10.1071/MF22048

Marine and Freshwater Research

Supplementary Material

Using integrative taxonomy to distinguish cryptic halfbeak species and interpret distribution patterns, fisheries landings, and speciation

Indiana J. Riley^{A,B,*}, Joseph D. DiBattista^C, John Stewart^D, Hayden T. Schilling^{A,B}, and Iain M. Suthers^{A,B}

^ACentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

^BSydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia.

^cAustralian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.

^DNSW Department of Primary Industries, Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia.

*Correspondence to: Indiana J. Riley Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia Email: i.riley@unsw.edu.au

Supplemental detailed sample preparation

All whole fish were thawed and labelled before tissues samples were taken, which were then stored frozen in 90% ethanol. Duplicate tissue samples were also taken and preserved in the Australian Museum's frozen tissue collection for long term storage at -80°C (voucher numbers AMS 1.50005.002–1.500012.071). Whole fish were photographed with a Nikon D90 camera before being X-rayed with an Eresco AS2 (Model number EXR 150-23 BW, License number 5079378) and developed with a Fujifilm Digital Console (Model number CR-IR 368).

Sagittal otoliths were then extracted with fine-tipped forceps while leaving the gill rakers intact and head semi-attached to the body, then cleaned, dried, accessioned into the Australian Museum's collection (voucher numbers AMS I.50005.003–I.50012.072), and stored at room temperature for later analysis. Gill rakers on the first and second arches were counted with a dissecting microscope. Rakers were separated one by one with a dissecting probe and all counts were made by one person (I. J. Riley) to ensure consistency.

Sex and gonad stage were determined macroscopically with reference to stages identified for *H. australis* (Hughes and Stewart, 2006). Whole fish specimens were then preserved in 10% formalin for 2 weeks before being stepped up (25 and 50%) into a final storage solution of 70% ethanol and registered in the Australian Museum's Ichthyology collection (voucher numbers AMS I.50005-001–I.50012-070).

Supplemental detailed genetic methods

Initial primer optimisation performed by the Ramaciotti Centre for Genomics failed to amplify the RAG2 nuclear region using the modified primers RAG2 2F and RAG2 2R (DiBattista *et al.*, 2012). Owing to time and budget constraints, we performed further testing of other primers for both the RAG2 and TMO-4C4 nuclear regions in-house at the Australian Centre for Wildlife Genomics laboratory at the Australian Museum in Sydney, Australia. Inspection of TMO-4C4 sequences downloaded from GenBank for other *Hyporhamphus* species showed considerable variability among congeners, making it a viable alternative to the *RAG2* gene.

Primers for fragments of the nuclear RAG2 (Lovejoy and Collette, 2001) and TMO-4C4 (Streelman and Karl, 1997) genes were tested on a subset of six samples to determine their success at amplifying these regions in these two species (sequences and PCR conditions in Table S3). PCR mixes for these reactions in a total volume of 25 μ L of water included - 5 μ L of Bioline MyTaq Buffer (Meridian Bioscience, Cincinnati, USA), 0.2 μ L of Bioline MyTaq Polymerase (Meridian Bioscience, Cincinnati, USA), 0.5 μ L of each primer (10 μ L), 2 μ L of DNA (neat), and the remainder ultrapure water.

PCR products were visualised on 1% agarose gels by electrophoresis, which suggested successful amplification using the TMO-4C4 primers but not the RAG2 primers. The six test samples that amplified using TMO-4C4 primers were then cleaned using ExoSAP (New England Biolabs, Massachusetts, USA) and sent to the Ramaciotti Centre for Genomics for Sanger sequencing. The above methods for PCR amplification of the TMO region were then repeated for 271 samples selected from the total pool of 307 DNA extractions. Gel-checks were performed on a random subset of these PCR products (n = 56) prior to cleaning with ExoSAP and Sanger sequencing with the Ramaciotti Centre for Genomics.

Species	Distribution	Distinguishing features	References
Hyporhamphus unifasciatus	Hyporhamphus collettei 🛛 🛞 Hyporhamphus unifasciatus	Gill Rakers : usually 28 – 32 on the first arch, usually 19 - 25 on the second arch	(Collette, 2002) (Collette <i>et al</i> .,
		Ratio of preorbital length to orbit diameter:	2019)
	35°N -	Ratio of body depths to standard length: usually >0.12	
Hyporhamphus naos		Gill Rakers: usually 32 – 36 on first arch, usually 23 – 27 on second arch Ratio of preorbital length to orbit diameter: usually >0.70 (but diagnostically smaller than <i>H.</i> <i>meeki</i>)	(Banford & Collette, 2001) (Collette, 2002)
Hyporhamphus meeki	15°N-	Gill Rakers : usually 33 – 39 on the first arch, usually 25 – 30 on the second arch Ratio of preorbital length to orbit diameter: usually >0.70	(Banford & Collette, 1993) (Collette, 2002)
Hyporhamphus collettei	5°N- 0°- 100°W 90°W 80°W 70°W 60°W 50°W	Gill Rakers: usually 29 – 30 on the first arch, usually 21-22 on second arch Ratio of preorbital length to orbit diameter: usually <0.70 Ratio of body depths to standard length: usually <0.12	(Collette, 2002) (Banford, 2010)
Hyporhamphus limbatus		Lower jaw usually longer than head in adults: contained 0.7 to 1.3 times in head length	(Collette, 1999)
Hyporhamphus neglectus		Lower jaw usually not as long as head in adults: contained 0.9 to 1.8 times in head length Preorbital distance smaller: contained 1.4 to 2 times in orbital diameter, contained 0.8 to 1.35 times in upper-jaw length	(Collette, 1999)

Table S1: Examples of cryptic garfish species from the genus Hyporhamphus.

Species	Distribution	Distinguishing features	References
Hyporhamphus neglectissimus	Western Central Pacific	Lower jaw usually not as long as head in adults: contained 0.9 to 1.8 times in head length Preorbital distance larger: contained 1.05 to 1.35 times in orbital diameter, contained 0.6 to 0.8 times in upper jaw length	(Collette, 1974) (Collette, 1999)
Hyporhamphus affinis	Hyporhamphus affinis Hyporhamphus dussumieri 30°N 20°N 10°N	Gill rakers: usually 35 or less on first arch, usually 24 or less on second arch Preorbital distance larger: contained 1.35 to 1.9 times in orbit diameter, usually greater than upper jaw length	(Collette, 1974) (Collette, 1999)
Hyporhamphus dussumieri	$0^{\circ} - \frac{10^{\circ}}{10^{\circ}} - \frac{10^{\circ}}{10^{\circ}} - \frac{10^{\circ}}{120^{\circ}} - \frac{10^{\circ}}{140^{\circ}} - \frac{10^{\circ}}{160^{\circ}} - \frac$	Gill rakers: usually 36 or more on first arch, usually 26 or more on second arch Preorbital distance larger: contained 1.7 to 2.15 times in orbit diameter, usually less than upper jaw length	(Collette, 1974) (Collette, 1999)

Species	Distribution	Distinguishing features	References
Hyporhamphus	 Hyporhamphus ihi Hyporhamphus melaoochir 	Gill rakers: usually 34 or more on first arch,	(Collette, 1974)
australis	Oceania Hyporhamphus australis	usually 27 or more on second arch	
	10°S-		
Hyporhamphus	20°S-	Gill rakers: usually 33 or less on first arch, usually	(Collette, 1974)
melanochir	here has a second s	26 or less on second arch	
	30°S-	Pelvic fins further posterior	
Hyporhamphus	40°S-	Gill rakers: usually 33 or less on first arch, usually	(Collette, 1974)
ihi		26 or less on second arch	
		Pelvic fins further anterior	
	50°S ↓ , , , , , , , , , , , , , , , , , ,		

All species chosen as examples of species with only small morphological differences in their number of gill rakers, morphological measurements or both. Compiled distribution maps created in R (ver. 4.0.4) and Adobe Illustrator with reference to Food and Agriculture Organization of the United Nations Regional Guides and past studies by B. B. Collette.

Table Co. Cusuale life bistory	· · · · · · · · · · · · · · · · · · ·		
Table S2: Growth, life histor	y and diet of Hypornal	<i>mpnus australis</i> and H	ypornampnus meianocnir.

Trait	Hyporhamphus australis	Hyporhamphus melanochir
Diet	Omnivore	Omnivore
	• Algae, Zostera seagrass, and crustaceans	• Diurnal feeders that selectively consume Zostera seagrass species during the day and
	 No studies into potential diurnal feeding 	night-emergent hyperbenthic crustacea at night
	patterns	(Klumpp & Nichols, 1983; Earl <i>et al.</i> , 2011)
	(Thomson, 1959; State Pollution Control Commission,	
	1981; Parsons, 2002)	
Mean Size (FL)	Smaller	Larger
	• 22-24 cm	• Victoria: 24.7 cm
	 Larger in late summer 	 Smaller in summer
	 Smaller in winter 	 Larger in winter
	(Stewart <i>et al.,</i> 2005)	(Jones <i>et al.,</i> 2002)
Growth Rate	Faster	Slower
	• 230 mm FL at 1 year of age	 160 – 180 mm FL at 1 year of age
	(Stewart & Hughes, 2007)	(Jones <i>et al.,</i> 2002)
Size at 50%	Smaller	Larger
maturity (FL)		
	• 20.1 cm	Victoria: 22.8 cm
	(Stewart <i>et al.,</i> 2005)	(Jones <i>et al.</i> , 2002)
Age at 50%	Younger	Older
maturity	10 months	Victoria: 19.3 months
	(Stewart <i>et al.,</i> 2005)	(Jones <i>et al.,</i> 2002)
Peak GSI	Overlap Nov - Jan	Overlap Nov - Jan
	Northern New South Wales: Peak in Jun - Sep	Victoria: Peak between Sep – Jan
	Southern New South Wales: Peak between Nov	(Jones <i>et al.,</i> 2002)
	– Dec	
	(Stewart & Hughes, 2007)	

Information from the closest geographic population of *H. melanochir* (Victoria) used where possible. Fork Length (FL) size for *H. melanochir* converted from Total Length (TL) reported in fisheries reports using the formula provided in Smith *et al.* (2007): FL=(0.9452 ×TL)+0.1954

Site Numb er	Location		Sampling date	Latitude & Longitude	Number of Fish	Size (Star	Size (Standard Length, mm)		Sex (n)		
						Mean	Min	Max	Male	Female	Unknown
1	Forster	NSW	27/02/2020	32.18°S	10						
				152.51°E		246	228	279	8	2	0
3	Nelson Bay	NSW	15/08/2019	32.72°S	10						
				152.15°E		254	238	281	4	5	1
8	Eden	NSW	17/05/2018 and	37.07°S	25						
			25/07/2019	149.90°E		244	183	294	7	4	11
9	Corner Inlet	VIC	26/08/2019	38.78°S	31						
				146.33°E		228	190	258	7	17	4
10	Adelaide	SA	19/02/2020	34.93°S	20						
				138.60°E		234	224	251	16	1	0
11	Perth	WA	22/04/2019	31.95°S	24						
				115.86°E		239	206	289	11	8	5

Table S3: Summary of the number, size and sex of all whole fish from each location.

Site numbers corresponds with the numbers in Figure 1. NSW = New South Wales, VIC = Victoria, SA = South Australia, WA = Western Australia.

Site No.	Location		Latitude & Longitude	n – Tissue & Otolith	Size (Sta	andard L mm)	.ength,	Sex (n)		Gonadosomatic Index (GSI)			
					Mean	Min	Max	Male	Female	Unknown	Mean	Min	Max
1	Forster	NSW	32.18° S	20									
			152.51° E		232	199	276	8	11	1	1.55	0	6.64
2	Tea Garden	NSW	32.66° S	20									
			152.15° E		259	235	294	13	7	0	3.46	0.07	10.21
3	Nelson Bay	NSW	32.72° S	30									
			152.15° E		244	202	327	11	18	1	1.68	0.33	8.68
4	Sydney	NSW	33.87° S	20									
			151.21° E		265	216	360	12	8	0	1.29	0.08	3.17
5	Wollongong	NSW	34.43° S	26									
			150.8931° E		255	205	300	8	17	1	1.53	0.14	7.21
6	Kiama	NSW	34.67° S	25									
			150.84° E		257	199	321	7	17	1	2.54	0	8.70
7	Ulladulla	NSW	35.36° S	26									
			150.46° E		245	205	285	12	10	4	3.14	0.35	16.10
8	Eden	NSW	37.07°S	20									
			149.90° E		266	239	322	4	11	5	0.99	0.12	3.45

Table S4: Summary of the number, size and sex of all fish corresponding with tissue and otolith samples from each location.

Site numbers corresponds with the numbers in Figure 1. NSW; New South Wales, VIC, Victoria; SA, South Australia; WA, Western Australia.

Table S5: Details of all	primer seq	uences and	PCR protocols.
--------------------------	------------	------------	----------------

Direction	Primer Name	Sequence (5'–3')	PCR protocol	Reference
Forward Forward	FishF1 FishF2	TCAACCAACCACAAAGACATTGGCAC TCGACTAATCATAAAGATATCGGCAC	Initial denaturing step at 95 °C for 2 min 35 cycles of amplification (94 °C for 30 sec, 54 °C for	Ward <i>et al.</i> (2005)
Reverse	FishR2	ACTTCAGGGTGACCGAAGAATCAGAA	30 sec, 72 °C for 60 sec) Final extension at 72 °C for 10 min	
Forward	TMO_f1_5	CCTCCGGCCTTCCTAAAACCTCTC	Initial denaturing step at 95 °C for 2 min 30 cycles of amplification (95 °C for 30 sec, 55 °C for 30 sec, 72 °C for 60 sec)	Streelman and Karl (1997)
Reverse	TMO_r1_3	CATCGTGCTCCTGGGTGACAAAGT	Final extension at 72 °C for 7 min	
Forward Reverse	RAG2_f1 RAG2_r4	TTTGGRCARAAGGGCTGGCC GTRGARTAGTAGGGCTCCCA	Initial denaturing step at 95 °C for 30 sec "Touchdown" protocol of annealing for 60 sec at 58 °C, 56 °C, 54 °C and 52 °C, repeated for two cycles at each temperature, followed by 72 °C for 90 sec 27 cycles of amplification (30 sec at 95 °C, 60 sec at 50 °C, 90 sec at 72 °C) Final extension at 72 °C for 5 min	Lovejoy and Collette (2001)
	Forward Forward Reverse Forward Reverse Forward Reverse	DirectionPrimer NameForwardFishF1ForwardFishF2ReverseFishR2ForwardTMO_f1_5ReverseTMO_r1_3ForwardRAG2_f1ReverseRAG2_r4	DirectionPrimer NameSequence (5'-3')ForwardFishF1TCAACCAACCACAAAGACATTGGCACForwardFishF2TCGACTAATCATAAAGATATCGGCACReverseFishR2ACTTCAGGGTGACCGAAGAATCAGAAForwardTMO_f1_5CCTCCGGCCTTCCTAAAACCTCTCReverseTMO_r1_3CATCGTGCTCCTGGGTGACAAAGTForwardRAG2_f1TTTGGRCARAAGGGCTGGCCReverseRAG2_r4GTRGARTAGTAGGGCTCCCA	DirectionPrimer NameSequence (s'-3')PCK protocolForwardFishF1TCAACCAACCACAAAGACATTGGCACInitial denaturing step at 95 °C for 2 min 35 cycles of amplification (94 °C for 30 sec, 54 °C for 30 sec, 72 °C for 60 sec) Final extension at 72 °C for 10 minForwardFishR2ACTTCAGGGTGACCGAAGAATCAGAA ACTTCAGGGTGACCGAAGAATCAGAA30 sec, 72 °C for 60 sec) Final extension at 72 °C for 10 minForwardTMO_f1_5CCTCCGGCCTTCCTAAAACCTCTCInitial denaturing step at 95 °C for 2 min 30 cycles of amplification (95 °C for 30 sec, 55 °C for 30 sec, 72 °C for 60 sec)ReverseTMO_r1_3CATCGTGCTCCTGGGTGACAAAGTFinal extension at 72 °C for 7 minForwardRAG2_f1TTTGGRCARAAGGGCTGGCCInitial denaturing step at 95 °C for 30 secReverseRAG2_r4GTRGARTAGTAGGGCTCCCAInitial denaturing step at 95 °C for 90 sec 27 cycles of amplification (30 sec at 95 °C, 60 sec at 58 °C, 56 °C, 54 °C and 52 °C, repeated for two cycles at each temperature, followed by 72 °C for 90 sec 27 cycles of amplification (30 sec at 95 °C, 60 sec at 50 °C, 90 sec at 72 °C) Final extension at 72 °C for 5 min

	affinis	australis	dussumieri	ihi	limbatus	meeki	melanochir	quoyi	regularis	sajori	unifasciatus	xanthopterus
affinis	*											
	8.34											
australis	(7.0)	*										
	9.92	12.51										
dussumieri	(8.3)	(10.4)	*									
	8.36	0.52	13.08									
ihi	(7.0)	(0.4)	(10.9)	*								
	8.11	12.23	10.14	12.44								
limbatus	(6.8)	(10.2)	(8.4)	(10.4)	*							
	14.92	17.80	15.06	18.27	14.45							
meeki	(12.4)	(14.8)	(12.5)	(15.2)	(12.0)	*						
	8.39	0.70	13.00	0.52	12.48	18.27						
melanochir	(7.0)	(0.6)	(10.8)	(0.4)	(10.4)	(15.2)	*					
	4.23	9.14	9.47	9.09	3.55	14.31	9.33					
quoyi	(3.5)	(7.6)	(7.9)	(7.6)	(3.0)	(11.9)	(7.8)	*				
	11.58	14.86	12.98	14.18	11.36	18.50	14.41	10.92				
regularis	(9.7)	(12.4)	(10.8)	(11.8)	(9.5)	(15.4)	(12.0)	(9.1)	*			
	17.15	17.49	13.90	18.22	15.94	19.97	18.22	15.81	20.08			
sajori	(14.3)	(14.6)	(11.6)	(15.2)	(13.3)	(16.6)	(15.2)	(13.2)	(16.7)	*		
	9.60	12.58	9.93	12.95	8.98	2.91	12.86	8.41	12.54	16.54		
unifasciatus	(8.0)	(10.5)	(8.3)	(10.8)	(7.5)	(2.4)	(10.7)	(7.0)	(10.5)	(13.8)	*	
	6.22	12.94	14.10	12.73	14.09	19.99	12.95	10.61	16.54	21.13	14.42	
xanthopterus	(5.2)	(10.8)	(11.8)	(10.6)	(11.7)	(16.7)	(10.8)	(8.8)	(13.8)	(17.6)	(12.0)	*

Table S6: Estimates of the percent pairwise difference in the mitochondrial DNA COI sequence of other *Hyporhamphus* species.

The top value in each cell represents the Tamura and Nei (TrN) percent difference between the sequences (%), and the bottom values in parentheses are estimates of the time since divergence (Ma) based on an estimated COI mutation rate of 1.2% per million years. Names are shortened to species. Bold values indicate differences between *Hyporhamphus australis*, *Hyporhamphus melanochir* and *Hyporhamphus ihi*. All sequences used to construct the table are taken from GenBank and BOLD (see Table S7).

 Table S7: List of all Hyporhamphus sequences used in K2P comparison from GenBank and BOLDsystems.

Species	GenBank Accession Number	Voucher Number	Location	Date Collected	Publication
Hyporhamphus sajori	KP112263	ihb201306979	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	Shen, Y. DNA barcoding of common commercial fish species in Central
Hyporhamphus sajori	KP112264	ihb201306965	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	Submission
Hyporhamphus sajori	KP112265	ihb201306967	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112266	ihb201306969	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112267	ihb201306970	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112268	ihb201306971	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112269	ihb201306972	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112270	ihb201306974	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112271	ihb201306975	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112272	ihb201306976	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112273	ihb201306977	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	KP112274	ihb201306978	China: Hubei, Wuhan, Maidelong supermarket	17-Jul-2013	
Hyporhamphus sajori	JF952762	SDLG1	Japan: Kanto, Yokosuka, Arasaki	09-Dec-2005	Zhang, J. B and Hanner, R. (2011) DNA barcoding is a useful too for the identification of marine fishes from

Species	GenBank Accession	Voucher Number	Location	Date Collected	Publication
	Number				
Hyporhamphus sajori	JF952763	SUJL1	Japan: Kanto, Yokosuka,	09-Dec-2005	Japan. Biochem. Syst. Ecol. 39 (1), 31-
			Arasaki		42.
Hyporhamphus dussumieri	JX983320	NFX02	India: Gujarat, Bharuch, Estuary	20-Oct-2011	Khedkar GD, Jamdade R, Naik S, David L, Haymer D. (2014). DNA barcodes for the fishes of the Narmada, one of India's longest rivers. <i>PLoS One</i> . 9(7):e101460. doi: 10.1371/journal.pone.0101460.
Hyporhamphus dussumieri	EF607401	GD 9086051	China	18-Aug-2006	Zhang J. (2011). Species identification of marine fishes in china with DNA
Hyporhamphus dussumieri	EF607400	GD 9086052	China	18-Aug-2006	barcoding. Evid Based Complement Alternat Med. 2011:978253. doi: 10.1155/2011/978253.
Hyporhamphus xanthopterus	FJ237601	NBFGR: 1044B	India: Bay of Bengal	-	Lakra WS, Verma MS, Goswami M, Lal
Hyporhamphus xanthopterus	FJ237602	NBFGR: 1044C	India: Bay of Bengal	-	KK, Mohindra V, Punia P, Gonalakrishnan A, Singh KV, Ward PD
Hyporhamphus xanthopterus	EU148544	WL-M583	India	-	Hebert P. (2011). DNA barcoding Indian
Hyporhamphus xanthopterus	EU148545	WL-M586	India	-	marine fishes. <i>Mol Ecol Resour.</i> 11(1):60-71. doi: 10.1111/j.1755- 0998.2010.02894.x.
Hyporhamphus affinis	KU176401	ADC2013 115.3 #5	South Africa: KwaZulu-Natal,	09-Feb-2013	Dirk Steinke, Allan D. Connell, and Paul D.N. Hebert. (2016). Linking adults and
Hyporhamphus affinis	KU176356	ADC2013 115.3 #4	South Africa: KwaZulu-Natal, Sodwana Bay	09-Feb-2013	immatures of South African marine fishes. <i>Genome</i> . 59 (11): 959-967. Doi: 10.1139/gen-2015-0212
Hyporhamphus affinis	JF493670	ADC08 Smith 115.2 #2	Mozambique: Pomene	01-May-2008	
Hyporhamphus affinis	JF493671	ADC08 Smith 115.3 #1	Mozambique: Pomene	01-May-2008	
Hyporhamphus affinis	JF493672	ADC08 Smith 115.3 #3	Mozambique: Pomene	01-May-2008	
Hyporhamphus affinis	KJ013045	DB 23.3	Philippines: Luzon, Central Luon, Manila Bay, Bulacan	15-Dec-2012	Marucot, M.A.R., Alcantara, S.G. and Yambot, A.V. DNA barcoding of diadromous fish species from Bulacan, Philippines – Unpublished. Direct

Species	GenBank Accession	Voucher Number	Location	Date Collected	Publication		
	Number						
Hyporhamphus affinis	HQ654711	Haff1	Philippines: Batangas,	27-Apr-2010			
			Calabarzon, Taal Lake,				
			Talisay				
Hyporhamphus affinis	HQ654710	Haff2	Philippines: Batangas,	04-Jun-2010	Aquilino SV, Tango JM, Fontanilla IK,		
			Calabarzon, Taal Lake,		Pagulayan RC, Basiao ZU, Ong PS,		
			Talisay		Quilang JP. (2011). DNA barcoding of		
Hyporhamphus affinis	HQ654709	Haff3	Philippines: Batangas,	05-Jun-2010	the ichthyofauna of Taal Lake,		
			Calabarzon, Taal Lake,		Philippines. <i>Noi Ecol Resour</i> . 2011 Jul:11(4):612-9. doi: 10.1111/j 1755-		
			Talisay		0998.2011.03000.x.		
Hyporhamphus affinis	HQ654708	Haff4	Philippines: Batangas,	19-Jun-2010			
			Calabarzon, Taal Lake,				
			Talisay				
Hyporhamphus affinis	HQ654707	Haff5	Philippines: Batangas,	20-Jun-2010			
			Calabarzon, Taal Lake,				
			Talisay				
Hyporhamphus melanochir	HQ956059	BW-A9468	Australia: Tasmania,	23-Apr-2010	International Barcode of Life (iBOL).		
			Eaglehawk Bay		Direct Submission		
Hyporhamphus melanochir	HQ956051	BW-A9459	Australia: Tasmania,	23-Apr-2010			
			Eaglehawk Bay				
Hyporhamphus australis	KX781932	SGS233_2016	Australia	-	Mitchell,A., Rothbart,A., Frankham,G.,		
					Johnson, R.N. and Neaves, L.E. (2019).		
					Louid do better! A high school market		
					Australia, using DNA barcodes, <i>Peerl</i> 7		
					e7138 (2019)		

Species	GenBank Accession	Voucher Number	Location	Date Collected	Publication
	Number				
Hyporhamphus ihi	MN123385	NMNZ P.044460	New Zealand: Eastern side of Mill Bay	-	Eme,D., Anderson,M.J., Struthers,C.D., Roberts,C.D. and Liggins,L. (2019). An integrated pathway for building regional phylogenies for ecological studies. <i>Glob. Ecol. Biogeogr.</i> 28 (12), 1899-1911
Hyporhamphus regularis	KJ669475	CSIRO:H 4313-09	Australia: Seafood Trade, Sydney Fish Markets, NSW	-	Hardy, C. M. Direct Submission.
Hyporhamphus quoyi	KP194350	UG0054	Australia: Queensland: Lizard Island: I.44707	05-Sep-2008	Steinke,D., Ward,R.D., Gomon,M.F., Hay,A., Reader,S.R., Johnson,J., Last,P., Moore,G., Dewaard,J., Hardie,D., Lucanus,O. and Cossey,J. Coral reef fish of Lizard Island – Unpublished. Direct Submission.
Hyporhamphus quoyi	GU674305	BW-A7141	Indonesia: East Java, Banyuwangi, Kalipuro	27-Feb-2009	International Barcode of Life (iBOL). Direct Submission
Hyporhamphus quoyi	GU674306	BW-A7142	Indonesia: East Java, Banyuwangi, Kalipuro	27-Feb-2009	
Hyporhamphus quoyi	GU674377	BW-A7613	Indonesia: West Nusa Tenggara, East Lombok, Menceh	05-Oct-2009	
Hyporhamphus quoyi	GU674376	BW-A7612	Indonesia: West Nusa Tenggara, East Lombok, Menceh	05-Oct-2009	
Hyporhamphus quoyi	MN200468	DUZM_MF_130B4	Bangladesh: Kuakata	05-Oct-2018	Ahmed, M.S., Datta, S.K., Saha, T.,
Hyporhamphus quoyi	MN083114	DUZM_MF_130B	Bangladesh: Moheshkhali	22-Oct-2015	Susmita, U.M. and Haque, A.K. DNA
Hyporhamphus quoyi	MK988540	DUZM_MF_130B.3	Bangladesh: Cox's Bazar	22-Jun-2018	Bangladesh -Unpublished. Direct
Hyporhamphus quoyi	MK988533	DUZM_MF_130B.2	Bangladesh: Cox's Bazar	22-Jun-2018	Submission

Species	GenBank	Voucher Number	Location	Date Collected	Publication
	Accession				
	Number				
Hyporhamphus quoyi	MH673896	-	Malaysia	17-Mar-2016	Chu C, Loh KH, Ng CC, Ooi AL, Konishi Y, Huang SP, Chong VC. (2019). Using DNA Barcodes to Aid the Identification of Larval Fishes in Tropical Estuarine Waters (Malacca Straits, Malaysia). <i>Zool Stud.</i> 58:e30. doi: 10.6620/ZS.2019.58-30
Hyporhamphus quoyi	EU595153	MBCSC: Z711117	China: South China Sea	30-Oct-2007	Zhang, J. and Hanner, R. DNA
Hyporhamphus quoyi	FJ237994	MBCSC:ZC 107338	China: South China Sea	28-Oct-2007	Barcoding of fishes in the South China Sea – Unpublished. Direct Submission.
Hyporhamphus limbatus	MK572266	11640	Bangladesh: Dhaka Division, Khishoreganj District	20-Mar-2016	Rahman MM, Norén M, Mollah AR, Kullander SO. (2019). Building a DNA
Hyporhamphus limbatus	MK572267	10259	Bangladesh: Chittagong Division, Rangamati	28-Nov-2014	fishes of Bangladesh. <i>Sci Rep.</i> 9(1):9382. doi: 10.1038/s41598-019-
Hyporhamphus limbatus	MK572268	10206	Bangladesh: Chittagong Division, Rangamati	27-Nov-2014	45379-6.
Hyporhamphus limbatus	MK572269	11321	Bangladesh: Chittagong Division, Rangamati	28-Nov-2014	
Hyporhamphus limbatus	KJ013046	DB 23.2	Philippines: Luzon, Central Luzon, Manila Bay, Bulacan	15-Dec-2012	Marucot, M.A.R., Alcantara, S.G. and Yambot, A.V. DNA barcoding of diadromous fish species from Bulacan, Philippines – Unpublished. Direct Submission
Hyporhamphus limbatus	EF607402	GD 9081025	China	15-Aug-2006	Zhang J. (2011). Species identification of marine fishes in china with DNA barcoding. Evid Based Complement Alternat Med. 2011:978253. doi: 10.1155/2011/978253
Hyporhamphus limbatus	EU595151	MBCSC:Z711263	China: South China Sea	28-Oct-2007	Zhang, J. and Hanner, R. DNA
Hyporhamphus limbatus	EU595149	MBCSC:Z711265	China: South China Sea	28-Oct-2007	Barcoding of fishes in the South China
Hyporhamphus limbatus	EU595148	MBCSC:Z711266	China: South China Sea	28-Oct-2007	sea – onpublished. Direct submission.
Hyporhamphus limbatus	EU595147	MBCSC:Z711267	China: South China Sea	28-Oct-2007	
Hyporhamphus limbatus	EU595152	MBCSC:Z711262	China: South China Sea	28-Oct-2007	

Species	GenBank Accession	Voucher Number	Location	Date Collected	Publication
	Number				
Hyporhamphus limbatus	EU595150	MBCSC:Z711264	China: South China Sea	28-Oct-2007	
Hyporhamphus limbatus	FJ237993	MBCSC:ZC 107389	China: South China Sea	30-Oct-2007	
Hyporhamphus meeki	MT456231	USNM:FISH:423969	USA: Virginia, Northampton	13-Aug-2012	Aguilar,R., Ogburn,M.B., Weigt,L.A.,
			County, Lower Chesapeake		Driskell,A.C., Macdonald,K.S. and
			Bay, Kiptopeke State Park		Initiative (CBBI): Fishes of the greater
Hyporhamphus meeki	MT456098	USNM:FISH:423982	USA: Virginia, Northampton	13-Aug-2012	Chesapeake Bay – Unpublished. Direct
			County, Lower Chesapeake		Submission.
			Bay, Kiptopeke State Park		
Hyporhamphus meeki	MT456001	USNM:FISH:425012	USA: Virginia, Northampton	13-Aug-2012	
			County, Lower Chesapeake		
			Bay, Kiptopeke State Park		
Hyporhamphus meeki	MT455971	USNM:FISH:425018	USA: Virginia, Northampton	13-Aug-2012	
			County, Lower Chesapeake		
			Bay, Kiptopeke State Park		
Hyporhamphus meeki	MT455355	USNM:FISH:425014	USA: Virginia, Northampton	13-Aug-2012	
			County, Lower Chesapeake		
			Bay, Kiptopeke State Park		
Hyporhamphus unifasciatus	GU225337	Victor Garcia	Mexico: Quintana Roo,	02-Feb-2006	Valdez-Moreno, M., Vasquez-
			Holbox, Playa cerca I. Pasion		Yeomans,L., Elias-Gutierrez,M.,
					Ivanova, N.V. and Hebert, P.D.N. (2010).
					and early life stages of marine fishes
					from the Yucatan Peninsula, Mexico:
					potential in fisheries management.
					Marine and Freshwater Research, 61,
					665-671
Hyporhamphus unifasciatus A	JQ842525	SMISA/442	USA: Florida, St. Lucie	-	Veigt LA, Baldwin CC, Driskell A, Smith
			County, sea grass bed off		DNA barcoding to assess Caribbean
			A1A		reef fish biodiversity: expanding
Hyporhamphus unifasciatus ^A	JQ842524	SMSA7247	USA: Florida, St. Lucie	-	taxonomic and geographic coverage.
			County, IRL zone J1, grid 512		PLoS One. 7(7):e41059. doi:
					10.13/1/journal.pone.0041059

Species	GenBank	Voucher Number	Location	Date Collected	Publication
	Accession				
	Number				
Hyporhamphus unifasciatus	-	ECOCH7100	Mexico: Campeche, Carme,	24-Mar-2010	International Barcode of Life (iBOL).
BOLD ID: MFIV326-10.COI-5P			Candelaria river		Direct Submission
Hyporhamphus unifasciatus	-	ECOCH7100	Mexico: Campeche, Carme,	24-Mar-2010	
BOLD ID: MFIV327-10.COI-5P			Candelaria river		
Hyporhamphus unifasciatus	-	ECO-CH P 7652	Mexico: Campeche,	24-Mar-2015	Martha Valdez-Moreno. Unpublished.
BOLD ID: MXV795-15.COI-5P			Sabancuy, An Antonio		Direct Submission.
			birdge. Mundo		
Hyporhamphus unifasciatus	-	ECO-CH P 7652	Mexico: Campeche,	24-Mar-2015	
BOLD ID: MXV796-15.COI-5P			Sabancuy, An Antonio		
			birdge. Mundo		
Hyporhamphus unifasciatus	-	ECO-CH P 7652	Mexico: Campeche,	24-Mar-2015	
BOLD ID: MXV797-15.COI-5P			Sabancuy, An Antonio		
			birdge. Mundo		

^ATwo *H. unifasciatus* sequences likely misidentified and were excluded from analysis.

Location		d.f.	Sum of Squares	Mean square	F model	R ²	Pr(>F)
Forster	Photoshop	1	0.3539	0.35395	0.84596	0.09563	0.593
	Residuals	8	3.3472	0.37975		0.90437	
	Total	9	3.7011			1.00000	
Tea Gardens	Photoshop	1	0.2557	0.25574	0.67344	0.04039	0.713
	Residuals	16	6.0760	0.011292		0.95961	
	Total	17	6.3318			1.00000	
Nelson Bay	Photoshop	1	0.4604	0.46039	0.92902	0.04583	0.409
	Residuals	28	13.8758	0.49556		0.95417	
	Total	29	14.3362			1.00000	
Sydney	Photoshop	1	0.2903	0.29031	0.68665	0.04675	0.711
	Residuals	14	5.9190	0.42279		0.95325	
	Total	15	6.2093			1.00000	
Wollongong	Photoshop	1	0.4934	0.49340	1.2941	0.04741	0.236
	Residuals	26	9.9133	0.38128		0.95259	
	Total	27	10.4067			1.00000	
Kiama	Photoshop	1	0.6848	0.68484	1.7141	0.06416	0.093
	Residuals	25	9.9887	0.39955		0.93584	
	Total	26	10.6735			1.00000	
Ulladulla	Photoshop	1	0.5099	0.50992	1.3256	0.0452	0.228
	Residuals	28	10.7707	0.38467		0.9548	
	Total	29	11.2806			1.0000	

Table S8: Results of PERMANOVA analysis of length-standardised otolith wavelet coefficients comparing photoshopped and non-photoshopped *Hyporhamphus australis* otoliths at each sampling location.

Locations with no photoshopped otoliths were excluded from analysis.

Table S9: Results of the analysis of molecular variance (AMOVA) based on mitochondrial DNA COI data for *Hyporhamphus australis* and *Hyporhamphus melanochir*.

	Source of Variation	d.f.	Sum of Squares	Variance of Components	Percentage of Variation	F _{ST}	P-value
[A]	Among Species	1	259.77	2.02	95.2	0.95	<0.001
All Samples,	Within Species	289	29.45	0.1	4.8		
Species	Total	290	289.22	2.12			
[B]	Among Locations	10	312.55	1.13	69.01	0.69	<0.001
All Samples,	Within Locations	292	147.6	0.51	30.99		
Locations	Total	302	460.15	1.63			
[C]	Among Locations	7	0.73	0.00054	0.59	0.005	0.153
H. australis,	Within Locations	187	17.17	0.09	99.41		
Locations	Total	194	17.91	0.09			
[D]	Among Locations	4	0.83	0.005	4.02	0.04	0.057
H. melanochir,	Within Locations	91	10.71	0.12	95.98		
Locations	Total	95	11.54	0.12			

Groups used for analysis were A) Species v. Species, B) Location v. Location, C) H. australis within-species Location v. Location, and D) H. melanochir within-species Location v. Location. Significant differences indicated in bold.

Location	Forster	Tea Gardens	Nelson Bay	Sydney	Wollongong	Kiama	Ulladulla	Eden	Victoria	South	Western
										Australia	Australia
Forster	*										
Tea Gardens	0.029	*									
	(0.072)										
Nelson Bay	0.006	0.005	*								
	(0.236)	(0.344)									
Sydney	-0.007	0.023	-0.016	*							
	(0.608)	(0.488)	(0.794)								
Wollongong	0.014	0.022	0.013	0.001	*						
	(0.122)	(0.150)	(0.110)	(0.497)							
Kiama	0.006	-0.020	-0.015	-0.012	0.008	*					
	(0.284)	(0.684)	(0.645)	(0.999)	(0.283)						
Ulladulla	0.006	-0.022	-0.021	-0.011	0.009	-0.033	*				
	(0.341)	(0.595)	(0.770)	(0.999)	(0.367)	(0.999)					
Eden	0.460	0.340	0.470	0.440	0.450	0.400	0.410	*			
	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)				
Victoria	0.867	0.805	0.872	0.890	0.867	0.845	0.861	0.220	*		
	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)			
South	0.867	0.792	0.874	0.899	0.866	0.842	0.862	0.190	-0.029	*	
Australia	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(0.003)	(0.736)		
Western	0.948	0.907	0.946	1	0.953	0.938	0.957	0.290	0.057	0.058	*
Australia	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(<0.001)	(0.125)	(0.031)	

Table 10: Matrix of population pairwise FST values (associated *P* values in parentheses) based on mitochondrial DNA COI sequence data for *Hyporhamphus australis* and *Hyporhamphus melanochir* sampled at locations throughout their mainland coastal distribution in Australia.

Colours indicate groups of locations that do not significantly differ from one another, but which differ from other colour groups. Numbers in bold are significant, $P \le 0.003$ (corrected for multiple pairwise tests as per Narum, 2006).

Table S11: Molecular diversity indices for *Hyporhamphus australis* and *Hyporhamphus melanochir*, pooled as species and as separate locations, based on A) mitochondrial DNA (*CO1*) sequence data, and B) nuclear DNA (TMO-4C4).

Collection Locality	N	HR	Hu	Haplotype Diversity (h +/- SD)	Nucleotide Diversity (phi +/- SD)	Fu's Fs
All H. australis	195	13	13	0.1575 +/- 0.0358	0.000302 +/- 0.000433	-22.51
Forster	30	6	4	0.3103 +/- 0.1092	0.000649 +/- 0.000693	-4.81
Tea Gardens	18	2	0	0.1111 +/- 0.0964	0.000182 +/- 0.000346	-0.79
Nelson Bay	39	3	1	0.1484 +/- 0.0753	0.000248 +/- 0.000397	-1.99
Sydney	19	1	0	0.0000 +/- 0.0000	0.0000 +/- 0.0000	NA
Wollongong	26	5	3	0.2892 +/- 0.1147	0.000621 +/- 0.000679	-3.48
Kiama	24	2	1	0.0833 +/- 0.0749	0.000137 +/- 0.000293	-1.03
Ulladulla	24	1	0	0.0000 +/- 0.0000	0.0000 +/- 0.0000	NA
Eden	15	3	1	0.2571 +/- 0.1416	0.000438 +/- 0.000569	-1.55
All H. melanochir	96	6	6	0.2316 +/- 0.0563	0.000398 +/- 0.000508	-5.3
NSW	4	2	0	0.5000 +/- 0.2652	0.000821 +/- 0.001018	0.17
Eden	23	4	1	0.4387 +/-0.1140	0.000779 +/- 0.000783	-1.56*
Victoria	28	3	0	0.2037 +/- 0.0978	0.000343 +/- 0.000480	-1.59
South Australia	17	3	2	0.2279 +/- 0.1295	0.000386 +/- 0.000525	-1.68
Western Australia	24	1	0	0.0000 +/- 0.0000	0.0000 +/- 0.0000	NA

Collection Locality	N	Hn	Hu	Haplotype Diversity (h +/- SD)	Nucleotide Diversity (phi +/- SD)	Fu's Fs
All H. australis	270	8	0	0.5220 +/- 0.0177	0.001248 +/- 0.001132	-3.42
Forster	50	5	0	0.5224 +/- 0.0528	0.001254 +/- 0.001152	-1.66
Tea Gardens	24	3	0	0.4891 +/- 0.0843	0.001216 +/- 0.001157	0.08
Nelson Bay	54	4	0	0.5346 +/- 0.0337	0.001258 +/- 0.001154	-0.49
Sydney	32	2	0	0.4657 +/- 0.0563	0.001035 +/- 0.001034	1.54
Wollongong	34	5	0	0.5775 +/- 0.0578	0.001438 +/- 0.001272	-1.65
Kiama	28	3	1	0.5529 +/- 0.0406	0.001305 +/- 0.001203	0.34
Ulladulla	18	2	0	0.5033 +/- 0.0639	0.001118 +/- 0.001113	1.33
Eden	30	4	0	0.5609 +/- 0.0581	0.001400 +/- 0.001255	-0.69
All H. melanochir	152	14	6	0.5505 +/- 0.0362	0.001490 +/- 0.001272	-11.68
NSW	8	2	0	0.2500 +/- 0.1802	0.000556 +/- 0.000788	-0.18
Eden	38	7	3	0.6216 +/- 0.0646	0.001751 +/- 0.001445	-3.24
Victoria	48	6	0	0.5709 +/- 0.0552	0.001460 +/- 0.001273	-2.39
South Australia	22	5	0	0.6407 +/- 0.0702	0.001712 +/- 0.001452	-1.67
Western Australia	36	6	3	0.4270 +/- 0.0964	0.001245 +/- 0.001158	-3.28

Significant F_s values are in bold (P < 0.02)

	Source of Variation	d.f.	Sum of Squares	Variance of Components	Percentage of Variation	F _{ST}	P-value
[A]	Among Species	1	0.73	0.002	0.72	0.007	0.09
All Samples,	Within Species	420	126.94	0.3	99.28		
Species	Total	421	127.66	0.3			
[B]	Among Locations	10	2.93	-0.0002	0	0	0.47
All Samples,	Within Locations	431	130.09	0.3	100		
Locations	Total	441	133.02	0.3			
[C]	Among Locations	7	1.22	-0.003	0	0	0.8
H. australis,	Within Locations	262	74.77	0.29	100		
Locations	Total	269	75.99	0.29			
[D]	Among Locations	4	1.87	0.005	1.36	0.013	0.17
H. melanochir,	Within Locations	147	49.08	0.33	98.64		
Locations	Total	151	50.95	0.34			

Table 12: Results of the analysis of molecular variance (AMOVA) based on nuclear DNA TMO-4C4 data for *Hyporhamphus australis* and *Hyporhamphus melanochir*.

Groups used for analysis were A) Species v. Species, B) Location v. Location, C) H. australis within-species Location v. Location, and D) H. melanochir within-species Location v. Location.

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6
DOR	0.66760	-0.31892	-0.16886	0.03873	-0.64944	0.02851
ANA	0.43498	-0.62306	-0.38787	0.37741	0.36002	0.00991
P1	0.13571	0.69641	-0.69442	0.10937	-0.02155	-0.04424
VERT	0.64941	-0.11073	-0.20074	-0.69673	0.19710	0.03783
RGR1	-0.80302	-0.37916	-0.28935	-0.20236	-0.10665	-0.27450
RGR2	-0.87444	-0.17939	-0.31298	-0.09733	-0.07577	0.30001

 Table S13: Loading matrices for principal component values with meristic characters

 Table S14: Loading matrices for principal component values with morphometric characters

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.8	Dim.9	Dim.10	Dim.11	Dim.12	Dim.13
ABASE	0.08549	-0.52609	0.60169	-0.19927	0.11620	-0.33718	0.20082	0.06659	0.03447	0.21685	0.25579	-0.10498	-0.13251
BD.P1	0.67182	0.56876	-0.10308	-0.20727	-0.06395	0.02287	0.01578	-0.05741	-0.05288	-0.14260	-0.06332	-0.12824	-0.34620
BD.P2	0.57438	0.22702	0.08703	-0.53125	0.14149	0.07354	-0.23192	-0.42643	0.02119	0.02923	0.16681	-0.04550	0.19103
DBASE	0.27076	-0.13752	0.66703	0.12559	0.39486	0.03418	-0.29162	0.11092	-0.29822	-0.28391	-0.11519	0.09919	-0.00107
HDL	0.60355	-0.34713	-0.30571	0.04022	-0.33012	-0.13177	0.06655	0.17489	-0.04791	-0.39360	0.30124	0.08804	0.05551
IJL	-0.17845	-0.29299	-0.10166	-0.75761	0.02465	0.32099	0.26687	0.26204	-0.18655	-0.00848	-0.11090	0.08490	0.00978
ORB	0.73932	-0.01762	-0.19386	0.09812	-0.05111	-0.33475	0.15557	0.08839	-0.35543	0.20667	-0.21436	-0.14712	0.15021
P1.P2	-0.31881	0.23736	-0.37955	-0.11555	0.68798	-0.26038	0.04994	0.21087	0.13747	-0.20738	0.04649	-0.17141	0.05558
P1L	0.43904	0.25343	0.34693	0.26114	0.16371	0.29806	0.61755	-0.09111	0.16704	-0.11227	-0.01385	-0.00958	0.09142
P2.C	-0.24673	0.37349	0.48846	-0.28305	-0.47309	-0.29669	-0.02441	0.14821	0.23328	-0.20175	-0.17877	-0.08458	0.11085
PREORB	0.07592	-0.73877	-0.17209	-0.09763	0.10075	-0.26745	0.11259	-0.41008	0.17751	-0.17566	-0.26914	0.09178	-0.05966
UJL	0.42692	-0.64619	-0.01365	0.07578	-0.04429	0.37482	-0.24357	0.18069	0.25711	0.00095	-0.08880	-0.29240	0.01835
WLU	0.75221	0.17081	-0.04919	-0.06762	0.17052	-0.10705	-0.11825	0.29437	0.35145	0.22189	-0.06905	0.28149	-0.00891

	eigenvalue	variance.percentage	cumulative.variance.percentage
Dim.1	2.48453	41.40885	41.40885
Dim.2	1.16309	19.38487	60.79373
Dim.3	0.88315	14.71921	75.51293
Dim.4	0.69176	11.52933	87.04226
Dim.5	0.60781	10.13020	97.17246
Dim.6	0.16965	2.82754	100

 Table S15: Eigenvalues for principal component values with meristic characters

Table S16: Eigenvalues for principal component values with morphometric characters

	eigenvalue	variance.percentage	cumulative.variance.percentage		
Dim.1	2.91371 22.41313		22.41313		
Dim.2	2.12992	16.38403	38.79716		
Dim.3	1.50176	11.55207	50.34922		
Dim.4	1.14740	8.82614	59.17536		
Dim.5	1.07085	8.23729	67.41266		
Dim.6	0.82139	6.31836	73.73101		
Dim.7	0.74971	5.76699	79.49801		
Dim.8	0.67115	5.16268	84.66069		
Dim.9	0.57914	4.45495	89.11564		
Dim.10	0.52293	4.02252	93.13815		
Dim.11	0.37893	2.91482	96.05298		
Dim.12	0.28576	2.19814	98.25112		
Dim.13	0.22736	1.74888	100		

Variable	Effect	DFn	DFd	F	р	P < 0.003	ges
UJL	SL	1	108	90.619	5.78E-16	LJL excluded	0.456
	Species	1	108	33.673	6.60E-08	LJL excluded	0.238
WLU	SL	1	108	127.85	4.97E-20	LJL excluded	0.542
	Species	1	108	0.037	8.48E-01		0.000343
HDL	SL	1	107	520.119	6.92E-43	LJL excluded	0.829
	Species	1	107	46.911	4.88E-10	LJL excluded	0.305
P1L	SL	1	108	115.931	8.36E-19	LJL excluded	0.518
	Species	1	108	9.99	2.00E-03	LJL excluded	0.085
DBASE	SL	1	108	376.027	5.75E-37	LJL excluded	0.777
	Species	1	108	0.608	4.37E-01		0.006
ABASE	SL	1	106	263.48	1.66E-30	LJL excluded	0.713
	Species	1	106	0.042	8.37E-01		0.0004
P1.P2	SL	1	107	966.912	2.11E-55	LJL excluded	0.9
	Species	1	107	1.642	2.03E-01		0.015
P2.C	SL	1	108	1012.159	1.12E-56	LJL excluded	0.904
	Species	1	108	3.999	4.80E-02		0.036
BD.P1	SL	1	108	308.289	2.02E-33	LJL excluded	0.741
	Species	1	108	6.29	1.40E-02		0.055
BD.P2	SL	1	108	253.127	4.48E-30	LJL excluded	7.01E-01
	Species	1	108	0.008	9.30E-01		7.26E-05
ORB	SL	1	106	105.2	1.47E-17	LJL excluded	0.498
	Species	1	106	0.504	4.79E-01		0.005
PREORB	SL	1	106	167.876	1.39E-23	LJL excluded	0.616
	Species	1	106	42.855	2.16E-09	LJL excluded	0.288
POSTORB	SL	1	107	110.69	3.36E-18	LJL excluded	0.508
	Species	1	107	3.074	8.20E-02		0.028

Table 17: Results of ANCOVA comparing size-adjusted means of each morphometric character between *Hyporhamphus australis* and *Hyporhamphus melanochir*.

Significant variables (*P* < 0.003, Bonferroni adjustment for multiple testing) highlighted in grey; ges, effect size (generalised eta squared). LJL was excluded from some analyses as it violated statistical assumptions of homogeneity of variance and homogeneity of residuals.

Table S18: Results of PERMANOVA analysis of length-standardised otolith wavelet coefficients comparing *Hyporhamphus australis* and *Hyporhamphus melanochir* otoliths.

	d.f.	Sum of Squares	Mean square	<i>F</i> model	R ²	Pr(>F)
Species	1	11.379	11.3790	40.535	0.13488	0.001
Residuals	260	72.986	0.2807		0.86512	
Total	261	84.365			1.00000	00

Table S19: Results of Random Forest Analysis, reclassifying Hyporhamphus australis and Hyporhamphus melanochir samples to their species groups based on their otolith wavelet coefficients

Random Forest	Ntrees	Variables tried at each split	OOB estimate of error rate	
	500	7	12.45%	
Confusion Matrix	<i>australis</i> (actual)	<i>melanochir</i> (actual)	Class error	
H. australis (predicted)	155	9	0.05	
H. melanochir (predicted)	20	49	0.29	

Figure S1: Image of the left-side sagittal otolith of a *Hyporhamphus australis* specimen captured using the Leica IC80 HD camera and M125 dissecting microscope. Otolith is positioned distal side up in the centre of the frame with the rostrum horizontally aligned, and contrast was slightly boosted to ensure clear distinction between the otolith outline and the background.

Figure S2: Violin plots showing the difference between the pectoral fin length of *Hyporhamphus australis* and *Hyporhamphus melanochir*, grouped by location (A) and pooled in species groups (B), standardised to account for differences in standard length. The x-axis displays the residuals of log-measurements plotted on log-length, not raw measurements.

References

Banford, H. M. (2010). *Hyporhamphus collettei*, a new species of inshore halfbeak (Hemiramphidae) endemic to Bermuda, with comments on the biogeography of the *Hyporhamphus unifasciatus* species group. *Proceedings of the Biological Society of Washington*, **123**(4), 345–358. <u>https://doi.org/10.2988/10-22.1</u>

Banford, H. M., & Collette, B. B (1993). *Hyporhampus meeki*, a new species of halfbeak (Teleostei: Hemiramphidae) from the Atlantic and Gulf coasts of the United States. *Proceedings of the Biological Society of Washington*, **106**(2), 369–384. <u>https://www.biodiversitylibrary.org/part/44964</u>

Banford, H. M., & Collette, B. B. (2001). A new species of halfbeak, *Hyporhamphus naos* (Beloniformes: Hemiramphidae), from the tropical eastern Pacific. *Revista de Biologia Tropical*, **49**(Suppl. 1), 39–49. <u>https://doi.org/10.15517/rbt.v49i1.26228</u>

Collette, B. B. (1974). The garfishes (Hemiramphidae) of Australia and New Zealand. *Records of the Australian Museum*, **29**(2), 11–105. <u>https://doi.org/10.3853/j.0067-1975.29.1974.231</u>

Collette, B. B. (1999) "Hemiramphidae" In Carpenter, K.E. & Niem, V.H. (Eds.), The living marine resources of the Western Central Pacific. Volume 4. Bony fishes part 2 (Mugilidae to Carangidae). FAO Species Identification Guide for Fishery Purposes. pp. 2180–2196. (FAO: Rome, Italy) Available at <u>http://www.fao.org/fishery/org/fishfinder/3,1/en#Wcp</u>

Collette, B. B. (2002) "Hemiramphidae" in Carpenter, K.E. (Ed.), The living marine resources of the Western Central Atlantic. Volume 2. Bony fishes part 1 (Acipenseridae to Grammatidae). FAO Species Identification Guide for Fishery Purposes. pp. 1135-1144. (FAO: Rome, Italy) Available at <u>http://www.fao.org/fishery/org/fishfinder/3,1/en#Wcp</u>

Collette, B. B., Bemis, K. E., Parin, N. V. & Shakhovskoy, I. B. (2019). "Family Hemiramphidae" In 'Order Beloniformes: Needlefishes, Sauries, Halfbeaks, and Flyingfishes'. pp. 89–148. (Yale University Press) <u>https://doi.org/10.2307/j.ctvcb5d46.8</u>

Earl, J., Fowler, A. J., & Dittmann, S. (2011). Temporal variation in feeding behaviour and trophic ecology of the temperate hemiramphid, *Hyporhamphus melanochir*. *Environmental Biology of Fishes*, **90**(1), 71–83. <u>https://doi.org/10.1007/s10641-010-9719-5</u>

Hughes, J. M. and Stewart, J. (2006). Reproductive biology of three commercially important Hemiramphid species in south-eastern Australia. *Environmental Biology of Fishes*, **75**, 237-256. <u>https://doi.org/10.1007/s10641-006-0023-3</u>

Jones, G. K., Ye, Q., Ayvazian, S., & Coutin, P. (Eds.). (2002). Fisheries Biology and Habitat Ecology of Southern Sea Garfish (*Hyporhamphus melanochir*) In Southern Australian Waters. FRDC Project 97/133. (Fisheries Research and Development Corporation and South Australian Research and Development Institute, SARDI) Available at <u>http://www.frdc.com.au/Archived-Reports/FRDC Projects/1997-133-DLD.pdf</u>

Klumpp, D., & Nichols, P. (1983). Nutrition of the southern sea garfish Hyporhamphus melanochir: gut passage rate and daily consumption of two food types and assimilation of

seagrass components. *Marine Ecology Progress Series*, **12**(3), 207–216. <u>https://doi.org/10.3354/meps012207</u>

Lovejoy, N. R., & Collette, B. B. (2001). Phylogenetic relationships of New World needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. *Copeia*, **8511**(2), 324–338. <u>https://doi.org/10.1643/0045-8511(2001)001[0324:PRONWN]2.0.CO;2</u>

Narum, S. R. (2006). Beyond Bonferroni: Less conservative analyses for conservation genetics. *Conservation Genetics*, **7**(5), 783–787. <u>https://doi.org/10.1007/s10592-005-9056-y</u>

Parsons, B.W. (2002). Feeding ecology and habitat use by two species of garfish from southeastern Australia. Honours Thesis, Department of Biological Science, University of Wollongong.

Smith, K., Dowling, C., Mountford, S., Hesp, A., Howard, A., & Brown, J. (2017). Status of southern garfish (*Hyporhamphus melanochir*) in Cockburn Sound, Western Australia. Fisheries Research Report Number 271. (Department of Fisheries, Western Australia) Available at <u>http://www.fish.wa.gov.au/Documents/research_reports/frr271.pdf</u>

State Pollution Control Commission (1981). The ecology of fish in Botany Bay- biology of commercially and recreationally valuable species. Environmental control study of Botany Bay, Report BBS23B, pp. 178-184, SPCC, Sydney, NSW, Australia.

Stewart, J., Hughes, J. M., Gray, C. A., & Walsh, C. (2005). Life history, reproductive biology, habitat use and fishery status of eastern sea garfish (*Hyporhamphus australis*) and river garfish (*H. regularis ardelio*) in NSW waters. FRDC Project Number 2001/027, Final Report Series number 73. (NSW Department of Primary Industries Fisheries) https://doi.org/10.13140/RG.2.1.2688.6566

Stewart, J., & Hughes, J. M. (2007). Age validation and growth of three commercially important hemiramphids in south-eastern Australia. *Journal of Fish Biology*, **70**, 65–82. <u>https://doi.org/10.1111/j.1095-8649.2006.01256.x</u>

Streelman, J. T., & Karl, S. A. (1997). Reconstructing labroid evolution with single-copy nuclear DNA. *Proceedings of the Royal Society of London – B. Biological Sciences*, **264**(1384), 1011–1020. <u>https://doi.org/10.1098/rspb.1997.0140</u>

Thomson, J. M. (1959). Some Aspects of the Ecology of Lake Macquarie NSW, with Regard to an Alleged Depletion of Fish: IX. The Fishes and their Food. *Marine and Freshwater Research*, **10**(3), 304–315. <u>https://doi.org/10.1071/MF9590365</u>

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., Paul, D. & Hebert, N. (2005). DNA barcoding Australia's fish species. *Philosophical Transactions of the Royal Society of London* – *B. Biological Sciences*, **360**(1462), 1847–1857. <u>https://doi.org/10.1098/rstb.2005.1716</u>