Supplementary Materials

Assessing the effects of swimming net material on populations of an endangered seahorse

Michael Simpson^{A,D}, Rebecca L. Morris^B, David Harasti^C and Ross A. Coleman^A

^AUniversity of Sydney, Coastal and Marine Ecosystems,

School of Life and Environmental Sciences, NSW 2006, Australia.

^BNational Centre for Coasts and Climate, School of Biosciences,

The University of Melbourne, Vic. 3010, Australia.

^CFisheries Research, NSW Department of Primary Industries, NSW 2315, Australia.

^DCorresponding author. Email: michael.simpson@sydney.edu.au

Table S1. ANOVA testing for differences in seahorse density on swimming nets constructed of seahorse friendly material and regular copper braided material, with net material as fixed factor and site as random factor nested within net material

Assumptions of homoscedasticity were tested with Levene's test and found to be violated (P = 0.002) even after $\log + 1$ transformation. In spite of heteroscedasticity the results of this analysis can still be interpreted, as heteroscedasticity elevates the probability of type 1 errors and here we have retained H_0

(Underwood 1997)						
Source of variation	d.f.	MS	F	Р		
Net material	1	0.028	0.011	0.743		
Site (net material)	2	3.255	16.49	< 0.001		
Residual	34	0.197				

Table S2. Repeated-measures ANOVA testing for differences in seahorse density across installed panels of seahorse friendly swimming net material and regular copper braided net material, with net material as fixed factor (two levels), site as random factor (two levels) and time as the repeated-measure

As assumptions of sphericity were violated as indicated by Mauchly's test (P = < 0.001), therefore Greenhouse-Geisser corrections were interpreted.

Greenhouse Geisser	conc	cuons v		Ipicicu
Source of variation	d.f.	MS	F	Р
Net	1	6.298	3.455	0.078
Site	1	17.19	9.432	0.006
Net \times site	1	3.44	1.888	0.185
Residual	20	1.823		
Time	4	3.607	5.212	0.001
Time \times net	4	0.383	0.553	0.698
Time \times site	4	1.78	2.572	0.044
Time \times net \times site	4	0.43	0.622	0.649
Residual	80	0.692		

Table S3. ANOVA testing for differences in total mobile epifauna abundance between net materials, with Net as fixed factor (two levels), site as random factor (two levels) and survey occasion as random factor (three levels)

Assumptions of homoscedasticity were tested with Levene's test and found to be non-significant (P =0 156) after square root transformation

0.150) after square root transformation					
Source of variation	d.f.	MS	F	Р	
Net	1	440.9	1.218	0.424	
Occasion	2	9567	4.954	0.196	
Site	1	5341	2.765	0.294	
Net × occasion	2	384.2	0.771	0.589	
$Net \times Site$	1	387.1	0.777	0.485	
Occasion × Site	2	1931	7.01	< 0.001	
Net \times Occasion \times Site	2	498.3	1.809	0.137	
Residual	60	275.5			

Table S4. PERMANOVA testing for differences in multivariate mobile epifauna assemblages,with net material as fixed factor, survey occasion as random factor and site as random factorData were square root transformed, and analysis was run with 999 permutations

Source of variation	d.f.	MS	F	Р
Net	1	390.3	0.98	0.496
Survey occasion	2	10996	3.208	0.164
Site	1	7186	2.096	0.288
Net \times survey	2	601.6	0.87	0.545
Net \times site	1	502	0.726	0.563
Survey \times site	2	3428	6.673	0.001
Net \times survey \times site	2	691.2	1.345	0.253
Residual	60	513.8		

Table S5. ANOVA testing for differences in total epibiotic growth between net materials, with Net as fixed factor (two levels), site as random factor (two levels) and survey occasion as random factor (three levels)

Assumptions of homoscedasticity were tested with Levene's test and found to be non-significant (P = 0.052) after square root transformation

aubtienty were tested while Devene Stest and Tound to					
0.052) after square root transformation					
Source of variation	d.f.	MS	F	Р	
Net	1	3.862	0.656	0.619	
Occasion	2	1596	2.524	0.309	
Site	1	912.2	1.443	0.455	
$Net \times site$	2	21.63	1.549	0.340	
$Net \times occasion$	1	5.54	0.397	0.718	
Occasion × Site	2	632.2	34.83	< 0.001	
$Net \times Occasion \times Site$	2	13.96	0.769	0.585	
Residual	59	18.15			

Table S6. PERMANOVA testing for differences in multivariate epibiotic growth assemblages, with net material as fixed factor, survey occasion as random factor and site as random factor. Data were square root transformed, and analysis was run with 999 permutations

Source of variation	d.f.	MS	F	Р
Net	1	33.98	1.787	0.311
Survey occasion	2	5969	8.002	0.193
Site	1	630.2	0.845	0.507
Net \times survey	2	5.272	0.143	0.575
$Net \times site$	1	34.38	0.932	0.414
Survey \times site	2	745.9	20.79	0.001
Net \times survey \times site	2	36.89	1.028	0.421
Residual	59	35.88		

Fig. S1. Non-metric MDS plot of multivariate epibiotic growth data for three survey occasions, labelled by survey occasion (November 2018, January 2019 and April 2019). Data were square root transformed and the plot was constructed from a Bray–Curtis similarity resemblance matrix. Vectors display which taxa were most responsible for differences between samples.

Fig. S2. Non-metric MDS plot of multivariate epibiotic growth data for three survey occasions, labelled by swimming net material (seahorse friendly or regular copper braided). Data were square root transformed and the plot was constructed from a Bray–Curtis similarity resemblance matrix.

Reference

Underwood, A. (1997). 'Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance.' (Cambridge University Press.)