Supplementary material

Use of otolith chemistry and acoustic telemetry to elucidate migratory contingents in barramundi *Lates calcarifer*

D. A. Crook^{A,E}, D. J. Buckle^A, Q. Allsop^B, W. Baldwin^B, T. M. Saunders^{A,B}, P. M. Kyne^A, J. D. Woodhead^C, Roland Maas^C, Brien Roberts^A and M. M. Douglas^{A,D}

^AResearch Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Casuarina, NT 0909, Australia.

^BFisheries Research, Department of Primary Industry and Fisheries, Makagon Road, Berrimah, NT 0828, Australia.

^CSchool of Earth Sciences, The University of Melbourne, Parkville, Vic. 3010, Australia.

^DSchool of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

^ECorresponding author. Email: david.crook@cdu.edu.au

Marine and Freshwater Research http://dx.doi.org/10.1071/MF16177_AC

Daly River

Distance from core (µm)

Fig. S1. Core-to-edge transects of individual otolith ⁸⁷Sr/⁸⁶Sr in barramundi collected from the Daly River and Mary River. The black broken line represents seawater ⁸⁷Sr/⁸⁶Sr and the grey broken line represents water of salinity 1. The black diamonds show the locations of annual increments along each transect. The total length (mm) and location of collection (E, estuary; F, freshwater) for each fish is shown.

Fig. S1. (Cont.)

Mary River

Fig. S1. (Cont.)

Fig. S1. (Cont.)