Supplementary material

Costs and benefits of towed videos and remotely operated vehicles for sampling shallow reef habitats and fish

T. R. Davis^{A,B,E}, G. Cadiou^C, J. Williams^C and M. A. Coleman^{A,B,D}

^AFisheries Research, Marine Ecosystems, NSW Department of Primary Industries,

PO Box 4321, Coffs Harbour, NSW 2450, Australia.

^BNational Marine Science Centre, Southern Cross University, 2 Bay Drive,

Coffs Harbour, NSW 2450, Australia.

^CFisheries Research, Marine Ecosystems, NSW Department of Primary Industries,

Locked Bag 1, Nelson Bay, NSW 2315, Australia.

^DUniversity of Western Australia, Oceans Institute and School of Biological Sciences,

35 Stirling Highway, Crawley, WA 6009, Australia.

^ECorresponding author. Email: tom.davis@dpi.nsw.gov.au

		• •			
Transect	Site	System	Latitude	Longitude	Date
1–1	Broughton Island	ToV	-32.63249	152.30636	31-Jan-19
1–3	Broughton Island	ROV	-32.62912	152.30621	31-Jan-19
1–5	Broughton Island	ToV	-32.62203	152.32637	31-Jan-19
1–6	Broughton Island	ToV	-32.61470	152.30378	31-Jan-19
1–7	Broughton Island	ROV	-32.61915	152.30429	31-Jan-19
1–9	Broughton Island	ROV	-32.62297	152.33125	31-Jan-19
2-1	Fingal Island	ToV	-32.75120	152.19442	4-Feb-19
2–2	Fingal Island	ROV	-32.76498	152.16355	29-Jan-19
2–3	Fingal Island	ROV	-32.74906	152.19900	30-Jan-19
2–5	Fingal Island	ROV	-32.75087	152.19654	30-Jan-19
2-8	Fingal Island	ToV	-32.76367	152.17169	4-Feb-19
2–9	Fingal Island	ToV	-32.76345	152.17417	4-Feb-19
3–3	Anna Bay	ToV	-32.78648	152.12504	4-Feb-19
3–4	Anna Bay	ToV	-32.79834	152.09948	4-Feb-19
3–6	Anna Bay	ROV	-32.79543	152.10554	29-Jan-19
3–7	Anna Bay	ToV	-32.79343	152.11407	4-Feb-19
3–8	Anna Bay	ROV	-32.80084	152.08980	29-Jan-19
3–9	Anna Bay	ROV	-32.79423	152.09535	29-Jan-19

Table S1.Sites, system type, location and survey date for 200-m transectsROV, remotely operated vehicle; ToV, towed video

Table S2.	Data on abun	dance of fish spec	ies, on 200-m	transects,	collected by re	motely
operated ^v	vehicles (ROV)) and towed videos	s (ToV) at stu	dy sites (Si	te) in Port Ste	ohens

System DOV TaV																		
Site	1			2	J v		3			1			2	10 0		3		
Transact	1	7	0	2	3	5	5	8	0	1	5	6	1	Q	0	3	4	7
A canthaluteres vittiger	0	/ 	9	2	2	0	0	0	9 2	0	0	0	0	0	9	2	4	
Acanthistius ocallatus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Acanthopagrus australis	0	0	0	6	0	1	0	0	2	0	0	0	0	0	0	1 4	0	1
Achoerodus viridis	12	2	2	3	0	7	0	1	5	0	0	2	7	4	5	т 6	0	0
Anonlocanros inermis	12	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Anlodactylus lonhodon	1	0	0	0	2	1	0	0	2	0	0	0	2	2	0	1	0	1
Atvnichthys strigatus	232	5	28	22	240^{2}	57	2	7	10	0	9	287	2	71	4	109	74	0
Austrolahrus maculatus	232	0	20	0	240	0	0	2	10	0	0	207	0	0	0	107	۰ ۰	0
Chailadactulus fuscus	6	0	0	24	0	14	1	0	0	16	0	0	5	2	13	6	4	3
Cheilodactylus yastitus	0	0	0	24	0	14	- -	0	0	10	0	0	0	0	15	1	4	0
Cheriodaciyius vesilius Chironemus marmoratus	2	0	0	0	0	0	0	0	1	0	0	0	0	3	1	1	0	0
Chironemus marmoralus Chromis hypsilopis	2	0	1	0	0	53	0	0	1	24	0	0	0	0	1	0	0	0
Circhitichthus aprinus	0	1	1	0	0	55	0	0	0	24	0	0	0	0	0	0	0	0
Corris picta	0	1	0	1	0	0	0	0	2	0	0	0	0	0	0	5	0	0
Coris gandavari	0	0	0	1	0	1	0	0	2	0	0	0	0	0	0	5	0	0
Dinolastas lawini	0	0	0	0	0	1	0	0	0	1	0	0	0	3	0	1	40	0
Enoplosus armatus	0	0	0	0	0	0	0	2	0	1	0	0	0	0	28	1	40	0
Eulopiosus armanas	0	0	0	0	0	0	0	0	0	1	1	0	2	0	20	2	0	0
Eubalichthus mosgious	0	0	0	0	0	0	0	0	0	0	1	0	2 1	0	0	0	0	0
Corres subfassiatus	0	0	0	0	0	0	0 #	0	0	0	0	0	1	0	0	0	0	0
Gerres subjuscialus	4	0	0	0	2	1	# 0	0	0	0	0	0	0	0	0	0	0	0
Girella elevala Hypoplactrodas	4	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0
maccullochi	0	0	0	0	0	1	0	0	0	1	0	0	0	0	2	0	0	0
Latridonsis forsteri	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Meuschenia flavolineata	0	Ő	Ő	1	0	Ő	0	Ő	0	0	0	Ő	0	Ő	Ő	Ő	Ő	0
Meuschenia frevcineti	1	Ő	Ő	0	0	Ő	0	Ő	Ő	Ő	0	Ő	0	0	Ő	Ő	0	0
Meuschenia trachylenis	6	Ő	Ő	Ő	Ő	Ő	0	1	Ő	Ő	0	Ő	0	1	1	3	1	1
Myliobatis australis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Nemadactvlus douglasii	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
Notolahrus gymnogenis	15	1	14	6	2	4	5	5	9	7	6	7	4	3	12	16	0	3
Odax cvanomelas	19	3	0	5	15	8	7	0	9	, 5	3	2	10	5	2	10	4	1
Onhthalmolenis lineolatus	3	9	7	6	13	1	, 6	9	11	0	6	3	4	0	12	9	2	0
Orectolobus maculatus	0	0	Ó	0	0	0	0	0	0	1	0	0	0	0	12	Ó	0	0
Parma microlenis	0	1	0	23	4	5	0	10	10	16	2	15	6	8	17	11	3	5
Parma unifasciata	25	8	31	0	3	0	0	0	31	1	0	0	1	0	0	0	0	0
Paruneneus snilurus	0	1	0	0	1	1	0	1	15	0	0	0	7	0	Ő	1	0	0
Pempheris compressa	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
Pictilabrus laticlavius	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Prionurus microlenidotus	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocarany georgianus	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
Pseudolabrus luculentus	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Schuettea scalarininnis	0	1600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scorpis lingolata	1	1000	0	0	0	2	0	0	8	7	0	0	2	1	1	13	1	0
Trachinons taoniatus	1	100	0	0	0	ے 0	0	0	0	2	0	0	2 0	1	1	15	1	0
Trachurus novaezolandiae	0	20	0	0 2	0	0	2	0	0	0	0	0	0	1	<u>40</u>	130	0	0
Trygonontera testacea	0	20	0	ے 1	0	0	∠ 1	1	0	0	0	0	0	1	0ד 0	139	0	0
Trygonopiera iesiacea	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Inonoichthys lineatus	0	1	0	0	1	0	0	1	0	0	2 2	0	0	0	0	0	0	0
openeicinnys uneulus	0	0	U	0	1	U	U	0	U	U	4	0	U	U	U	0	U	0

Table S3. Two factor permutational multivariate analysis of variance analysis resultsexamining similarities (as Euclidean distance) in multivariate habitat data, average altitude,
and useable images

Data collected by remotely operated vehicles and towed videos (System, n = 2) at study sites (Site, n

= 3) in Port Stephens. Data analysed as percentage coverage of habitat types, average altitude of systems above the seabed, and proportion of images collected within the target depth range (1–3 m). Data from 200-m transects (n = 3) for each system at each site

Test	Factor	d.f.	SS	MS	Pseudo-F	P(perm)
Habitat data	Site	2	0.48232	0.24116	1.1373	0.363
	System	1	0.09680	0.09680	1.0015	0.378
	Site \times System	2	0.19331	0.09666	0.4558	0.849
Average altitude	Site	2	0.49776	0.24888	3.8769	0.054
-	System	1	0.10876	0.10876	1.3903	0.276
	Site \times System	2	0.15647	0.07823	1.2186	0.333
Useable images	Site	2	0.06143	0.03071	3.2852	0.067
-	System	1	0.00156	0.00156	0.0450	0.892
	Site \times System	2	0.06947	0.03474	3.7156	0.052

Table S4. Two factor permutational multivariate analysis of variance analysis resultsexamining Bray–Curtis similarity in multivariate fish data and univariate data on fish speciesrichness and total abundance

Data collected by remotely operated vehicles and towed videos (System, n = 2) at study sites (Site, n

= 3) in Port Stephens. Data analysed as square-root transformed abundance of fish, excluding

schooling and pelagic species. Data from 200-m transects (n = 3) for each system at each site

Test	Factor	d.f.	SS	MS	Pseudo-F	P(perm)
Fish assemblages	Site	2	3245.4	1622.7	1.0391	0.406
	System	1	2394.9	2394.9	1.5037	0.211
	Site × System	2	3185.2	1592.6	1.0199	0.440
Species richness	Site	2	27.00	13.50	0.6864	0.509
	System	1	1.39	1.39	0.1534	0.774
	Site \times System	2	18.11	9.06	0.4605	0.637
Fish abundance	Site	2	3267.1	1633.6	0.1328	0.864
	System	1	2812.5	2812.5	0.8285	0.407
	Site × System	2	6789.3	3394.7	0.2759	0.757