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Length–length relationships

The relationships among total length (TL), fork length (FL), and pre-caudal length (PCL) in C. limbatus for 

sexes combined were:

T L = 1.600 + 1.224 · F L (ANOVA : F = 138323, d.f. = 1, 469, P < 0.001)

T L = 4.206 + 1.340 · P CL (ANOVA : F = 33643, d.f. = 1, 295, P < 0.001)
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Fig S1. Depth at capture for male and female C. limbatus from New South Wales waters.



Age and growth

Fig. S2. Vertebrae section from a 216-cm male C. limbatus with 15 growth zone pairs
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Fig. S3. Age bias plot showing mean age (plus and minus 95% confidence intervals) of Reader 1 relative to 

those of Reader 2. Sample size of each age class is denoted at the top of the graph.



Clasper length

The male maturation process was investigated by modelling the development of clasper length, CL, as a

function of length using a modified logistic regression equation

CL(li) = f + (g − f)[1 + e−ln(19) li−CL50
CL95−CL50 ]−1 · eε ε ∼ N(0, σ2)

where f and g are parameters that determine the slope and intercept, and CL50 and CL95 are the lengths at 

which claspers are 50 and 95% of their maximum length. The relationship also has a practical purpose as 

CL is a useful characteristic for species identification (Stevens and Wiley 1986; Harry e t a l. 2012).
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Fig. S4. Clasper length as a function of length for male C. limbatus. Panel (a) shows non-linear regression 

model with 95% confidence and prediction intervals for C. l imbatus. Points are empirical c lasper l engths for 

C. limbatus and Qld C. tilstoni. Panel (b) compares the mean relationship between the two species.

Demographic analysis

This section describes aspects of the Monte Carlo simulation used to investigate sources of uncertainty in the 

demographic analysis, including areas where the approach for a specific species–stock deviates from the



general approach described in the methodology.

Growth parameters

Growth parameters for C. tilstoni populations based on vertebral ageing were similar (Davenport and Stevens 

1988; Harry et al. 2013), although in both cases they were clearly biased as a result of uncorrected effects of 

gillnet selectivity. For Qld C. tilstoni, a logistic function was chosen to model length at age as the estimated 

L∞ was closer to observed maximum length of the species. In the original analysis by Harry et al. (2013), 

this model was fit with a  lognormal variance, and this l ed to unstable parameter estimates when attempting 

to resample random parameters from the variance-covariance matrix. To provide more reasonabe values for 

the Monte Carlo simulation the model was refit with normal v ariance. For NT C. t ilstoni, growth parameters 

estimated from size mode analysis were ultimately chosen in favor of those from vertebral ageing as, again, 

they were closer to observed maximum length of the species (Davenport and Stevens 1988). Because the 

original data were not available, growth parameters were randomly resampled from a normal distribution 

with a CV of 5%.

Weight at length

No resampling was undertaken on the weight–length parameters for NT C. tilstoni due to the lack of 

raw data for this species.

Maturity at length

For NT C. tilstoni uncertainty in reproductive output at age was incorporated by allowing the maternity 

ogive to shift horizontally over a range of values by adding a constant to A50 and A95. Constants were drawn 

from a random normal distribution with a variance of 0.5 years (10% of A50). The 95% quantiles of random 

A50 values ultimately used in the Monte Carlo simulation were 4.03 to 5.98 years.



Fecundity

For NT C. tilstoni values of fecundity were drawn from a normal distribution with a mean of 3 (Stevens and 

Wiley 1986) and a CV of 10%. For C. limbatus values of fecundity were randomly resampled with replacement 

from a vector of mean fecundity values including this and four other studies (Bass et al. 1973; Dudley and Cliff 

1993; Capape et al. 2004 ; White 2007).

Natural mortality

M was calculated using a constant, size-based method (Then et al. 2015) that required growth parameters 

L∞ and K from the von Bertalanffy equation. This presented a problem for Qld C. tilstoni where a logistic 

growth model was used to model growth. Using the values of L∞ and K from the von Bertalanffy model in 

Harry et al. (2013) was also deemed unsuitable because they were strongly biased, and led to unrealistically 

small values of M. To address this problem, a von Bertalanffy growth function was re-fit to the l ength at age 

data in Harry et al. (2013), constraining L∞ to the value in the logistic growth curve. As per C. limbatus 

and C. tilstoni, values of L∞ and K used to derive M for the Monte Carlo simulation were then resampled 

from a multivariate normal distribution with a mean and covariance matrix obtained from this constrained 

model. Noting the high level of uncertainty in M, for each simulation additional variability was added to the 

calculated value of M, drawn from a random normal distribution with a CV of 20% of M.



Additional discussion points on the ecology of central eastern Australia C. lim-

batus

The ecology of C. limbatus, like its life history, has historically been confounded by its co-occurrence and 

hybridisation with C. tilstoni. Large, adult C. limbatus, which are clearly separable from C. tilstoni have 

been reported in small numbers throughout northern Australia (Stevens and Wiley 1986; Salini et al. 2007; 

Johnson et al. 2017). Neonate C. limbatus, also easily separable (Harry et al. 2012), have been reported from 

communal shark nursery areas on both the east and west coasts of Australia (Simpfendorfer and Milward 

1993; White and Potter 2004; Gutteridge 2011; Taylor and Bennett 2013; Yates et al. 2015).

Although the species occurs throughout northern Australia, data from this study indicate that the central 

east coast of Australia might be an area of higher relative abundance for C. limbatus. Taylor et al.’s (2013) 

study of the shark fauna of Moreton Bay showed C. limbatus to be one of the most commonly caught sharks, 

suggesting the area would likely meet the formal criteria needed to be classified as a  nursery s ensu Heupel 

et al. (2007). In this study we assumed the neonates in Moreton Bay were part of the same population as 

those larger sharks sampled off northern NSW. This is not known definitively, but is a  reasonable assumption 

given the absence of any other reported parturition areas for C. limbatus to the south and the absence of 

adults from within Moreton Bay itself (Taylor and Bennett 2013). Nine small (73–83 cm) sharks were also 

captured during January and February in 2008 and 2009 from 7m depth off Woody Head (29◦20′S, 153◦21′E). 

Although they were not examined for the presence of an umbilical scar, all were aged as 0+ and were therefore 

likely to have been no more than a few months old. These individuals provide possible evidence that C. 

limbatus parturition might also occur in NSW waters.

Little is known about the spatial ecology of C. limbatus or potential linkages between individuals from the 

central east coast of Australia in the present study, and those individuals found in tropical waters further 

north. Welch et al. (2010) investigated the stock structure of C. limbatus off the east coast and identified two 

management units separated by the Tropic of Capricorn. Macbeth et al. (2009) also found potential evidence 

of a seasonal migration in C. limbatus, with the species predominantly caught between January and June.



This suggests a potential northward seasonal migration during part of the year. Such behaviour would be 

consistent with that of some other large carcharhinid sharks (Braccini et al., in press) including populations of 

C. limbatus in the northwest Atlantic and southwest Indian Ocean (Dudley and Cliff 1993; Kajiura and 

Tellman 2016).

In keeping with previous studies on hybridisation, no evidence of intermediate types was found in this study 

among hybrid sharks (Harry et al. 2012; Johnson et al. 2017). All hybrid individuals showed biological 

characteristics that were macroscopically similar to that of purebred C. limbatus. The single purebred C. 

tilstoni identified from NSW using nDNA was a 145-cm female captured from a depth of ~42 m near 

the mouth of the Clarence River, NSW (29◦32.99′S, 153◦25.48′E). This is the southernmost record 

confirmed for this species (excluding individuals with hybrid ancestry identified solely using mtDNA). 

The previous southernmost record was a juvenile C. tilstoni from Moreton Bay identified using a pre-

caudal vertebral count (Harry et al. 2012).
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