

targeting biofilms to enhance treatment for recurrent AOM and

chronic OME.

(1) Therapeutic anti-biofilm vaccine: antibodies to NTHi proteins

(PilA and OmpP5) have been shown to disrupt established NTHi

biofilms in the chinchilla model of OM18. The biofilm destabi-

lisation is antibody mediated and occurs by targeting the type IV

pilus (PilA) responsible for twitching motility, and also the

tightly co-regulated quorum signalling molecule (LuxS), both

of which are essential for biofilm formation and dispersal18.

Otopathogens released from the destabilised biofilm are highly

susceptible to antibiotics19. The PilA protein is included in a tri-

valent sub-unit NTHi vaccine that was tested in clinical trials in

adults with chronic lung disease20. While PilA vaccination was

safe and induced high antibody titres in the trial, the ability of

these antibodies to destabilise OM biofilms in humans has not

been assessed. Future trials with antibiofilm therapeutic vaccines

in children with chronic NTHi OME are warranted.

(2) Antibody therapy: Bacterial extracellular DNA (eDNA) is abun-

dant within bacterial biofilms. This eDNA is arranged in lattices

and the critical protein that maintains the biofilm structure is

integration host factor (IHF). IgG or Fab-fragments targeting

protective epitopes within the DNA-binding tip domains of IHF

have been shown to disrupt established biofilms in vitro and to

mediate resolution of disease in the chinchilla OM NTHi biofilm

model21.

(3) Anti-neutrophil extracellular trap (NET) therapy: Dornase alfa

(Pulmozyme�) is a DNAse-based therapy routinely used to

breakdown biofilm in the lungs of cystic fibrosis (CF) patients.

We have shown that Pulmozyme� breaks down NET-derived

DNA in middle ear biofilms from OM patients to allow anti-

biotics to effectively kill the remaining otopathogens in vitro6.

Our Phase I trial (CTN#2011/0635) in 60 children demonstrated

that Pulmozyme� application into the middle ear at time of

grommet surgery was safe, with no adverse events (manuscript

in preparation). Our current Phase II randomised control trial is

assessing safety and effectiveness of five daily applications of

Pulmozyme� post-surgery (ACTRN12619001306101). Study

end-points include safety and tolerability of an extended dosing

regimen, recurrence of OM, and need for repeat surgery within

2 years of treatment.

Development of novel therapies to
prevent OM

Vaccines

Progress on vaccine development for OM prevention was reviewed

following the 2019 international OM meeting14. In brief, multi-

species vaccines are required to prevent OM but their development is

challenging. However, vaccines against NTHi and M. catarrhalis,

and pneumococcal vaccines with broader serotype coverage, are all

in current clinical trials. Vaccines against respiratory viruses are also

useful in preventing OM, as demonstrated for influenza14, and must

be tested for new vaccines where possible, i.e. respiratory syncytial

virus vaccines. Development of anti-biofilm prophylactic vaccines

hold great promise with pre-clinical models demonstrating protec-

tion from biofilm formation in the middle ear22.

Microbiome-derived probiotic therapies

The human respiratory microbiome has been described as ‘the

gatekeeper to respiratory health’23 and a potential source of novel

therapies. The use of respiratory commensal bacteria as probiotics,

rather than gut commensals, for OM prevention is under investiga-

tion, with evidence of effectiveness in some but not all studies24. We

demonstrated that the human respiratory commensal Haemophilus

haemolyticus can be used to inhibit NTHi colonisation and infection

of human respiratory epithelium in vitro25. In addition, intranasal

administration of a closely related murine commensal, Muribacter

muris, prevented NTHi colonisation and development of NTHi OM

in mice26. Inflammatory responses to NTHi were curbed in mice

receiving M. muris26, which is important given that inflammation

plays a major role in OM pathogenesis including neutrophil recruit-

ment and NET formation. We are now undertaking a first-in-human

study on the safety and tolerability of intranasally delivered

H. haemolyticus to healthy adults prior to clinical trials in children

to assess impact on OM prevention.

Conclusions

Fundamental research into human-microbial interactions involved in

OM has led to significant advances in developing novel approaches

to treat and prevent OM. Engaging stakeholder recognition in the

value of OM prevention is essential to ensure further investment in

development of these new OM therapies. Better treatment and

prevention of OM will improve antimicrobial stewardship and

conserve healthcare resources, and more importantly help bring

equity to hearing health and educational outcomes: when kids can

hear, they can learn.
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Abstract. Neisseria spp. are a transient low abundance member of the human microbiome. This species contains the very

well described pathogens, Neisseria gonorrhoeae and N. meningitidis. Recent advances in molecular typing have revealed

that this genus is more diverse than previously thought and that commensal species may have important roles in inhibiting

the growth the pathogens. This short review summates these new findings and examines the evidence that the relatively

under-reported Neisseria commensal species maybe beneficial to human health.
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In 1879 Albert Ludwig Neisser observed diplococci found within

neutrophils present in urethral exudates of men and women suffering

from gonorrhoea and gonorrhoeal conjunctivitis. This organism was

later named Neisseria gonorrhoeae and marks the first ever descrip-

tion of a member of the genus Neisseria1. The genus Neisseria

belongs to the family Neisseriaceae within the phylum b-Proteo-

bacteria2. Other genera of the family Neisseriaceae of medical

importance include Kingella and Eikinella2.

The Neisseria genus is larger and more
diverse than first thought

The Neisseria genus contains diverse species inhabiting mammals,

reptiles and environmental sites3. Members of the genus are Gram-

negative, generally diplococci. Some Neisseria species such as N.

weaveri, N. elongata and N. bacilliformis do not conform to the

general diplococcus morphology, instead existing as chains of bacilli

or filaments4. Other classical characteristics of the genus Neisseria

include lack of motility, absence of flagella, aerobic fermentation of

sugars and oxidase production. Neisseria speciation is continuously

being revised and so far there are 10 established species associated

with humans (Table 1) with a further seven recently identified from

a nasopharyngeal carriage study in an African population5. The

current robust phylogeny of this species has been developed by

applying multi-locus sequence typing (MLST)6,7. The MLST

scheme uses the single nucleotide polymorphisms in each gene to

create a unique sequence type (ST) for every isolate. STs can be

grouped into larger clusters based on their similarity to one another.

The schemes use different numbers of genes with the basic approach

using seven housekeeping genes, ribosomal MLST (rMLST) using

53 ribosomal genes8 and a core genome MLST (cgMLST) using

246 conserved loci9. This has resulted in the condensation of older

isolates classified as N. subflava biovar subflava, perflava, flava and

flavescens into a single species, N. subflava9. Isolates previously

termed N. sicca are now variants of N. mucosa9 and those previously

termed N. mucosa var heidelbergenisis are now called N. oralis10.

Genomic approaches have been more robust than matrix-assisted

laser desorption ionisation-time of flight mass spectroscopy

(MALDI-ToF) at discriminating these species due to their close

relatedness11. In the case of laboratory diagnostic identification,

whole genome sequencing is the best approach to identify an

unknown Neisseria sp.

Neisseria spp. that act as pathogens in the
human host

Neisseria spp. have multiple modes of interfacing with the human

host. N. gonorrhoeae is considered to be a true pathogen12 as it

elicits an inflammatory response upon urethral infection of the

human male and causes a delayed inflammatory response, pelvic

inflammatory disease, in women. Interestingly, although classified as

a pathogen it can asymptomatically colonise the oral mucosa and

anorectal sites that self-resolve over 4–12 months13. N. meningitidis,

the causative agent of invasive meningococcal disease (IMD), is

considered an opportunistic pathogen. Whereas N. gonorrhoeae is

highly clonal7, N. meningitidis has diversified into at least 11 clonal

complexes that are highly associated with the risk of IMD14. A much

wider array of genetic lineages are colonisers of the human host but

act as commensals as they are infrequently associated with

IMD. These two groups are broadly distinguished by the possession

of a capsule polysaccharide synthesis (cps) operon. Among many

virulence factors15, the possession of a capsule by N. meningitidis is
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a key factor enabling survival of IMD-causing bacteria within the

blood stream to cause bacteraemia and meningitis. This feature is

the basis of genogrouping isolates by quantitative real-time PCR in

meningococcal carriage studies. Isolates that are non-disease-

causing and disease-causing isolates are stratified by the presence

of a capsule null locus (cnl) and capsule transporter A (ctrA),

respectively16. Meningococcal carriage studies have shown that the

prevalence of nasopharyngeal carriage of the meningococcus ranges

from 10–30% dependent upon a variety of community and beha-

vioural factors14. However, since the incidence of IMD is much

lower than this, other factors are involved in the risk of progressing

to IMD after colonisation. This fulcrum rests on the virulence of the

isolate and the underlying health of the host17,18. Until recently,

N. meningitidis was not associated with urogenital disease and was

considered to be a transient asymptomatic coloniser of the urogenital

compartment. This concept was dramatically revised with the report

in 2017 of an outbreak of urogenital urethritis attributed to menin-

gococci closely related to an IMD outbreak clade19. A retrospective

review of published case reports of meningococcal disease has

uncovered consistent reporting of sporadic cases of horizontal

mother to child transmission in pregnancy resulting in rare cases

of sepsis, anorectal infection and conjunctivitis20.

Neisseria spp. that are low abundance,
transient commensals of the human host

In comparison to the two pathogenic species, the remaining eight

species are atypical infectious disease agents3, 21. Collectively they

Table 1. Summary of characteristics of human commensal Neisseria species.

Neisseria spp. Micro/macroscopic morphology Host Biotic relationship Site/niche Reference

N. meningitidis Gram-negative diplococcus Human Commensal and/or
pathogen

Nasopharynx
(commensal/pathogen)

19

Urethra

N. gonorrhoeae Gram-negative diplococcus Human Pathogen Mucous membranes of
nasopharynx, genital
mucosa, urethra,
conjunctiva, rectum

13

N. bacilliformis Gram-negative bacilli or filamentous rods Human (may not be
human exclusive)

Commensal Mucous membranes of
oral cavity

8,9

N. lactamica Gram-negative diplococcus Human Commensal Nasopharynx 9,39

Yellow pigment production, some strains
haemolytic on horse blood agar

N. mucosa Gram-negative diplococcus Human Commensal Nasopharynx, dental
plaque and buccal
mucosa

9

Most strains non-pigmented, some produce
grey to yellow pigment (formerly known as
N. sicca)

N. cinerea Gram-negative diplococcus Human Commensal Respiratory tract:
nasopharynx, sputum

9,40

Some strains produce yellow pigment in
colonies

Urogenital tract: vagina,
cervix, urethra and urine

Other sites: eyes, ears,
blood

N. elongata Gram-negative filamentous rods Human Commensal Nasopharynx, blood 9,24

N. oralis Gram-negative diplococcus, (may be
present in chains, formerly known as
N. mucosa var heidelbergensis)

Human Commensal Nasopharynx, blood 10

Gingival plaque

N. polysaccharea Gram-negative diplococcus Human Commensal Nasopharynx 9,41

N. subflava Gram-negative diplococcus Human Commensal Gingival crevice/upper
respiratory tract

9

Yellow colonies

Spontaneous agglutination in saline
(formerly known as N. subflava biovar
subflava,N. perflava,N. flava,N. flavescens)
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are sporadically associated with a wide variety of conditions usually

in immunocompromised patients21. Since they are not widely known

as infectious disease agents, it is also possible that the reports of their

involvement in these disease manifestations is under-reported. Nev-

ertheless, genomic comparisons of these commensal species with the

pathogenic N. meningitidis shows that they lack multiple virulence

determinants22 supporting the conclusion that they are naturally

commensal and act as opportunistic pathogens in a disregulated

host immune environment. Prevalence studies have typically exam-

ined pharyngeal carriage and have shown that all of these species are

transient low abundance (<2% abundance) members of the human

microbiome. N. lactamica has the highest prevalence of all species

and with the highest incidence in children under the age of 4 (14%)

before declining in young adults23. N. polysaccharea also showed a

similar distribution as N. lactamica but at a much lower incidence of

2%. In this study N. bergeri and N. subflava had very low prevalence

and showed no age-related variation in incidence. Co-colonisation

studies have not been performed recently, but an older study from the

1980s that used culture as the means of detection, found multiple

Neisseria spp. occurred in 57% of people while 41% of carriage was

with N. subflava alone24. The high prevalence of N. subflava appears

to be due to its role as a contributor to periodontal disease. Although

multiple Neisseria spp. are present in both healthy teeth and dental

caries samples, an increase in the abundance of N. subflava is a key

signal as the microbial community changes in composition to

become acid-secreting, resulting in tooth enamel erosion25.

The role of Neisseria spp. in the human
microbiome

Human microbiome studies have begun to unravel some relation-

ships of the Neisseria spp. within their relevant mucosal microbiome

communities. Unfortunately, Neisseria spp. are typically reported at

the genus level as variation in the 16S rRNA alone is insufficient to

speciate them. Nevertheless, some generalities can be gained from

the current literature. Numerous studies have shown that Neisseria

spp. are absent from normal flora in the vulvovaginal mucosal

surfaces of women26. This suggests that the isolation of any Neis-

seria spp. from this compartment should be investigated as a

potential pathogen related to an infection particularly urethritis3,21.

Commensal Neisseria spp. are transient, low abundance residents of

the rhinopharynx and oropharynx27 that are not associated with any

known disease-state28.

There are hints that there are complex interference patterns at

both intra- and inter-species levels that influence colonisation by

Neisseria spp. Many of these interactions have been examined

through the lens of preventing or interfering with colonisation by

the pathogens. Exposure to N. gonorrhoeae does not necessarily

result in human infection. In surveys of human disease, the risk of

contracting gonorrhoea has been linked to a syndrome termed

bacterial vaginosis, in which the microbiome has a reduced abun-

dance of Lactobacillus sp.29. Although co-culture of the two species

confirms Lactobacillus sp. will inhibit N. gonorrhoeae growth,

probiotic treatment of mice with Lactobacillus shows no efficacy

in mouse models of gonorrhoea infection30. Streptococcus pneumo-

niae has been shown to inhibit N. meningitidis using two mechan-

isms: the secretion of hydrogen peroxide31 and a neuraminidase32.

Inter-species antagonism is also a feature of the commensal Neis-

seria spp. against both N. gonorrhoeae and N. meningitidis.

N. cinerea and N. lactamica impair early colonisation steps and

reduce meningococcal invasion into host cells33,34 while N. mucosa

secretes a small molecule secondary metabolite that inhibits

N. gonorrhoeae35. However, all commensal Neisseria spp. could

kill N. gonorrhoeae through a DNA-dependent mechanism36. This

mechanism is dependent on the expression of type IV pili, which

enable the uptake of DNA into the bacterial cell. The DNA from the

commensal bacteria have a different methylation pattern and this

appears to poison the gonococcal and meningococcal bacteria33.

Direct synergism between Neisseria spp. and other species has not

been extensively reported. However, a recent innovative model of

meningococcal colonisation conducted by Audry et al.37 showed that

meningococcal colonisation of the human oropharyngeal site may

not elicit an immediate inflammatory response as the bacteria can be

trapped in the mucus layer, preventing invasion of the mucosal

epithelium. This state of homeostasis can be perturbed by

co-colonisation with other bacteria, and in this model, Streptococcus

mitis but not Moraxella catarrhalis triggered the escape of the

meningococcus from the mucus layer and invasion into the host

cells. S. mitis potentiated growth of the meningococcus by degrading

the mucins.

Future directions

In summary, the taxonomy of the genus Neisseria is continually

being redefined by modern molecular typing tools and the recent

observation that the diversity of this group remains largely unex-

plored. This genus contains species that are either pathogenic or

commensal with humans, whereas N. meningitidis contains clonal

complexes that are pathogenic or commensal. Since its discovery

142 years ago, the interest in this genus has been driven by the

medical interest in devising preventative measures against gonor-

rhoea and meningitis. Other members of this genus, such as

N. lactamica have been investigated as a probiotic intervention

strategy against IMD34, while the recent observation that commensal
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Neisseria spp. may kill N. gonorrhoeae via a DNA-dependent

mechanism has been recently patented (International Patent Appli-

cation No. PCT/US2015/048114). Future work is likely to focus on

whether commensal Neisseria spp. have a benefit to human health

and are necessary for development of a healthy immune system.
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HLA and immunodominance in viral infection: T-cell responses in protection
and immunopathogenesis
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Abstract. The protective role of T cells in viral infection is well described. T cells generally mediate anti-viral immune

responses via direct cytotoxicity and production of pro-inflammatory cytokines, by providing help to B cells and by

promotion of memory responses. A fundamental step in T cell responses involves presentation of viral peptide antigens in

the context of human leucocyte antigens (HLA), to the T-cell receptor. HLA are highly polymorphic cell surface molecules

that present a vast array of peptides to T cells and induce their activation, differentiation and proliferation into effector cells

which can eliminate microbial infection.
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The human HLA molecules were first identified in the early 20th

century as transplantation antigens and characterised in the 1950s as

transfusion antigens. In 1974 Rolf Zinkernagel and Peter Doherty1

described the phenomenon of MHC restriction – that killing of virus-

infected cells by mouse cytotoxic T cells depended on a combination

of viral antigen and mouse H-2 (murine HLA) antigen. Subsequent

work over the next decades showed that the human MHC (Major

Histocompatibility Complex) encodes the classical MHC Class I and

Class II HLA molecules, which present peptide antigens to CD8+

and CD4+ T cells, respectively. The Class I MHC encode the

HLA-A, HLA-B, and HLA-C molecules involved in peptide antigen

presentation to CD8+ T cells, and the Class II genes encode the HLA-

DP, HLA-DQ, HLA-DR molecules that present peptide antigens to

CD4+ T cells. Each of the MHC genes is highly polymorphic,

encoding a large number of variants differing by up to 20 amino

acids and which are capable of binding different peptides; differences

within these variants are largely within the peptide-binding sites that

make direct contact with the T-cell receptor.More than 20 000 different

Class I and Class II alleles have been identified so far2.

HLA Class I molecules are expressed on the surface of almost all

nucleated cells. Class II molecules are constitutively expressed on

immune cells including professional antigen presenting cells

(dendritic cells, macrophages and monocytes), B cells and activated

T cells, and expression can be induced on most cells by interferon-

gamma. T cells recognise peptide antigens bound to HLA molecules,

as peptide/MHC (pMHC) complexes, via their T-cell receptors.

Activated naïve T cells undergo clonal expansion to effector cells

that mediate protective immune responses including cytokine

secretion and cytotoxicity, and a small percentage of effector cells

become long lived memory cells which can be reactivated to mediate

protective immunity when the host is challenged months or years

later. As all nucleated cells can express class I MHC, activated CTL

can kill any infected cell in any tissue and significantly reduce the

reservoirs of infection. CTL are critical for control of many acute

viral infections and provide protection against secondary infections.

After entering a cell, viruses initiate translation of their proteins.

Proteins within the cytosol enter the proteosome where they are

cleaved to peptides 8–12 amino acids long. These peptides are

transported into the endoplasmic reticulum where they associate

with newly synthesised MHC Class I molecules, and the pMHC

complex is transferred to the surface of the infected cell where it can

interact with the T-cell receptor of CD8+ T cells. Of the thousands of

peptides encoded by a virus that can be presented to T cells, in

association with a given MHC Class I allele, only a small number of

immunodominant peptide antigens induce a response. Class I poly-

morphism is thought to have evolved as a protective function of the

immune response to the large array of microbes we encounter,

including emergent and re-emergent viruses, and to protect against

pathogen immune evasion. However, both protective and dysfunc-

tional HLA-associated T-cell responses have been described.

Escape from CTL-mediated immune control was first described

for HIV-1 in 19913. HLA-B*27-positive HIV-infected individuals

are among the elite controllers, antiretroviral-naïve subjects with

undetectable viral loads. The HLA-B*27-restricted response to the

immunodominant HIV GAG 263-272 KK10 epitope was shown to

be associated with slow progression to disease. Mutation within this

epitope that prevented peptide attachment to the binding cleft of the

Class I molecule abrogated immunogenicity for any HLA-B*27-
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positive recipient of the variant virus. Escape mutants were asso-

ciated with progression to AIDS4. Following recognition of the role

of HLA in control of HIV replicative capacity, other Class I

molecules were linked to protective responses. HLA-mediated con-

trol of HIV has been well described within the sub-Saharan African

population, in the context of HLA-B*57 and HLA-B*58-restricted

HIV p24 Gag-specific responses. The immunodominant HLA-

B*57:03-restricted GAG 162-172 KF11 epitope is targeted by the

majority of infected individuals expressing HLA-B*57:03. Escape

within KF11 is similar to that described for HLA-B*27-KK10 where

mutation is at the residue that anchors the peptide to the HLA

binding cleft, and can lead to loss of recognition of the epitope by

CD8+ T cells if compensatory mutations do not restore viral fitness.

These CTL responses directed against the more conserved HIV Gag

protein are more effective in long term suppression of viremia than

responses against less conserved viral proteins, including HIV Env,

which do not have a significant impact on HIV replication capacity

and are not associated with control of viremia5,6. Genome-wide

association studies identified the HLA-peptide binding region as the

major factor modulating control of HIV-1 replication in elite con-

trollers7, supporting the findings of in vitro analyses of T-cell

function; however, subsequent assessment of HLA-B*57- and

HLA-B*27-restricted CD8 T cells showed that elite controllers were

differentiated from progressors who expressed the same alleles, on

the basis of potency and cross-reactivity of T-cell receptor recog-

nition of HIV-1. The protective effect of HLA alleles is therefore

modulated by host TCR usage, which determines viral replication

capacity and evolution of immune escape variants8.

In dengue virus (DENV) infection virus-specific T-cell responses

have been shown to be both protective and pathologic. Primary

DENV infection induces long lasting immunity9 to the same DENV

serotype but does not provide long term protection against infection

with the other three serotypes and people who live in dengue

endemic areas will likely be infected multiple times over their

lifetimes. Pre-existing cross-reactive memory T cells may be pref-

erentially reactivated to mount an ineffective anti-viral response

which does not control viral replication; higher viremia is associated

with increased likelihood of developing severe dengue10. This

phenomenon of original antigenic sin in dengue-specific T-cell

responses was described in a Thai population, with HLA-A*11

found in 30% of the southeast Asian population, presenting DENV

NS3 130-144 GTS epitope11. CD8+ memory T cells in acute phase

DENV infection preferentially bound tetramers constructed with

serotype-specific GTS epitope peptide variants representing possible

earlier dengue infections, and there was an association between

magnitude of the T-cell response and disease severity. Skewed

memory T-cell responses have been described in other populations:

CD8+ T-cell clones specific for an immunodominant HLA-B*55-

restricted NS5 329-337 KP9 epitope demonstrated greater functional

avidity for variant DENV-2 epitope peptides, in Pacific Islanders

recently infected with DENV-1 and who had encountered DENV-2

in a previous epidemic12.

Polymorphism, particularly in the HLA-A gene, was shown to be

associated with increased susceptibility to dengue haemorrhagic

fever/severe dengue in a Vietnamese population13, where HLA-

A*11 and HLA-A*24 were considered susceptible genotypes that

present epitopes, in the relatively conserved DENV NS3 and NS5,

that are both serotype-specific and cross-reactive. Such potentially

serotype cross-reactive CD8+ T cells are postulated to contribute to

dengue immunopathogenesis in endemic settings that experience

regular epidemic transmission of variant DENV. Another study in

more than 600 Vietnamese children with severe dengue found the

same association with HLA-A*24, where the A*2402/03/10 allele

with altered structure in the peptide binding pocket was expressed at

higher frequency in children with severe dengue compared to

population background groups14.

Other population-based studies have shown strong protective

effects of DENV-specific CD8+ T cells, with repeated DENV

exposure in Sri Lankan blood donors driving responses towards

CTL recognition of relatively conserved non-structural proteins

NS3, NS4B and NS515. HLA-B-restricted responses (B*0702,

B*3501, B*4001) were of significantly higher magnitude and greater

breadth, and were associated with multifunctional T-cell responses

with hierarchy IFN-gamma>TNF-alpha>IL-2, compared with

HLA-A responses that were of lower breadth and magnitude. These

findings were extended in a Nicaraguan population, where despite

differences in DENV variants and epidemiology there was also a

strong correlation between HLA type and breadth and magnitude of

T-cell responses, including immunodominant responses restricted by

HLA-B*3501, an allele that was also associated with protection in

the Sri Lankan population. As was described in Vietnam, HLA-

A*2402 was subdominant and associated with increased suscepti-

bility to severe disease. Interestingly, B*3501-restricted T cells but

not HLA-A*2402-restricted T cells expressed PD-1, and in contrast

to other viral infections these PD-1+ CD8+ T cells were associated

with activation, not exhaustion, and were proliferative and func-

tional. PD-1 may be a marker of activated and highly functional

CD8+ memory T cells in DENV infection16.

An exhausted CD8+ T-cell phenotype has been described in

patients with severe COVID-1917 but not in patients with more

mild disease, suggesting that cellular immune responses are protec-

tive. CD8+ and CD4+ T-cell epitopes are being mapped and their

immunodominance assessed for common and less frequent HLA

alleles, across different population groups. Of great interest is the
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observed cross-reactivity in SARS-CoV-2 T-cell responses in

healthy unexposed people sampled prior to the pandemic18, raising

the issue of whether pre-existing SARS-CoV-2-reactive memory

T cells, likely induced in previous human seasonal coronavirus

infection, mediate protection or contribute to immunopathogenesis

of COVID-19. These data, in association with a greater understand-

ing of SARS-CoV-2-specific T-cell phenotype and function, will

advance our understanding of the correlates of protection and

immunopathogenesis and importantly, enhance our understanding

of how to best optimise COVID-19 vaccine design.
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Lipids, statins and susceptibility to SARS-CoV-2 and influenza A viruses
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Abstract. The extensive and on-going epidemiology studies of the SARS-CoV-2 pandemic have raised interesting

observations on statins reducing COVID-19 severity. In this review, literature is analysed to examine how statins affect

COVID-19 and influenza A, another pandemic respiratory virus. This information could be useful to prevent or reduce

disease severity caused by respiratory viruses.
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The respiratory viruses, influenza A virus (IAV) and severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), have demon-

strated their action to cause significant morbidity, mortality and

socio-economic disruption. The 1918 influenza pandemic caused

20–100 million deaths, with one-third of the world’s population

being infected1, while the current COVID-19 pandemic has resulted

in 146 million confirmed cases and over 3 million deaths to date2.

Our focus here is to review the potential for statins to affect patient

outcomes for these viral infections.

Statins and cholesterol

Statins are among the most highly prescribed drugs used in the

treatment of hypercholesterolemia, a major cause of cardiovascular

disease. Diet has an effect on cholesterol levels, but our endogenous

synthesis of cholesterol accounts for age-associated increases. To

reduce plasma cholesterol to medically recommended levels of less

than 4 mM, doctors prescribe statins to inhibit 3-hydroxy-3-methyl-

glutaryl coenzyme A reductase (HMGCR) (Figure 1). Cholesterol is

essential so it is important that statins do not block cholesterol

synthesis completely. As shown in Figure 1, inhibition of HMGCR

also affects other L-mevalonate pathways including protein prenyla-

tion3. Interestingly, statins can target any HMGCR, including

HMGCRs of pathogenic Candida species and Aspergillus

fumigatus4.

Statins were discovered in the soil fungus Aspergillus terreus,

which is currently used to produce lovastatin, a precursor of sim-

vastatin. Simvastatin and atorvastatin were the first blockbuster

drugs, but many additional statins have since been produced. Statins

are used to inhibit HMGCR in the liver, reducing plasma cholesterol

levels. Cholesterol is also an essential component of cell membranes,

which become integrated into viral envelopes, leading us to review

what is known about the effect of statins on SARS-CoV-2 and

the other respiratory virus associated with pandemics, influenza A

virus (IAV). Our findings are summarised in Table 1.

Cholesterol levels

Cholesterol is a vital part of IAV and SARS-CoV-2. During viral

budding, lipids and cholesterol from infected host cells become part

of the viral envelope19. Dietary cholesterol levels were shown to

affect influenza infection in a mouse study7. Compared to a con-

trolled diet group, mice with a 2% cholesterol diet experienced

increased morbidity over a 5-week period.

The underlying low-grade chronic inflammation due to the

release of the pro-inflammatory mediators from adipocytes of obese

individuals exacerbates the cytokine storm observed in COVID-19

disease20. Obesity is also associated with the upregulation of ACE2

expression. ACE2 is a receptor for SARS-CoV-2 spike proteins, so

its upregulation could further enhance viral attachment and entry to

the host tissue and increase severity21. The higher content of

lipid rafts with high cholesterol levels in obese patients may also

support SARS-CoV-2 attachment to host cells and its subsequent

replication. Importantly, cholesterol-rich lipid rafts in the host

cell membrane are favourable for enveloped viruses making cho-

lesterol reduction a general strategy to thwart enveloped virus

infection22.

Effect of statins

Statins have been investigated to determine whether they affect

outcomes of IAV and SARS-CoV-2 infections. While benefits of

atorvastatin and rosuvastatin have been demonstrated in a model

of IAV infection in cell culture14,15, the benefits to statin users have

varied. A study comparing 5181 statin users with 5181 non-users

found small benefits that were not statistically significant16. On the
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other hand, in a large-scale matched cohort study (n = 76 232),

moderate dose usage of statin was found beneficial by significantly

reducing the risk of death due to COPD and influenza18. Similarly, in

another multistate surveillance study, statin usage in patients hospi-

talised due to influenza was found associated with reduced mortal-

ity17. As influenza induces pro-inflammatory pathways by triggering

the innate immune system, the anti-inflammatory pleotropic prop-

erties of statins have been studied to counteract it. Through in vitro

tests, statins were able to inhibit IAV proliferation and possibly

reduce inflammation by targeting Rho/Rho kinase pathways14.

Several studies of patients with SARS-CoV-2 infection

demonstrated the beneficial effects of statins, significantly reducing

mortality rates and disease severity9–12.

Mechanisms and thoughts on future
therapeutics

It is now clear that statins have several additional effects apart from

cholesterol synthesis inhibition which deserves further investigation.

SARS-CoV-2 main protease (Mpro)

An in silico docking study demonstrated the potential of Mpro, the

main protease of SARS-CoV-2, to bind a range of statins, possibly

3-hydroxy-3-methylglutaryl-CoA
(HMG-CoA)

Mevalonate
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Figure 1. Molecular targets of statin treatment during SARS-CoV-2 infection showing inhibition of HMG-CoA reductase resulting inmultiple effects.

Table 1. Effects of cholesterol and statins on SARS-CoV-2 and IAV infections.

SARS-CoV-2 Influenza A virus

Effect of cholesterol/lipids Host membrane cholesterol interacts with SARS-CoV-2 spike protein and
facilitates viral entry to host cell5

Dyslipidaemia is a common presentation in COVID-19 disease5

Envelope cholesterol is crucial for IAV entry and fusion to host cell
membrane6

Dietary cholesterol increased IAV infection in mice7

Treatment with cholesterol lowering drugs significantly decreased IAV
propagation in human airway epithelial cells8

Effect of statins Statins reduced COVID-19 fatalities and severity by 30%9

Use of statins reduced mortality due to COVID-19 in a retrospective
observational study10

Statin treatment in hospitalised COVID-19 patients reduced death rates and
complications including acute kidney infection, sepsis and acute respiratory
distress syndrome11

Statin treatment reduced deaths due to COVID-19 in hospitalized patients12

Potential binding with main protease (Mpro/NSP5), which is unique to and
highly conserved in all coronaviruses13

Rosuvastatin and atorvastatin reduced IAV proliferation in kidney cells14

Atorvastatin reduced IAV infection of MDK cells by >95%15

A UK study showed a slight but not significant protection against
hospitalisation and death in statin users16

Statin usage in hospitalised patients with influenza was associated with
reduced death rates17

A moderate dose statin administration reduced the risk of death due to
influenza and chronic obstructive pulmonary disease (COPD)18
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explaining how statins can impede viral proliferation13. Mpro is

essential for processing of the SARS-CoV-2 polyproteins23. Our

BLASTP analyses show that sequences highly similar to SARS-

CoV-2 Mpro are found in all other coronaviruses; however, they are

absent in IAV (data available on request). The Mpro protein acts as

dimer and its active site is composed of Cys-His dyad with the

(a)

(b)

Figure 2. In silico docking analysis of SARS-CoV-2 Mpro structure 7JP1 (wild type structure retrieved from PDB database) with atorvastatin,
performed using the CB-Dock online tool30. The binding of atorvastatin is shown at low (a) and high resolution (b). [Each of the statins,
atorvastatin, fluvastatin, lovastatin, pitavastatin, rosuvastatin and simvastatin, bound Mpro at the catalytic Cys145 and His41 site with binding
energies of –7.3, –7.1, –6.6, –6.9, –7.1 and –7.5 kcal/mol, respectively.]
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Cys145 and His41 catalytic residues24. Our own in silico docking

analysis of SARS-CoV-2 Mpro with statins demonstrates possible

binding at the active site (including binding with Cys145 and His41)

of the protease (Figure 2). This important knowledge may guide the

design of better drugs to inhibit Mpro activity. The bodily distribution

of statins is also important for drug targeting. To be effective, statins

would need to reach the site of viral infection at levels sufficient for

inhibition.

Proteostasis

Statins, like the lipophilic simvastatin, distribute widely in the body,

and have additional effects like targeting protein turnover as well as

providing an explanation of how simvastatin lowers the incidence of

Alzheimer’s disease25,26. One of the major effects of statin treatment

is inhibition of protein prenylation by depleting farnesyl pyrophos-

phate and geranylgeranyl pyrophosphate. This reduction in protein

prenylation also inhibits activation of proteins including Rheb1p,

which in turn diminishes mammalian target of rapamycin (mTOR)

mediated autophagy inhibition27,28. Such an effect of statin admin-

istration could enhance autophagy and associated lipolysis, which

could further deplete intracellular lipids restricting the viral

proliferation.

Inflammation

An additional effect of statin use is its ability to inhibit protein

farnesylation, which causes adipogenesis arrest by lowering ex-

pression and activity of peroxisome proliferator activator gamma

(PPARg)29. Such interruption of adipocyte formation in statin users

may lead to reduced release of pro-inflammatory markers, which

has the potential to inhibit inflammation during COVID-19 infec-

tion20. Reduced protein prenylation due to statin treatment also

produces an anti-inflammatory effect by inhibiting the activation of

nuclear factor kappa B (NFkB)27. Another action of statins could

include the effects on inflammation via the renin angiotensin

system. The liver produces angiotensin that is converted to angio-

tensin I (inactive) by renin. The inactive angiotensin I is then

converted to active angiotensin II, which plays a vital role in

regulating inflammation, with the help of angiotensin converting

enzyme 2 (ACE2). Angiotensin II, if acted on by ACE2, results in

an anti-inflammatory effect. In contrast, angiotensin II interaction

with the angiotensin II type 1 receptor (AT1R) proceeds towards

release of pro-inflammatory mediators. However, an unhelpful

effect of statins is the upregulation of ACE2 expression and the

reduction of the pro-inflammatory pathway. On the contrary, over-

expression of ACE2 due to statins may also potentially help SARS-

CoV-2 viral entry to host27.

Conclusion

Statins show promise in reducing severity of IAV and SARS-CoV-2,

which could be attributed to inhibition HMGCR and a number of

other targets. Specifically, the inhibition of protein prenylation has

multiple effects including enhancing cytokine-induced inflamma-

tion, regulating proteostasis, and post-translational modifications of

the intracellular proteins. These events are most likely to be involved

in SARS-CoV-2 pathogenesis and viral proliferation as the virus

utilises host machinery for survival and proliferation. Knowledge of

the targeting of statins may improve the development of therapies for

COVID-19 and IAV.
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Abstract. Helicobacter pylori colonises the gastric mucosa and is associated with various gastric diseases, including

stomach cancer. At least 1 million new cases of stomach cancer cases are reported annually, and it is the fifth top cancer-

killer in the world. Although H. pylori can be eradicated by a combination of antibiotics, the treatment success rate is

declining due to the rise of antibiotic resistance. The same antibiotic combination must not be prescribed repeatedly.

Susceptibility guided precision medicine is the most effective strategy to combat antibiotic resistant H. pylori cases. In

addition, maintaining a stomach pH�6 during the antibiotic treatment is an important factor to increase cure rates. The new

type of acid blocker, P-CABs, have shown promising results in H. pylori treatment. Natural products may suppress the

H. pylori growth or relieve the symptoms but have not been successful in solving the root of the problem. New combination

therapies show promise and the dream of 100% cure of the infection with minimal side effects from treatment seems

achievable. The next decade will see combination therapies with newer acid blockers in widespread use at reasonable cost.
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Helicobacteriology update

Helicobacter pylori, or formally known as Campylobacter pylori, is

a Gram-negative, micro-aerophilic, spiral microorganism that can

colonise the healthy stomach lining. It is associated with gastritis,

peptic ulcer disease, mucosa-associated lymphoid tissue (MALT)

lymphoma, and gastric cancer1–3. At least 50% of the world pop-

ulation is still infected with H. pylori and approximately 1 million

new gastric cancer cases are reported annually4. In 1994 and 2017,

the WHO classified H. pylori as a Class I carcinogen5,6 and listed it

as one of the most important (priority high) pathogens for emerging

antibiotic resistance alarm7,8, respectively.

It is interesting that 40 years after its discovery, with tens of

thousands of research articles published, the route of transmission

and the mechanism of how H. pylori causes cancer remains unclear.

We now know that H. pylori survives poorly outside the human

body. In vitro, H. pylori is known to be sensitive to heat, salt, chilli,

honey, and many other common food ingredients9. This has made it

difficult to transmit to other individuals via food sharing. However,

people living under the same roof, with daily close contact, have

been shown to infect each other10. On the flip side, we have also

observed couples with good oral hygiene that have lived together for

decades but have not infected each other. Perhaps a simple step in

taking care of oral hygiene is sufficient in stopping H. pylori

transmission.

The consensus is that we predominantly acquire H. pylori during

childhood, perhaps via the oral-oral route, and traditionally from an

infected mother to child. Whereas, in modern society, an infected

father who shares the feeding duties could also be the source of

infection. In situations where both parents must work, the caring

duty may be given to either the grand-parents or nanny, who may be

infected. Nevertheless, there is strong evidence to suggest that, as

social economic status is improved, the prevalence of H. pylori

declines.

Australia is one of the few countries that have a low prevalence of

H. pylori (about 15%). However, the prevalence of H. pylori among

the Aboriginal and the Asian communities can be as high as

50–80%11,12. We believe that the overall low prevalence of

H. pylori is the major factor for the low gastric cancer incidence

in Australia (7.3 cases per 100 000 persons; 10 for males and 4.5 for

females)13. Gastric cancer may no longer be an Australian problem,

but it is still the fifth top cancer-killer in the world4,14. Interestingly,

about 50% of the newly reported gastric cancers are concentrated in

the Eastern Asia countries, such as Japan, Korea, Mongolia and

China4. Furthermore, all these Eastern Asia countries are dominated

by the hpEAsia strain, and almost all of them harbour the more

virulent EPIYA-D CagA toxin, noted oncoprotein15,16. CagA is

arguably the most studied virulence factor of H. pylori. It is encoded

on the 40 kb cag pathogenicity island and it is the only known

effector protein to be injected into host cells17. CagA can lead to
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inflammation18, affecting the survival of B cells19 and changes the

histological characteristics of the stomach20. All these effects of

CagA are thought to finally lead to the formation of gastric cancer.

From our past 20 years of clinical experience in culturing

antibiotic resistant clinical H. pylori isolates, we have observed a

growing number of multi-drug resistant H. pylori strains in the

Western Australian population. For example, in our 2015 cohort,

more than 20% of H. pylori isolates were triple drug resistant. It is

believed that this is primarily due to a significant increase of

migrants, especially from Asia. According to the 2011 census,

32.8% of Western Australia’s population was born overseas

(compared to the National average of 26.1%).

Presently, there is no standard treatment guideline for patients

who carry antibiotic resistant H. pylori strains. Without the proper

testing of antibiotic resistance in the laboratory, doctors are relying

on experience and experimenting with different antibiotic combina-

tions. This strategy may work for now, but we fear that it will only

promote stronger antibiotic resistance in the future.

Thus, the best strategy for dealing with patients who failed

multiple antibiotic treatment is to provide antibiotic susceptibility

testing. Such personalised precision medicine has been proven to

have high success rate. However, not every laboratory is capable of

culturing such a fastidious microorganism. A robust and sensitive

qPCR method to obtain quick antibiotic resistance diagnosis may be

the alternative path overcoming the culturing hurdle. Besides, the

only way of obtaining the H. pylori culture specimen is via endos-

copy. Such a procedure can be difficult, costly, and is unavailable in

the remote regions. Alternative technologies, such as the String Test

that does not require medical specialists, should be investigated.

While the success rate of the standard H. pylori triple therapy

(PPI + amoxicillin + metronidazole/clarithromycin) is declining

globally, and is even abandoned in some countries, it remains

effective in Australia12. Nevertheless, for those who failed the

standard triple therapy, the alternative antibiotics used in rescue

regimens include quinolones, rifampicin, tetracycline and furazol-

idone. While quinolones and rifampicin are effective antibiotics

against H. pylori, the organism can be easily become resistant to

these as well! Therefore, a better strategy in choosing antibiotic

combination is required. To date, we still hear stories about patients

who failed multiple times on the same treatment. It is important to

remind doctors not to prescribe the same antibiotic combination to

the patient who failed the H. pylori treatment, as the H. pylori must

have already gained resistance to the treatment. Then again, amox-

icillin resistance in H. pylori is rare. It is so rare that the mechanism

of resistance is still unknown. As a result, should the patient not be

allergic to penicillin, amoxicillin can be repeatedly used in subse-

quent H. pylori treatments. Luckily, resistance to tetracycline,

furazolidone, and bismuth compound have not yet been reported.

Bismuth compounds have been used in medicine for over three

centuries and were first introduced to treat duodenal ulcer in 198721,

but have gained more attention in recent years. Not only that, there

are reports about overcoming metronidazole resistance by combi-

nation with tetracycline, but simply adding bismuth to triple therapy

for 14 days has been reported to have an efficacy of more than

90%22.

For many antibiotic treatments, the key factor to the success is the

concurrent use of a high-dose proton-pump inhibitor (PPI). It is

already known that the use of antibiotics alone is not enough to

eradicate H. pylori. Acid reduction therefore plays a vital role in

H. pylori treatment. To elaborate on this, the reader should note that

most antibiotics were developed without the gastric mucosa in mind.

Therefore, they might not act in the gastrointestinal lumen, and

especially not in an acid environment. Interestingly, metronidazole

and clarithromycin, which are secreted in saliva, are particularly

effective against naïve H. pylori strains, perhaps for this reason.

Bismuth compound acts topically on the gastric mucosa and is safe

and effective (used for at least 200 years for gastrointestinal dis-

orders). However, bismuth does not penetrate the mucus layer so

always needs an extra antibiotic agent to provide a permanent cure.

Regarding acid-lowering agents, one aims to achieve around the

clock pH �6 in the stomach. H2 blockers (e.g. cimetidine ‘Tagamet’,

ranitidine ‘Zantac’, famotidine ‘Calmicidetc’) are competitive inhi-

bitors of acid secretion so cannot reliably do this. The PPI drugs were

a breakthrough in this regard (e.g. omeprazole ‘Losec’, esomepra-

zole ‘Nexium’, rabeprazole ‘Aciphex’) almost completely blocking

the proton pumps. However, some H. pylori could survive, perhaps

reflecting an inadequate dose in some patients.

Recently, the potassium competitive acid blocker group

(P-CABs) has been used (Vonoprazan), which might give a rapid

and more complete acid blockade, with subsequent excellent cure

rate for H. pylori. Perhaps even with just a single antibiotic such as

amoxicillin. Time will tell!

But the controversy still rages, ‘should we give treatment to

asymptomatic H. pylori carriers?’ Asymptomatic patients with a

family history of gastric cancer, or with gastric intestinal metaplasia,

or atrophic gastritis, are advised to get rid of their H. pylori. In

regions with high prevalence of gastric cancer, such as Eastern Asia,

where the ‘cancer strain’ of H. pylori predominates, should all be

encouraged to eradicate the H. pylori infection? The risk of getting

gastric cancer increases with age. Since most people acquire

H. pylori during childhood, and assuming that the damage of the

gastric mucosa accumulates through age, the chance of developing

gastric cancer increases. Perhaps because the seeds of cancer have

already been planted, getting rid of H. pylori in old age does not
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always eliminate the gastric cancer risk. However, it has been

reported that in all age groups, patients with a history of

H. pylori infection have a higher risk of gastric cancer than those

that have never been infected23–25.

Certainly, H. pylori only colonises the internal gastric luminal

surfaces, albeit under the mucus layer. Therefore, it is exposed to any

food or medicine ingested by the host. So, this is a perceived

vulnerability for H. pylori. The ‘Holy Grail’ of H. pylori treatment

is hence the discovery of orally active natural or food products which

might cure the infection, or perhaps suppress it enough to allow

natural immune processes to finish the task. Alas, at the present time,

most natural products show zero effect on H. pylori, or at best, a

weak temporary effect. Often, H. pylori tenderfoots will be excited

about in vitro killings of H. pylori, but this hardly ever translates into

useful clinical activity.

In summary then, susceptibility guided precision medicine is the

way forward for eradication of H. pylori. New combination therapies

show promise and the dream of 100% cure of the infection with

minimal side effects from treatment seems achievable. The next

decade will see combination therapies with newer acid blockers in

widespread use at reasonable cost. Investment in new antibiotics and

strategies to combat the rise of antibiotic resistant microorganisms is

vital. The famous quote by Dr David Graham ‘The only good

Helicobacter pylori is a dead Helicobacter pylori’26 seems the way

to go.
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Melioidosis in Australia

Timothy JJ Inglis

Pathology and Laboratory Medicine, School of Medicine, and Marshall Centre, School of Biomedical Sciences, University of Western Australia;
and Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia. Email: tim.inglis@uwa.edu.au

Abstract. Melioidosis is a potentially fatal bacterial infection caused by the Gram-negative bacillus, Burkholderia

pseudomallei following contact with a contaminated environmental source, normally soil or water in tropical and subtropical

locations. The disease spectrum varies from rapidly progressive bacteraemic infection with or without pneumonia, to focal

lesions in deep soft tissues and internal organs to superficial soft tissue infection and asymptomatic seroconversion with

possible long-term dormancy. Most infections occur with a background of chronic illness such as diabetes, chronic kidney

disease and alcoholic liver disease. Improvements in diagnosis, targeted antimicrobial treatment and long term follow up

have improved clinical outcomes. Environmental controls following rare point source case clusters and heightened

awareness of melioidosis appear to have reduced the disease burden in some parts of northern Australia. However, the

impact of climate change on dispersal of environmental B. pseudomallei, and changing land use in tropical Australia is

expected to change the epidemiology of melioidosis in future.
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Introduction

Melioidosis has fascinated Australian microbiologists since it was

first encountered as a human infection in a 32-year-old Townsville

man with diabetes in 19501. Human melioidosis has a remarkable

ability to cause a broad spectrum of human disease from rapidly fatal

bacteraemic infection and necrotising pneumonia, through persistent

localised chronic lesions to asymptomatic dormant infections that

convert to more serious infection after intervals of months to years2.

As a consequence, melioidosis challenges the logic of conventional

clinico-pathological disease classifications and is best considered as

a cluster of syndromes linked by a single bacterial aetiology, the

Gram-negative, oxidase positive bacillus, Burkholderia pseudomal-

lei and a history of environmental exposure.

Epidemiology

Melioidosis in Australia is endemic across the tropical north of

Australia (Figure 1) where it occurs as a sporadic infection of people

who have had exposure to contaminated soil or surface water

through direct transdermal inoculation, inhalation and possibly

ingestion3. Occasional point source case clusters have occurred

related to contaminated water, medical solutions or hand wash

products4–7, and animal case clusters have been associated with

flooding of pasture land8. The majority of acute febrile melioidosis

occurs as a septicaemia with or without pneumonia, peaking during

the tropical wet season, and sometimes follows in the wake of

tropical cyclones9, though not necessarily in all of northern Aus-

tralia10. However, the potentially long symptom-free period leads to

some subacute infections presenting during the dry season, or in

residents of temperate Australia who previously travelled to the

tropics11, including endemic locations overseas. There is a higher

risk of bacteraemic infections in people with one or more of a group

of co-morbidities, most notably diabetes, chronic lung disease,

chronic kidney disease and alcoholic liver disease12.

Diagnosis

The lack of pathognomonic clinical features, wide range of clinical

presentations and potentially dormant deep soft tissue infections

create difficulties for the diagnosing physician. In patients from

tuberculosis-endemic settings, there is a risk of misdiagnosis of

melioidosis as tuberculosis and subsequent inappropriate treat-

ment13. Attempts have been made to standardise clinical definitions

of melioidosis14. Other than in the few centres in tropical Australia

that encounter enough cases to gain experience applying such

classification, maintaining awareness of melioidosis is more easily

said than done. The most reliable laboratory confirmation comes

from isolating B. pseudomallei in blood, sputum, abscess fluid or

other culture15 (Figure 2). However, confirmation of the identity of

B. pseudomallei can be challenging in clinical laboratories that have

not previously handled the species. Referral of a suspect isolate

MICROBIOLOGY AUSTRALIA, 2021, 42, 96–99

https://doi.org/10.1071/MA21027
In Focus

96 Journal Compilation � The Authors 2021 Open Access CC BY-NC-ND, published (by CSIRO Publishing) on behalf of the ASM

mailto:tim.inglis@uwa.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Gram-negative bacillus, oxidase positive, Gentamicin and Colistin

resistant) to a reference laboratory may be needed, although this will

add further delays to reporting results. Laboratories in the melioi-

dosis endemic zone will often use advanced bacterial identification

methods such as specific PCR assays, MALDI-TOF mass spectro-

photometry or gene sequencing to produce a definitive identifica-

tion17,18. Serological assays are used as a complementary diagnostic

method, particularly in the absence of a positive culture, but back-

ground antibody levels in endemic regions may confound result

interpretation19. Moreover, high risk exposure activities that result in

confirmed infection do not necessarily cause seroconversion20.

Treatment

Detailed treatment regimens can be found in the Therapeutic Guide-

lines and are updated periodically by specialists with current clinical

experience21. In summary, acute bacteraemic and other severe

infections are treated with an intravenous beta-lactam agent such

as Ceftazidime or Meropenem in an intensive phase for between 2

and 8 weeks, then followed by an extended period of eradication

with one or more oral antimicrobial agents to counter the risk of

relapse in an eradication phase lasting 3–6 months. The revised

guidelines vary with presence and location of focal disease. Control

of co-morbid conditions such as diabetes and chronic kidney disease

during this eradication phase is likely to be an important contributor

to eventual success of eradication therapy, but can be confounded by

poor compliance with oral treatment regimens22. The restricted

range of antimicrobial agents effective against B. pseudomallei

reflects its natural habitat as a soil-dwelling bacterium, where it

has evolved a range of mechanisms for antibiotic inactivation,

notable among these being a collection of efficient efflux pumps23.

Though the success of the Darwin treatment protocol is clear from

improved treatment outcomes, high levels of intrinsic antimicrobial

resistance and concerns about emerging acquired resistant have

prompted the application of genomics to predict antimicrobial

resistance in B. pseudomallei24. Moreover, the ability of

B. pseudomallei to sequestrate in cells and tissues where
Figure 1. Melioidosis distribution in Australia (blue), and the main
endemic area (green), showing the location of case clusters (red spots).

Figure 2. B. pseudomallei growth on horse blood agar after 24 (left) and 48 h (right), demonstrating the development of wrinkled colony
appearance. Some strains do not wrinkle at all. An earthy odour is often noticed when agar plates are opened, due to the production of volatile
organic compounds16.
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antimicrobial bioavailability is poor presents a challenge to guaran-

teeing effective intracellular antimicrobial activity.

Pathogenesis

The unusually broad range of clinical presentations of melioidosis

have yet to be fully explained at a mechanistic level, but it is

becoming clear that virulence of infection is predominantly a

function of host risk factors25. B. pseudomallei is a facultative

intracellular bacterial pathogen capable of entry into and prolonged

survival within professional phagocytic cells26. Like other faculta-

tive intracellular bacteria associated with infections of public health

interest, B. pseudomallei deploys a range of molecular mechanisms

that likely reflect its evolutionary history as a soil-dwelling species.

Indeed, its ability to invade and persist in naturally occurring soil

microbiota such as free-living amoebae suggest a possible environ-

mental origin for its cellular virulence27. However, a subset of

B.pseudomallei possess a Burkholderia mallei-like sequence varia-

tion in the actin-based motility gene whose presence correlates with

rapid dissemination and replication at a range of locations including

the nervous system and thus have a molecular basis for

neurotropism28.

Genomics

The explosion of microbial genomics has led to important insights

into the molecular biology and immunology of melioidosis. Whole

genome sequencing indicates that B. pseudomallei has one of the

largest known bacterial genomes at around 6.5 Mb, arranged in two

chromosomes of unequal size29. The operons associated with vir-

ulence are mainly located on the smaller of the two. Recent

phylogeographic analysis indicates that the Southeast Asian clade

arose from an ancient Australian clade, which may have early

remnants in Papua New Guinea and the Torres Strait islands30.

Non-pathogenic near neighbour species such as Burkholderia

ubonensis and Burkholderia thailandensis have also been found in

pristine wilderness locations during B. pseudomallei environmental

survey work, raising questions about the phylogeographic origins of

the wider B. pseudomallei group31. At a more pragmatic level,

genotyping studies have been instrumental in confirming single

points of origin for melioidosis case clusters4–7 and have shown

the plausibility of occasional long-distance translocation of

B. pseudomallei strains associated with human infection9.

A changing public health threat

All Australian jurisdictions in the tropics have made melioidosis a

notifiable infection. Following controls applied in the aftermath of

the Western Australian case cluster in 199732, bacteraemic melioi-

dosis is now rare in WA and almost eliminated in our indigenous

population. The majority of cases are in long distance travellers11

and even these have fallen recently due to pandemic travel restric-

tions. However, the recent Southwestern WA case cluster was a stark

reminder of the greater difficulty detecting B. pseudomallei soft

tissue infections6, particularly when geographic location, clinical

presentation and exposure history are unexpected. We have to ask

how many subacute and initially asymptomatic infections are

missed. Noting the association with cyclone tracks, and the changing

patterns of cyclone behaviour as a consequence of climate change9,

we should be alert to the possibility of an extension of the Australian

melioidosis endemic zone. The increased political instability of

our region due to the effects of the COVID pandemic should also

alert us to the deliberate dissemination of B. pseudomallei. This may

seem far-fetched, but was under active consideration in the wake of

anthrax spore/white powder events in 2001.

Conclusion

Melioidosis is a disease complex attributed to a multi-competent

Gram-negative bacillus, B. pseudomallei. High rates of mortality in

acute melioidosis survivors remain an unresolved problem33. The

clinical and scientific experience built up in Australian centres of

excellence, particularly in our tropics, has advanced diagnosis,

treatment and prevention of severe and subacute disease variants.

However, the natural environmental habitat of B. pseudomallei

ensures that the principal reservoir of human infection cannot be

eliminated. Changing patterns of land use, human encounter with

environmental B. pseudomallei, and environmental influences like

climate change guarantee further challenges for Australian micro-

biologists in years to come.
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Science meets Parliament 2021

Ulrike Kappler

Chair of Queensland State Branch, ASM

News of changes to funding for higher education and the STEM sector,

budget cuts and redistribution of government funding for particular

university subjects are common, and anyone who has applied for

major grant funding is familiarwith national priority areas for research.

While these are vital decisions that impact anyone working in the

sector, I only had a rough idea of what influences these decisions

and how they are taken when I was offered the opportunity to attend

Science meets Parliament 2021 as an ASM delegate.

Science meets Parliament (SMP) is the annual flagship event of

Science & Technology Australia (STA), the Federation of Australian

Scientific and Technological Societies, and brings together Australian

scientists, technologists, parliamentarians, journalists and policy-

makers, all with the aim of fostering dialogue between these parties

and increasing the visibility of science in day-to-day political agendas.

Like so many events, SMP2021 was an online-only event, while

in non-pandemic years the meetings take place in Canberra, allowing

participants to get a first-hand impression of the busy schedule of

Members of Parliament and their staff.

For 2021, SMP used a format where several ‘pre-event’ sessions

introduced attendees to how government decision-making processes

work, and the normal schedule of parliamentarians, ministers and

their staff, but also provided tips for communicating science to

politicians who are mostly graduates from arts and law degrees and

therefore often have no specialist knowledge in STEM subjects. I

particularly enjoyed the sessions on ‘Conveying STEM work with

impact’ and ‘How to Marie Kondo your writing’, while the opening

session on ‘Understanding the machinery of government’ that I had

been looking forward to suffered a little bit from the use of

specialised terminology.

The program of the main event (15–18 March) was diverse and

colourful with presentations from major sponsors, but also a strong

focus on ways scientists can influence political decision-making and

bring attention to urgent issues. A standout were the sessions with

the Superstars of STEM, Indigenous STEM and the National Press

Club Address that highlighted obstacles faced by minority groups,

the great contributions everyone can make as well as current

thoughts on science policy in Australia.

Being trained in how to avoid discipline-specific jargon and still

convey a meaningful picture of why my research is important in only

30 s was extremely useful for the meeting with a parliamentarian that

is part of the schedule for SMP participants. This meeting with the

Member for Eden-Monaro, Ms Kristy McBain was my personal

favourite of the event as the discussion not only covered the

scientific work of everyone present, but expanded into current

science-related and other issues on the political agenda, and March

2021 was packed full of surprising political news.

However, a main focus of SMP is to increase engagement between

scientists and the general public, and I particularly noted the strange

juxtaposition between the short and hectic electoral cycles that force

parliamentarians to focus on issues that will ensure their re-election,

versus the frequently stressed fact that it may take some time to bring

specific issues to the point where they are being noted.

The key ingredients for making a difference and getting noticed

appear to be persistence and excellent preparation. While this may

sound obvious, the preparation especially involves more than just

preparing a great argument explaining why your idea is important.

As part of the preparation one should consider whether other

individuals, groups or societies might benefit from a specific idea

and might support a pitch. Equally important is getting to know your

local member or the minister you will target, although in the latter

case the contact may be through the ministerial staff. Ministerial and

parliamentary staffers are not a ‘second best’ – they are actually

instrumental in representing portfolios and making sure particular

ideas or initiatives are noticed by politicians, and they also tend to

stay with particular portfolios in the longer term, which helps when

putting forward an idea – repeatedly.

Success is not certain, but chances increase with relevance to the

electorate of the person you are talking to, and also with the

‘bottomline’ – a value proposition that will benefit the portfolio of

your contact and/or their constituents.

However, there are other ways to participate that may be more

immediately accessible such as participating in submissions to the

government as an expert, or engaging with the media so that the issue

you are championing is noticed more widely.

There was something new and interesting to learn in each of the

SMP sessions I attended, and I enjoyed SMP2021 immensely and

would love to experience the event in person in Canberra sometime in

the future.
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