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Abstract. The consequences of human activities increasing concentrations of atmospheric greenhouse gases are already
being felt in marine and terrestrial environments. More energy has been trapped in the global climate system, resulting in
warming of land and sea temperatures. About 30% of the extra atmospheric carbon dioxide has been absorbed by the

oceans, increasing their acidity. Thermal expansion and some melting of land-based ice have caused sea level to rise.
Significant climate changes have now been observed across Australia and its coastal seas. The clearest signal is the
warming of air and sea temperatures and the rates ofwarming have accelerated since themid-20th century. Oceanwarming

has been higher than the global average around Australia, especially off south-eastern Australia. Changes in Australia’s
hydrological regime aremore difficult to differentiate from the high natural inter-annual variability. Recent trends towards
drier winters in south-westernWestern Australia and part of southern Australia appear, however, to be largely attributable

to human-induced climate change. Even without significant changes in average rainfall, warmer temperatures increase
evaporative losses, enhance the intensity of recent droughts and reduce river flows. Sustained and coordinated monitoring
of the physical environment, especially lacking forAustralia’s freshwater ecosystems, is important to assess themagnitude
and biological consequences of ongoing changes.

Additional keywords: rainfall, temperature.

Introduction

Global climate warming is not a future event – observations and
impacts from around the world show that in recent decades, the
fingerprint of climate change is apparent (e.g. Root et al. 2003).

The decade 2000–2009 was the warmest in the instrumental
record period globally (Arndt et al. 2010) and 2001–2010 the
warmest across Australia (Bureau of Meteorology 2011).
Humans, and the natural and managed ecosystems that we rely

on, are adapted to operate within a limited range of prevailing
local climatic conditions – the coping range (Jones and Mearns
2005). These typical conditions are what we expect the weather

to be like at a particular location and time of year on the basis of
many years of observations and include both the average and the
range of variability from year to year (Fig. 1). A climate change

is, therefore, a significant change in what we expect the weather
to be like at a particular location and season (Mitchell et al.
1966). The change could be in the average values and/or in the
variability about the average (i.e. the range of extremes), which

takes the system outside its coping range. Determining the
nature and significance of climate changes requires long, con-
sistent observations of the physical environment (e.g. Manton

et al. 2001).

Climate change is not new – global and regional climates

have varied in the past over a range of timescales because of
several causes such as El Niño–Southern Oscillation (ENSO)
events, Pacific Decadal Oscillation (PDO), volcanic aerosols

and the amount of incoming solar radiation (Le Treut et al.
2007). We have, however, entered a new era of rapidly
changing global climate as a consequence of human activities,
where, unlike previous warming, increases in atmospheric

carbon dioxide (CO2) concentration are preceding temperature
change (Jansen et al. 2007). Human activities over recent
centuries are increasing the concentrations of greenhouse gases

in the atmosphere (Forster et al. 2007). This is changing the
global energy budget (Trenberth et al. 2009) and leading to
current global warming (Trenberth et al. 2007). The atmospher-

ic concentration of the main greenhouse gas, CO2, has increased
by,40% since the late 18th century and is now at its highest in
at least the past 800 000 years (Luthi et al. 2008). Not only are
atmospheric concentrations of greenhouse gases rising, but the

rate of increase is accelerating (Fig. 2a). The annual mean
growth rate of CO2 was 2.0 ppm year�1 for 2000–2007,
compared with an average annual growth rate of 1.5 ppm year�1

for 1990–1999 (Canadell et al. 2007). In addition, about a third
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of the extra CO2 in the atmosphere has been absorbed by the
oceans (if this had not occurred, warming would have been

greater) and is changing their chemistry (Fig. 2b), with signifi-
cant consequences for marine calcifying organisms (e.g. Doney
et al. 2009). Combining instrumental observations of air tem-
peratures over land and sea-surface temperatures (SSTs) clearly

shows that the world has been warming since the mid-19th
century and that the rate of warming is accelerating (Fig. 3).
These trends cannot be explained as artefacts of measurement,

despite the best hopes of climate-change deniers (Jones et al.
2005).

The high natural variability in the Australian climate means
that assessing changes in the physical environment requires long

periods of homogeneous instrumental observations. The avail-
ability of such data for all components of the physical environ-
ment of Australia’s aquatic environments varies. The Bureau of
Meteorology provides extensive and accessible surface-climate

datasets (e.g. air temperature, rainfall, SSTs, sea-level pressure,
tropical cyclone activity) that allow examination of temporal
and spatial patterns and trends (Jones et al. 2009; Alexander

et al. 2010). Additional observations are available from ocean-
ographic databases; however, the more recently available
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Fig. 1. Climate averages, 1961–1990, for Australia, for summer, autumn, winter and spring and air temperatures, rainfall and sea surface temperatures

(data source: Bureau of Meteorology, available at www.bom.gov.au, accessed 18 October 2010).
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Fig. 2. (a) Monthly atmospheric carbon dioxide concentration (ppm) for Mauna Loa, Hawaii (grey,

1958–2010) and Cape Ferguson, Queensland (black, 1991–2009) (data sources: World Data Centre for

Greenhouse Gases, available at http://gaw.kishou.go.jp/cgi-bin/wdcgg, accessed 23 June 2011; CSIRO),

(b) monthly observations of partial pressure of seawater CO2 and (c) pH measured in situ at Station

ALOHA, northern Pacific, 1988–2009 (adapted from Dore et al. 2009).
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satellite observations are too short term to detect robust trends
that allow attribution. A centrally coordinated and standardised

database for Australian freshwater resources is only now being
developed (www.bom.gov.au/water; accessed 29 August 2011)
and data are currently scattered amongst various regional

archives. We, therefore, use air temperatures and rainfall as
‘proxies’ for surface-climate conditions that might affect fresh-
water environments.

Rapid global climate change is already occurring (Allison
et al. 2009; Steffen 2009), with significant consequences for
freshwater resources (Bates et al. 2008a). What changes have

already been observed that might affect Australia’s marine and
freshwater aquatic environments? In the present paper, we
review recent observational evidence for significant changes
in Australia’s surface climate. Is surface climate already chang-

ing, as projected by global climate models (Hobday and Lough
2011)? Current climate changes are set against the backdrop of
the driest inhabited continent on Earth, with exceptionally high

natural inter-annual rainfall variability, that places Australia on
the ‘climate change front line’ (Palutikof 2010).

Marine environments

Temperature, freshwater input, sea level, ocean chemistry and

the frequency of extreme events all control the makeup and
physiological processes (e.g. distribution, ranges, community
composition, community dynamics, seasonal timing of spawn-

ing) of species in Australia’s marine ecosystems (e.g. Poloc-
zanska et al. 2007; Hobday et al. 2008). These ecosystems range
from the open ocean to shallow-water coastal regions that
encompass complex spatial and temporal variations in their

physical environment. Long-term observational studies have
tended to be biased to open-ocean conditions. Here, we describe
some of the observed physical changes around Australia.

Sea-surface temperatures

Significant warming is already evident in Australia’s sur-
rounding oceans (Lough 2009). Globally, SSTs at comparable

latitudes to Australian waters have significantly warmed
(Fig. 4a), with recent average temperatures (1980–2009) 0.418C
higher than those in the early 20th century (1910–1939). Over

the same period, the warming of Australian waters has been of
greatermagnitude, 0.578C (Fig. 4b). The rate ofwarming around
Australia in all seasons has accelerated in recent decades and

also shows a spatial signature, with greatest warming off the
south-eastern and south-western coasts (Fig. 4c). ForAustralia’s
coastal waters, between 10.58S and 29.58S, this warming has

already resulted in southward shifts of climate zones by
.200 km along the eastern coast and by ,100 km along the
western coast (Lough 2008). The evidence for significant ocean
warming both at the surface and through the water column is

supported by both global SST compilations, such as those pre-
sented in Fig. 4c, and continuous in situ coastal observations
(e.g. Holbrook and Bindoff 1997; Alory et al. 2007; Ridgway

2007; Caputi et al. 2009; Lough et al. 2010). This warming has
been accompanied by increasing sea-surface salinity (Pearce
and Feng 2007; Thompson et al. 2009), which is related to a

worldwide signature (Helm et al. 2010).

Sea level

Globally, average sea level has risen,20 cm since the late 19th

century (Fig. 5a), largely as a result of thermal expansion, with a
relatively minor contribution, so far, from melting land ice
(Bindoff et al. 2007). The rate of sea-level rise has accelerated
recently and is now at the upper end of the Intergovernmental

Panel on Climate Change Fourth Assessment Report (IPCC
AR4) projections (Rahmstorf et al. 2007; Church et al. 2008).
Although, on the basis of monitoring systems that started only in
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Fig. 3. Annual global land- and sea-temperature anomalies (from the 1961–1990 mean) for 1850–2010.

Thick, solid line is 10-year Gaussian filter, emphasising decadal variability; dashed line is linear trend

(data source: HadCRUTV3, available at www.cru.uea.ac.uk, accessed 23 June 2011; Jones et al. 1999;

Brohan et al. 2006; Rayner et al. 2003, 2006).
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the early 1990s (see National Tidal Centre: www.bom.gov.au/
oceanography; accessed 29 August 2011), making the signifi-

cance of trends difficult to confirm, observed recent sea-level
rise around Australia’s coastline has been lower along the

central eastern coast and greater along the western and northern
coasts (Fig. 5b). This regional variation in the magnitude of

sea-level rise is linked with inter-annual climate variability
(e.g. owing to ENSO), and changes in ocean (e.g. increased
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Fig. 5. (a) Global sea level, 1870–2008 (Church and White 2006; Church et al. 2009; www.cmar.csiro.au/

sealevel, accessed 23 June 2011, and (b) net relative sea-level trend, mm year�1, from early 1990s through June

2009 (Bureau of Meteorology, available at www.bom.gov.au/oceanography, accessed 23 June 2011; Church

et al. 2009).
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southward penetration of the East Australian Current, EAC) and
atmospheric circulation dynamics (Church et al. 2009).

Sea-level rise is not, therefore, uniform. The Indian Ocean,
for example, shows considerable spatial complexity in recent
observed sea-level changes, partly owing to changes in atmo-

spheric circulation patterns (Han et al. 2010). Rising sea level
also affects the frequency of extreme sea-level events affecting
the coast. Sydney (eastern Australia) and Fremantle (south-

western Australia) both have long-term records back to the
1920s and these show that the occurrence of extreme sea-level
events (defined by the 0.01 percentile) has become three times
more frequent in the period after 1950 than in earlier years

(Church et al. 2006).

Ocean currents

Australia is unique in having warm, poleward-flowing currents

along both its eastern (EAC) and western (Leeuwin Current)
coasts, which results in, for example, significant coral reefs and
coral communities along both coastlines (Lough 2008). Evi-

dence is emerging for significant changes in the EAC which,
over the period 1944–2002, has increased its southward pene-
tration by,350 km, bringing warmer and saltier waters further
south (Ridgway 2007; Hill et al. 2008). The oceanography of

some of Australia’s marine environments, such as the Great
Barrier Reef, are especially complex (Steinberg 2007) and
requires improved understanding of the linkages between large-

scale andmeso- and lower-scale processes to begin to document
potential changes in circulation patterns (e.g. Weeks et al.
2010). The nationally coordinated and standardised ocean-

observing systems (integrated marine observing system, IMOS,
http://www.imos.org.au/; accessed 29 August 2011) will sig-
nificantly improve our understanding of changes to ocean
circulation.

Ocean chemistry

Changes in water chemistry, as a result of the oceans absorbing
about a third of the anthropogenic CO2 injected into the atmo-

sphere, are highly likely to have significant consequences
throughout Australia’s marine ecosystems, especially those
involving organisms that form skeletons and shells (Kleypas

et al. 2006; Hoegh-Guldberg et al. 2007; Moy et al. 2009). The
pH of the global oceans has already decreased by 0.1 (termed
ocean acidification) and this decline is likely to have also
occurred within Australia’s marine environments (Feely et al.

2004; Sabine et al. 2004). Assessing baseline conditions,
changes and potential biological consequences requires long-
term monitoring of the chemistry of Australia’s open-ocean and

coastal marine waters (Howard et al. 2009). We do not, for
example, have the long-term perspective available from the
Bermudan (BATS, available at http://bats.bios.edu/; accessed

29August 2011) or Hawaiian (HOTS, available at http://hahana.
soest.hawaii.edu/hot/; accessed 29 August 2011) ocean-
chemistry time series (e.g. Dore et al. 2009). Assessments of

change in Australian andmuch of the world’s oceans have relied
on repeated and irregular oceanic observations rather than
continuous time series (e.g. Borges et al. 2008; Takahashi et al.
2009). In addition, most measurements have been made for

open-ocean waters, which are not representative of coastal

waters (e.g. McNeil 2010). We still know very little about
baseline, and variation in, ocean-chemistry conditions in

Australian waters, which appear to be particularly complex and
variable in both space and time in tropical coral-reef ecosystems
(e.g. Gagliano et al. 2010). Indeed, coral-reef communities

themselves can alter water chemistry (e.g. Anthony et al. 2011).
Improving the observational record of ocean chemistry around
Australia is a significant focus of IMOS.

Freshwater environments

Australia’s freshwater environments range from ephemeral
billabongs and inland lakes, seasonal creeks and rivers, to per-

manent tropical rivers. High inter-annual variation in rainfall
leads to a range of species and systems that can cope with water
shortage. However, the combination of landscape modification

as a result of European settlement and agriculture, and climate
change is stressing many systems (Balcombe et al. 2011). Flow
into rivers is related to air temperatures, rainfall and extreme
events (tropical cyclones and storms).

Surface air temperatures

Warming of air temperatures over land areas is one of the
clearest signals of a rapidly changing climate system, and rates

of warming are greater than for the oceans. Globally, air tem-
peratures over the period 1980–2009 were 0.628C higher than
those in 1910–1939 (Fig. 6a). Over the same time period, air

temperatures over Australia increased by 0.708C (Fig. 6b). As
with SSTs in Australian waters, air temperatures over the con-
tinent are warming faster than the global average. Warming is

evident across almost the entire country (Fig. 6c) and the rate of
warming has accelerated in recent decades (Lough 2009).
Observed warming is now clearly attributable to increases in
atmospheric greenhouse-gas concentrations both globally

(Trenberth et al. 2007) and across Australia (Karoly and
Braganza 2005).

Increasing air temperatures across Australia are resulting in

changes in temperature extremes, which match model expecta-
tions (Alexander et al. 2007; Alexander and Arblaster 2009).
Higher mean maximum and minimum temperatures are leading

to more hot days and warm nights and fewer cool days and cold
nights across Australia (Chambers andGriffiths 2008; Hennessy
et al. 2008). Trewin and Vermont (2010), for example, exam-
ined record high and low temperatures over the period 1957–

2009, when mean daily maximum and minimum air tempera-
tures increased by ,0.7–0.88C. They found that record-low
temperature extremes dominated the earlier part of the record

and record-high temperature extremes dominated the most
recent decades. Thus, for example, the most extreme maximum
daily temperatures occurred on average 13.3 times per decade

(20.4 per decade for extreme lows) from 1957 to 1966, whereas
for 1997 to 2009, the highs occurred almost twice as frequently
(22.5 per decade) and the lows almost half as frequently (9.3 per

decade).

Rainfall and river-flow variability

Rainfall is highly seasonal and exhibits high inter-annual vari-
ability across much of Australia. Australian freshwater eco-

systems are sensitive to both seasonal flows, e.g. in the dry
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tropics of northern Australia (Pusey and Kennard 2009;
Abrantes and Sheaves 2010), and to recent droughts in southern

Australia, the effects of which are being compounded by human
interventions in natural river systems (e.g. Bond et al. 2008).
Highly variable river flows regulate many processes in fresh-

water environments and the spatial and temporal variability,
both seasonally and inter-annually, play a significant role in
shaping ecosystem dynamics (e.g. Leigh et al. 2010; Puckridge

et al. 2010). Although of primary interest for freshwater eco-
systems, the extent to which we can develop a coherent view of
river-flow variations across Australia is still limited by the lack
of a nationally integrated and centralised data repository,

although this is now being developed (www.bom.gov.au/water;
accessed 29 August 2011). We, therefore, focus on the high-
quality observations of rainfall provided by the Australian

Bureau of Meteorology as a ‘proxy’ for river flows.
Although clear evidence is now emerging for a recent

acceleration in the global hydrological cycle (Helm et al.

2010), assessing the magnitude and significance of observed
rainfall changes across Australia is hampered by the high inter-
annual rainfall variability. High rainfall variability results in
Australian river flows being among the most variable in the

world (Finlayson and McMahon 1988). Seasonal, inter-annual
and longer-term rainfall variability across Australia is largely
controlled by several external factors recently summarised by

Risbey et al. (2009; see also the useful summary of Australian
climate influences provided by the Australian Bureau of
Meteorology at http://www.bom.gov.au/watl/about-weather-

and-climate/australian-climate-influences.shtml; accessed 29
August 2011). ENSO events have long been recognised
(e.g. Troup 1965; Allan et al. 1996) as the primary source of

inter-annual variability across much of the country, although
with effects varying across seasons and region. Again, river
flows in eastern Australia stand out in a global context as being
particularly sensitive to ENSO events (Ward et al. 2010).

Additional sources of Australian rainfall variability include
the Madden–Julian Oscillation (MJO), the Indian Ocean Dipole
(IOD) and the Southern Annular Mode (SAM). The MJO

operates on within-season (30–60-day) time scales and is an
eastward-moving progression, from thewestern IndianOcean to
the central Pacific Ocean, of enhanced and suppressed deep

atmospheric convection, associated with active (high-rainfall)
and break (low-rainfall) periods during the northern Australian
summer monsoon. (Wheeler et al. 2009). The IOD is a coupled
ocean–atmosphere phenomenon operating on inter-annual

time scales and characterised by opposite-sign sea surface-
temperature anomalies in thewestern and eastern tropical Indian
Ocean (Saji et al. 1999). The two phases, positive or negative

IOD, primarily affect winter and spring rainfall across south-
western and south-eastern Australia, bringing drier or wetter
conditions, respectively (Ummenhofer et al. 2011). The SAM is

a significant source of variability of the mid–high-latitude
southern hemisphere atmospheric circulation associated with
latitudinal shifts in the strength of the mid-latitude westerlies

(Thompson and Wallace 2000). Fluctuations between the two
phases affect the incidence of storm (rain-bearing) activity
across southern Australia (Hendon et al. 2007).

The strength of the linkages (teleconnections) between

ENSO events and Australian rainfall fluctuates on interdecadal

time scales, as modulated by the PDO (Mantua et al. 1997;
Power et al. 1999). During PDO cool phases, the teleconnec-

tions between ENSO and eastern Australian rainfall tend to be
stronger, with more coherent rainfall anomalies and higher
rainfall variability than during PDO warm phases (Kiem et al.

2003; Meinke et al. 2005). La Niña events that occur during
PDO cool phases result in river floods in eastern Australia of
twice the magnitude of those during regular La Niña events

(Verdon et al. 2004).
In addition, although showing several common features, no

two El Niño or La Niña events evolve in exactly the same way
(Trenberth and Stepaniak 2001). More recently, it has been

suggested that ENSO events have shifted from those dominated
by warming or cooling centred in the eastern equatorial Pacific
to events (termed ENSO–Modoki) characterised by warming or

cooling in the central equatorial Pacific (Ashok et al. 2007).
Whether this is a signal of ‘global warming’ is not yet clear;
however, the two types of ENSO appear to produce different

rainfall-anomaly patterns across Australia. ENSO–Modoki
events are associated with greater rainfall anomalies across
north-western and northern Australia (to the northern Murray–
Darling Basin) than are the traditional ENSO events, where the

main effects (droughts or floods) are seen in eastern Australia
(Cai and Cowan 2009; Taschetto and England 2009a).

Rainfall changes

Compilations of reliable observations by the Bureau of Meteo-

rology allow confident assessment of spatial and temporal var-
iations in Australian rainfall back to the early 20th century
(Jones et al. 2009). Additional insights into Australian rainfall

variability over longer timescales than the instrumental obser-
vations can also be obtained from high-resolution proxy climate
such as tree rings (e.g. Cullen and Grierson 2009) and corals
(e.g. Lough 2011). Given the high degree of inter-annual and

decadal variability, assessing the reality and significance of
frequency of rainfall extremes and changes in average rainfall is
more difficult and particularly dependent on the chosen analysis

period (CSIRO and Australian Bureau of Meteorology 2007;
Gallant et al. 2007; Hennessy et al. 2008). For example, much of
eastern Australia experiencedwetter conditions in the 1950s and

1970s (Lough 2011) (Fig. 7). There is, therefore, some dis-
agreement in published analyses of Australian rainfall trends as
to the nature and significance of recently observed trends and
whether they can be attributed to global climate change. Even if

rainfall is unchanged, warmer air temperatures increase rates of
evaporation of water; coupled with increased demands by
human societies and population growth, climate change will

significantly alter inland river systems.
The trend to wetter summer conditions in north-western

Australia appears to be a relatively clear (Shi et al. 2008; Smith

et al. 2008), as are declines in winter rainfall in south-western
Western Australia (WA) and part of the south-west of south-
eastern Australia (Fig. 7). Variations in winter rainfall in the

latter two regions are linked because rainfall-bearing distur-
bances typically track across both regions. The recent declines in
winter rainfall in the two areas have been plausibly linked to
significant southward shifts in these rainfall-bearing distur-

bances and storms. This appears to be part of significant changes
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in the larger-scale atmospheric circulation patterns, with a
higher sea-level pressure over southernAustralia, amore intense
subtropical ridge along the eastern coast and a more positive

phase of SAM which reflects a contraction southward of the
main southern hemisphere westerly wind belt (Larsen and
Nicholls 2009; Alexander et al. 2010; Hope et al. 2010; Nicholls
2010). Another contributing factor to the recent decline inwinter

and spring rainfall in south-eastern Australia are recent
increases, comparedwith the early 20th century, in the frequency
of positive IOD events, which are consistent with projected

changes expected with continued global warming (Cai et al.
2009). The 15–20%decline inwinter rainfall since the 1970s has
been suggested to have changed the hydrological regime of

south-western WA from perennial to ephemeral streams
(Petrone et al. 2010) and is also associated with significant
(up to 50%) reductions of inflows into dams (Bates et al. 2008b).

Widely reported declines in eastern Australian rainfall
(e.g. CSIRO and Australian Bureau of Meteorology 2007)
appear, at least for Queensland, to be largely confined to the
south-eastern part of the state and become apparent only when

records from the late 20th century are considered (Smith 2004;
Taschetto and England 2009a, 2009b). Steffen (2009) suggested
that the ‘drying connection’ in northern and eastern Australia is

‘not yet clear’ and that attribution of recent declines in the
eastern-coast rainfall are confounded by decadal influences,
with higher rainfall characterising the 1950s and 1970s.

Recent reductions in rainfall are, however, compounded by
warming air temperatures (Nicholls 2004) and this leads to a
greater reduction in river flows than caused by reduced rainfall
alone, because of evaporation as water moves across the

landscape. For the Murray–Darling Basin, Cai and Cowan
(2008) examined the 2001–2007 drought and found that a
warming of 18C resulted in 15% reduction in inflows. A more

recent study (Yu et al. 2010) suggested that this sensitivity to
temperature might be an underestimate. Stream flows decreased
by 55% for the Murray–Darling Basin whereas rainfall declined

by only 11%, as a result of this temperature effect (Steffen
2009). Similarly, Murphy and Timbal (2008) provided evidence
that recent drought conditions in south-eastern Australia were

more extreme than earlier rainfall deficits because of warmer air
temperatures.

Tropical cyclones

Large volumes of freshwater can be deposited via rainfall during
extreme events, such as tropical cyclones, which subsequently
floods the landscape and flows into rivers and lakes. There is still
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debate as to whether we are seeing any significant changes in the
occurrence and frequency of tropical-cyclone activity globally

(e.g. Emanuel 2005; Elsner et al. 2008). Nicholls et al. (1998)
provided evidence of an apparent decline in numbers of weak
tropical cyclones in the Australian region over the period from

1969–1970 to 1995–1996 on the basis of satellite observations.
They suggested that this trend was, in part, due to improved
discrimination through time of tropical cyclones from other

tropical storms, and also noted a weak increasing trend for the
most intense tropical cyclones. By comparing the eastern and
western Australian tropical-cyclone regions, Hassim andWalsh
(2008), while examining the period from 1969–1970 to 2004–

2005, provided some evidence that the number, duration and
maximum intensity of severe tropical cyclones off WA have
been increasing since the 1980s; however, in the eastern region,

the number has decreased, with no obvious trend in either
intensity or duration. There has been no observed change in the
latitudinal distribution of tropical-cyclone activity.

Improved monitoring for Australia’s aquatic
environments

To predict the biological consequences of ongoing climate
change, we need sustained monitoring to determine average

conditions, seasonal cycles and inter-annual and longer-term
variability and detect trends inAustralia’s aquatic environments –
this information will also be critical in management responses to

climate variability and change (e.g. Murray–Darling Basin Au-
thority 2010). The extent to which we can do this varies consid-
erably. Australia has, for example, many high-quality,

homogenous and ongoing records of weather elements over land
that allows detection and, in some cases, attribution of recent
trends in air temperatures and rainfall. Global compilations of

ships-of-opportunitymeasurements at sea (now routinely blended
with satellite observations), especially of surface-water tem-
peratures, also provide a high level of confidence in the nature and
significance of recent warming trends in Australian marine

waters.
There is, however, much room for improvement and we can

never underestimate the value of establishing and maintaining

long-termmonitoring stationswith common sampling techniques
and data-quality standards (e.g. Pearce and Feng 2007). Mainte-
nance of just four coastal monitoring sites for over 60 years has

provided significant insights into both physical and chemical
changes in the marine environment (Thompson et al. 2009),
yet also leaves considerable uncertainty in other regions. Achiev-

ing comprehensive geographic coverage in a country the size of
Australia is a challenge, but ‘necessary if we wish to understand
the impacts of climate variability and the consequent implications
for our marine ecosystems’ (Thompson et al. 2009: p. 16).

The IMOS has set a new standard for observing and under-
standing processes in Australia’s varied marine environments
that can provide the necessary data to link physical and biologi-

cal processes (e.g. Lough et al. 2010). The value of the IMOS
initiative will only increase through time and it is essential that
the national commitment for its ongoing support and funding is

maintained. The publicly accessible data will be critical not only
for attributing changes in the environment, but for interpreting
changes in the biology of adjacent systems.

For Australia’s freshwater environments, there have been
many calls for more organised and integrated monitoring

(e.g. Davies et al. 2010; Lake et al. 2010; Tomlinson and Davis
2010). As noted by Bond et al. (2008), the responses by both
scientists and resource managers to drought in our freshwater

environments have been ‘haphazard and uncoordinated’. We
are, for example, unable to examine long-term changes in
freshwater temperatures, which have been shown to be increas-

ing also in parts of the USA and Europe (e.g. Webb and Nobilis
2007; Kaushal et al. 2010). The establishment in New Zealand
of the National RiverWater Quality Network, which undertakes
standardised physical and chemical monitoring of 77 sites on

35 rivers, now provides continuous time series back to 1989
(Davies-Colley et al. 2011). As with any monitoring program,
the value of sustained high-qualitymeasurements only increases

with time, and the New Zealand example allows insights into
biological, physical and chemical linkages and changes, which
would not be obtainable otherwise (e.g. Scarsbrook et al. 2000,

2003).
Australia is not bereft of significant observations of the

physical, chemical and biological characteristics of its freshwa-
ter environments, some of which extend back to the early 20th

century (e.g. river flows). However, such data are scattered
through State and Territory water authorities and individual
scientists’ or scientific organisations’ research programs. The

future does look brighter with the recent establishment within
the Australian Bureau of Meteorology of the Australian Water
Resources Information System (AWRIS; www.bom.gov.au/

water; accessed 29 August 2011) as a consequence of theWater

Act 2007. At the core of the AWRIS will be a centralised and
nationally consistent system for storage and retrieval of current

and historical water data. Among its many objectives, of
particular significance for understanding change in Australia’s
freshwater environments are the commitments tomodernise and
extend water-monitoring systems and provide a centralised

database of river flows and water-quality parameters.

Conclusions

Observational records show that both global climate and that of

the Australian region are already significantly changing as a
result of human activities changing the composition of the
atmosphere and changing the energy balance of the global

climate system. The extent to which observed significant
changes (detection) can be attributed to human-induced changes
in the atmospheric composition of greenhouse gases (attribu-

tion) (Hegerl et al. 2007) varies between marine and freshwater
systems, as well as regionally. It is very likely that the wide-
spread warming of air temperatures across Australia and surface
ocean temperatures in the surrounding seas can be attributed to

human-induced radiative forcing. Similarly, the observed
increase in north-western summer rainfall and decreased winter
rainfall in the south-west ofWesternAustralia and south-eastern

Australia are consistent with greenhouse-gas forcing (Nicholls
2006, 2010; Cai et al. 2009; Steffen 2009). Attribution of recent
eastern coast rainfall declines are, however, confounded by

decadal influences, with higher rainfall characterising the 1950s
and 1970s. Even without significant changes in average rainfall
totals, warmer temperatures are already exacerbating the
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severity of Australian droughts (Ummenhofer et al. 2009),
significantly affecting the availability of freshwater resources.

Understanding the consequences of rapidly changing envi-
ronmental conditions for Australia’s marine and freshwater
ecosystems requires high-quality and sustained physical and

biological observations. Australia has a particularly good, by
international standards, observational database of terrestrial and
open-ocean climate variables, mainly obtained for meteorologi-

cal purposes. We still, however, lack sufficient historical and
ongoing physical observations of shallow-water coastal and
freshwater systems to adequately describe baseline conditions
for different ecosystems, to determine environmental controls

on ecosystem processes, and to assess how these environments
may have changed and thus allow projections of future ecosys-
tem responses. In both marine and freshwater systems, the

observed physical changes described here are projected to
continue for the next 50–100 years (Hobday and Lough 2011)
and there are likely to be environmental changes that have not, as

yet, emerged from the background of high natural variability in
Australia’s physical environment. Both human and biological
systems will be challenged in their ability to adapt. Without
successful greenhouse-gas mitigation, significant disruption to

Australia’s marine and freshwater environments and their eco-
systems is almost certain.
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