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Abstract. Snapper Chrysophrys auratus is a high-value food fish in Australia targeted by both commercial and

recreational fisheries. Along the east coast of Australia, fisheries are managed under four state jurisdictions (Queensland,
Qld; New South Wales, NSW; Victoria, Vic. and Tasmania; Tas.), each applying different regulations, although it is
thought that the fisheries target the same biological stock. An allozyme-based study in the mid-1990s identified a weak

genetic disjunction north of Sydney (NSW) questioning the single-stock hypothesis. This study, focused on east-coast
C. auratus, used nine microsatellite markers to assess the validity of the allozyme break and investigated whether genetic
structure exists further south. Nine locations were sampled spanning four states and over 2000 km, including sites north

and south of the proposed allozyme disjunction. Analyses confirmed the presence of two distinct biological stocks along
the east coast, with a region of genetic overlap around Eden in southern NSW,,400 km south of the allozyme disjunction.
The findings indicate that C. auratus off Vic. and Tas. are distinct from those in Qld and NSW. For the purpose of stock
assessment and management, the results indicate that Qld and NSW fisheries are targeting a single biological stock.A
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Introduction

Chrysophrys auratus (Forster, 1801) is a highly prized fish
found in coastal waters off Australia and New Zealand.

Throughout Australia the species is a key target in both com-
mercial and recreational fisheries (Kailola et al. 1993). The
Australian east coast fishery has components in New South
Wales (NSW), Queensland (Qld), Victoria (Vic.) and Tasmania

(Tas.) that are currently assessed and managed independently
within each jurisdiction (Fowler et al. 2016). Stock assessments,
based on a wide array of biological and fishery data, are regu-

larly conducted to provide fisheries managers with the infor-
mation used to inform the regulation of harvest impacts.
Knowledge relating to stock structure is important for stock

assessment and management because it informs the spatial units
(fishery regions) over which data should be integrated and
management should operate. Further, snapper along the east

coast of Australia spawn in coastal waters, where their larval
dispersal is influenced by the East Australian Current (EAC;
Curley et al. 2013). Predicting longer-term evolutionary chan-
ges, such as those related to ocean warming or changes to cur-

rents (Pecl et al. 2014), depends on knowledge of genetic
structure. If populations are in decline, knowledge of genetic
connectivity can assist in identifying source or sink populations

(Hauser and Carvalho 2008).
The need for clarification of genetic structure of snapper

along the Australian east coast was emphasised by recent stock

AThis paper is copyright of The State of Queensland (through the Department Agriculture and Fisheries).

CSIRO PUBLISHING

Marine and Freshwater Research, 2019, 70, 964–976

https://doi.org/10.1071/MF18146

Journal Compilation � CSIRO 2019 Open Access CC BY-NC-ND www.publish.csiro.au/journals/mfr

SPECIAL ISSUE

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-7538-1504
https://orcid.org/0000-0001-7538-1504
https://orcid.org/0000-0001-7538-1504
http://creativecommons.org/licenses/by-nc-nd/4.0/


status assessments that indicated that, despite the considerable
amount of fishery and biological information available, the

stock status of east coast snapper was ‘uncertain’ (Fowler
et al. 2016). This uncertainty was largely because of state-based
assessments of populations inQld suggesting theywere ‘recruit-

ment overfished’, whereas in NSW they were suggested as
possibly ‘growth overfished’ but not ‘recruitment overfished’
because commercial catch rates were increasing and the sizes

and ages in landings remained stable (Finn et al. 2015). The
status of stocks in Tas. and eastern Vic. was also undefined
because of insufficient data (Kemp et al. 2012; Fowler et al.
2016). Although the major east coast C. auratus fisheries in

NSW and Qld are managed independently, confirmation of
whether or not both fisheries exploit the same biological stock,
and thus should be combined for fisheries assessment, is critical

in order to reconcile the uncertainty in exploitation status of east
coast snapper (Ferrell and Sumpton 1997; Sumpton et al. 2008;
Fowler et al. 2016). Further, should the limited information

available for fisheries in eastern Vic. and Tas. continue to
influence the assessment of the main fisheries further north?

Rapidly evolving molecular technologies have increased in
power, and reduced in cost, such that they now play an important

role in defining genetic stocks of exploited fish species
(Carvalho and Pitcher 2012). Stocks that are genetically differ-
ent from each other are described as reproductively isolated

units or regions within a species distribution (Ovenden 1990).
For genetic stocks to be identified, it is necessary that inter-
breeding among different stocks has been negligible over very

long time periods. This definition may or may not relate to
‘fisheries’ or ‘harvest’ stocks, which are described as regions
within a species distribution where fishing pressure in one

region does not affect the abundance of fish in other regions,
implying independence of the processes of replenishment,
growth and mortality, but not necessarily different genetics
(Gauldie 1988). Identification of genetic stocks provides highly

definitive broad spatial regions on which to focus fisheries
assessment and identification of management units.

The genetic structure of east coast populations of C. auratus

was first investigated in 1980 using allozyme data as part of a
study examining the Australian distribution of the species
(MacDonald 1980). That study failed to detect differences

among the three east coast locations sampled. Sumpton et al.

(2008) also used allozyme loci, but sampled the east coast more
intensively at seven areas spanning a finer spatial scale between
Sydney in NSW and Rockhampton in Qld (Fig. 1). The authors

of that study identified a weak genetic disjunction (based largely
on a difference at one locus) on the central coast of NSW, north
of Sydney but south of Forster (Fig. 1). A signal of isolation by

distance (IBD) was found north of the weak genetic disjunction,
to the Swains Reef off Rockhampton (Sumpton et al. 2008).

Chrysophrys auratus is a long-lived species (up to 40 years;

Norriss and Crisafulli 2010) that can grow up to 16 kg and
120 cm in length (MacDonald 1982; Kailola et al. 1993). The
species undergoes juvenile sex inversion, with small juveniles

having female reproductive tissue and a proportion of indivi-
duals becoming male near the age of maturity at (3þ years and
at a reasonably large size of 25–30 cm; Francis and Pankhurst
1988; Stewart et al. 2010). These biological characteristics,

combined with an intermediate fecundity (Saunders et al.

2012), mean that C. auratus is more susceptible to overfishing
than faster-developing species such as sardine and anchovy,

particularly if exploitation is not managed at the appropriate
spatial scales relevant to population replenishment. Adult
reproduction is by broadcast spawning in breeding aggrega-

tions, which, depending on the geographic area, can occur in
both sheltered inshore bays and coastal waters (Kailola et al.

1993). Tag–recapture and otolith chemistry research suggest

that migration of juvenile and adult snapper is highly variable
among the geographic regions where studies have been con-
ducted, ranging up to at least hundreds of kilometres (Sanders
1974; Gillanders 2002; Coutin et al. 2003; Moran et al. 2003;

Parsons et al. 2003; Sumpton et al. 2003; Hamer et al. 2011;
Fowler et al. 2017). Along the east coast of Australia, even if
adults showed restricted movements, dispersal of the 20- to

30-day larval stage in prevailing ocean currents, particularly the
dominant EAC, provides considerable scope for broad-scale
north to south genetic mixing (Ferrell and Sumpton 1997).

Despite having a high larval dispersal potential, C. auratus
could use local coastal circulation to recruit locally, or could
migrate back to its natal origins before breeding, which could
create complex genetic structure. Other studies investigating

the genetic structure of species with similar pelagic larval
periods, namely Pristipomoides multidens (Ovenden et al.

2004), Lutjanus carponotatus (Harrison et al. 2012) and

Argyrosomus japonicus (Barnes et al. 2016) have detected
genetic structure suggesting low-level mixing despite potential
for wide larval dispersal.

Microsatellite markers offer a high level of resolving power
because of their potential for high polymorphism. They have
been successfully used in New Zealand stocks of C. auratus to

investigate population structure (Ashton 2013) and larval
recruitment into marine reserves (Le Port et al. 2017). Ashton
(2013) found that despite measuring a high level of polymor-
phism in the 17 microsatellite loci screened, there was little

genetic differentiation to distinguish among stocks ofC. auratus
collected over a 900-km range in New Zealand. Although the
genetic results reported by Ashton (2013) supported long

distance dispersal, he also reported limited genetic mixing, over
a 40-year period, between two locations situated 50 kmapart. He
proposed site-specific differences in mobility of New Zealand

C. auratus to explain the conflicting results (Ashton 2013).
Le Port et al. (2017) used the highly polymorphic microsat-

ellite loci to screen for relatedness among samples to assess the
contribution of marine reserves to larval recruitment, finding

predominantly small-scale larval dispersal distances of less than
40 km.Microsatellite markers have also been used to investigate
the genetic structure of C. auratus in and around Shark Bay,

Western Australia (Gardner et al. 2017). As with the New
Zealand work, Gardner et al. (2017) also recorded highly
polymorphic loci (only 1 of the 12 microsatellites overlapped

with the New Zealand studies) and failed to detect significant
genetic structure over a 350-km range, despite earlier allozyme
studies suggesting that complex genetic structure may exist

(MacDonald 1980). Overall, to date individual-based genetic
analyses suggest that C. auratus exhibit limited larval dispersal,
but lack clear genetic differences, probably due to some level of
interbreeding between neighbouring populations over long time

periods (an IBD structure).
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Genetic markers offer an independent tool that can comple-
ment and improve traditional demographic estimators of effec-
tive population size (Ne; Luikart et al. 2010). Estimating Ne is

challenging in marine species that are highly fecund and have
large populations with moderate gene flow (Hare et al. 2011).
Despite recent methodological developments (Waples et al.

2011), the relationship between census population size (N)
and Ne is still poorly understood (Ovenden et al. 2007; Waples
2016), but is discussed in detail byOvenden et al. (2016). Hauser

et al. (2002) estimated Ne in C. auratus populations from
New Zealand and found that Ne was five orders of magnitude
below the adult census size (N). Several suggestions have been
made regarding the factors that may contribute to very low

estimates of Ne, such as high fecundity and biased reproductive
success (Hauser et al. 2002; Hauser and Carvalho 2008; Coscia
et al. 2016;Waples 2016). Using simulated data,Waples (2016)

explored, in turn, the potential effects of increased longevity,
fecundity and variance in reproductive success, as well as
increased egg quality with age, and found that ‘very tiny’ Ne

required some version of Hedgecock’s (1994) ‘sweepstakes’
hypothesis, whereby only a few families reproduce successfully.
Waples (2016) also noted that when Ne is large (.10 000), the
frequency distribution of estimates of Ne will be bimodal with

either infinitely large estimates or otherwise downwardly biased
values ranging in the low hundreds to low thousands. Estimating
unbiased Ne for empirical data with large N requires good power

in terms of sample numbers and number of loci. Although
correlating Ne with N may require more biological information

than is currently available for C. auratus, relative comparisons
of Ne among sample areas is possible and may provide some
insight into the effect of local fishing pressure on a population.

The overall objective of this study was to characterise the
genetic stock structure of C. auratus along the east coast
of Australia using microsatellite markers and to test the

specific findings of previously investigated allozyme markers
(MacDonald 1980; Sumpton et al. 2008). In addition, more
comprehensive sampling than previous allozyme studies has

been used to examine the findings of these previous studies,
namely the IBD signature, a genetic disjunction north of
Sydney and the extent of panmixia among Qld and NSW sites.
The genetic stock structure of east coast populations of

C. auratus determined in this study will be used to inform stock
assessment models currently being developed to better inform
cross-jurisdictional assessment and management of east coast

C. auratus. Preliminary estimates of Ne are also made to
ascertain whether existing methodology is capable of making
bounded predictions for C. auratus stocks and provide a

potential future proxy for changes in population size.

Materials and methods

Sample collection

Fresh fin clip tissue samples of C. auratus were collected from
recreational and commercial fishers who donated samples

from fish that were killed during harvest between 2012 and
2016. Samples were stored in individual tubes of 100%
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Fig. 1. Sample collection areas for the Chrysophrys auratus study, with the number of unique fish genotyped in parentheses. The

weak genetic disjunction detected using allozyme data (Sumpton et al. 2008) is marked with a thick dashed line. WA, Western

Australia; NT, Northern Territory; Qld, Queensland; NSW, New South Wales; Vic., Victoria; Tas., Tasmania.
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molecular-grade ethanol. Sampling was conducted along the
east Australian coastline from nine areas, spanning four states

and ranging over 2000 km (Fig. 1). The sampling strategy was
designed to span a wide geographic range of commercial fish-
eries including sites from both sides of the genetic disjunction in

central NSW identified in the allozyme study of Sumpton et al.
(2008; marked on Fig. 1). Most Tasmanian samples (n ¼ 21)
were sourced from waters near Devonport in the central north,

but because of a paucity of samples, four additional fish from
waters off Stanley in the north-west and four from waters closer
to Hobart in the south-east were included. All tissue samples
were transferred to the Department of Agriculture and Fisheries

at the Eco-Sciences Precinct in Brisbane (Qld, Australia) for
molecular analysis.

DNA extraction and microsatellite screening

Approximately 3 mm of fin clip tissue was washed in 1 mL of

MilliQ water to remove the ethanol preservative before DNA
extraction. DNA was extracted using a DNeasy Tissue Kit
(Qiagen, Melbourne, Vic., Australia) according to the manu-
facturer’s instructions into a final elution volume of 50 mL.DNA
concentration was quantified using a NanoDrop 8000 spectro-
photometer (Thermo Fisher Scientific, Melbourne, Vic.,
Australia).

This project targeted nine microsatellite loci from the larger
panel that Le Port et al. (2017) used for their New Zealand
C. auratus study. The 17-loci panel of A. Le Port, S. Lavery,

N. Kaur, and J. C. Montgomery (unpubl. data) was reduced to
exclude loci that were difficult to amplify and those Le Port et al.
(2017) had identified as out of Hardy–Weinberg equilibrium

(HWE). Primer sequences, annealing temperatures multiplex
combinations plus the original source of each locus are detailed
in Table S1, available as Supplementary material to this paper.

Rather than individually labelling each primer with a fluo-

rescent probe, the forward primer at every locus was modified
with one of four M13 sequences (Table S1). For each assay, the
reaction tube contained the primer pair plus a fluorescently

labelled M13 primer (with FAM, NED, VIC or PET fluoro-
phores; Oetting et al. 1995; Schuelke 2000; Missiaggia and
Grattapaglia 2006; Kirchoff et al. 2008). Thus, the nine loci

were polymerase chain reaction (PCR) amplified in three multi-
plexed PCR reaction tubes (M1–M3) and three single locus
reaction tubes (S1–S3; Table S1). A Multiplex PCR Kit (Qia-
gen) was used to amplify the DNA in a final volume of 6 mL. The
PCR samples contained 3 mL of 2�Master Mix, 0.6 mL of 5�Q
solution, varying primer concentrations (detailed in Table S1,
with the labelled M13 primer concentration the same as the

reverse primer) and ,20 ng of Genomic DNA template.
Microsatellite PCR amplifications were performed in a Bio-
Rad (Sydney, NSW, Australia) thermal cycler (DNA Engine

Peltier). The DNA template and enzyme were denatured at 958C
for 15 min, followed by 37 cycles of 948C for 30 s, 52–628C
(specific annealing temperatures are given in Table S1) for 45 s

and 728C for 90 s. To ensure consistent allele calling during
genotyping, a final extension at 728C for 45 min was used to
ensure complete extension of the PCR products. Allele sizing
was determined using GeneScan 500 LIZ dye size standard

(Thermo Fisher Scientific). Products were separated by

electrophoresis on an ABI3130xl sequencer (Applied Biosys-
tems, Thermo Fisher Scientific). According to the manufac-

turer’s recommendation, LIZ peaks at 35 and 250were excluded
before fragment analysis because of their temperature sensitiv-
ity; then, microsatellite peaks were scored using Geneious (ver.

8.1.9, see http://www.geneious.com, accessed 16 May 2016;
Kearse et al. 2012). A repeat positive control sample was run on
every 96-sample plate to ensure scoring consistency was main-

tained between electrophoresis runs. Samples returning low
(,200 fluorescence units) or no signal strength for a subset of
loci were initially subjected to another PCR run with increased
starting DNA. If the signal continued to be weak, the multiplex

was broken into single-locus reactions.

Microsatellite analysis

To summarise genetic diversity, several different metrics were
determined for the loci. A relatedness screen (in GenAlEx, ver.

6.5, see http://biology-assets.anu.edu.au/GenAlEx/Welcome.
html, accessed 17 November 2016; Peakall and Smouse 2006)
was used to identify duplicate samples, which were removed
from subsequent screening. To estimate the level of genetic

differentiation between sampling locations the standardised
measure of genetic differentiation, Jost’s estimate of differen-
tiation (DEST; Jost 2008) for each location pair was determined

(using GenAlEx, ver. 6.5, see http://biology-assets.anu.edu.au/
GenAlEx/Welcome.html; Peakall and Smouse 2006). DEST

provides a more accurate measure than the fixation index (FST),

which tends to be downwardly biased by high allelic diversity at
microsatellite loci, small numbers of sampling locations and low
sample numbers. The number of alleles was determined to

estimate the polymorphism information content (PIC) of the
loci, as well as to calculate observed and expected heterozy-
gosity values (using Cervus, ver. 3.0.7, see http://www.field-
genetics.com/pages/aboutCervus_Overview.jsp, accessed 11

October 2016 Kalinowski et al. 2007).
To determine deviations from HWE, exact tests were used to

test each locus, in each sampling location (using Genepop-on-

the-Web, ver. 4.2; http://genepop.curtin.edu.au/, accessed 28
November 2017; Raymond and Rousset 1995; Rousset 2008).
Although each locus by sampling location test was independent,

the same null hypothesis was tested multiple times; thus, a
subjective decision was made (following Cabin and Mitchell
2000) to apply an intermediate Bonferroni-type correction (set
at 9) for multiple tests (Rice 1989). For loci out of HWE, the

direction of bias was determined and an assessment wasmade to
determine whether the result could be attributed to scoring
errors, allele dropout or null alleles (using Microchecker, ver.

2.2.3, see http://www.nrp.ac.uk/nrp-strategic-alliances/elsa/
software/microchecker/, accessed 5 October 2016; Van
Oosterhout et al. 2004). Linkage disequilibrium (LD)was tested

using log-likelihood ratio statistics (G-tests) to assess each pair
of loci within each sampling location (using Genepop-on-the-
Web, ver. 4.2, see http://genepop.curtin.edu.au/; Raymond and

Rousset 1995; Rousset 2008) with Bonferroni correction. Two
assumptions made by F-statistics and structure analyses are that
populations are in HWE and loci are not linked. Loci failing to
comply with these assumptions were removed before analysing

the data.
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A power analysis to assess the resolving power of the
microsatellites to detect genetic differentiation was conducted

in POWSIM (ver. 4.1, see http://internt.zoologi.su.se/,ryman/,
accessed 5 February 2018; Ryman and Palm 2006;Gardner et al.
2015). As part of the POWSIM evaluation, Ne was set to 10 000

following Gardner et al. (2017) e this value is not based on the
linkage disequilibrium based Ne (LDNe) empirical estimates
below). Time since divergence (t) was varied to obtain seven

divergence levels (FST) between 0.0002 and 0.005. After drift,
the base population was subdivided into nine populations for
simulations, with the size of each population following the
sample data in Fig. 1. The mean of 500 replicates was used to

estimate the proportion of samples for which the FST values
were significantly different from zero using Fisher’s exact tests.

The population genetic structure of species across the nine

sampled locations in eastern Australia was investigated using
four approaches. First, Bayesian inference was used to assign
individuals to expected stocks using Structure (ver. 2.3.4,

see https://web.stanford.edu/group/pritchardlab/structure.html,
accessed 6 December 2013; Pritchard et al. 2000). The most
likely number of genetic clusters was determined following
Evanno et al. (2005), as described below. Second, population

pairwiseDEST (GenAlEx, ver. 6.5, see http://biology-assets.anu.
edu.au/GenAlEx/Welcome.html; Peakall and Smouse 2006)
values were estimated for all pairs of sampling locations.

Neighbouring locations with non-significant fixation values
were then pooled and pairwise fixation values recalculated in
an iterative approach to identify possible spatial boundaries to

genetic stocks (Broderick et al. 2011). Third, a discriminant
analysis of principal components (DAPC; Jombart et al. 2010)
available in the Adegenet package (ver. 2.1.1, see https://cran.r-

project.org/web/packages/adegenet/index.html, accessed 5
February 2018; Jombart 2008), run through RStudio (ver.
0.99.903, RStudio, Boston, MA, USA, see http://www.RStu-
dio.com/ide, accessed 5 February 2018) was used to distinguish

genetic clusters. Finally, an analysis of molecular variance
(AMOVA; Arlequin, ver. 3.5.1.2, see http://cmpg.unibe.ch/
software/arlequin35/, accessed 18 December 2013; Excoffier

and Lischer 2010) was used to determine the percentage genetic
variance explained by the groupings deduced from the structure
and DEST analyses.

For the structure analysis, a series of Markov chain Monte
Carlo (MCMC) simulations was run using models of both
admixture and no admixture, and using locations as priors
correlated with allele frequencies (Falush et al. 2003). Simula-

tions were run for a range of stock sizes (K¼ 1–10) to determine
the optimal number of clusters following Evanno et al. (2005).
Ten repetitions were run for each stock size, burn-in was set to

104 and 106 repetitions were run after burn-in. Using the DK
estimator approach of Evanno et al. (2005), the rate of change in
the log probability of the data between successive K values was

calculated (DK) and plotted against K to determine the most
likely number of genetic stocks.

Multivariate DAPC was conducted using the complete data-

set because discriminate analyses are robust to loci out of HWE
or in LD. Evidence of genetic clusters was examined in DAPC
by running successive K-means clustering in the find.clusters
function with scaling activated during the principal component

analysis (PCA) to give higher influence in the clustering to loci

with more alleles. The optimal number of clusters was deter-
mined as the K with the lowest Bayesian information criterion

(BIC; Jombart et al. 2010). DAPCwas also run for a priori stock
number K ¼ 2 based on the outcomes of the structure analysis
and population pairwise DEST analysis.

Spatial patterns of genetic divergence were investigated
using a genetic model of IBD correlating genetic distance
(DEST/(1 – DEST)) to geographic coast distance (km) in Gene-

pop-on-the-Web (ver. 4.2, see http://genepop.curtin.edu.au/;
Raymond and Rousset 1995; Rousset 2008). Shoreline distances
(km) between sampling locations were estimated manually
using Google Maps (API, ver. 3.30, see https://www.google.

com.au/maps/ accessed 18 November 2017, Google, Mountain
View, CA, USA), factoring in land barriers. The resulting
correlation for all sampling locations was plotted in Microsoft

Excel 2013 (ver. 15.0.5075.1000, Microsoft, Bellevue, WA,
USA) and was assessed using Mantel (1967) tests and distance-
based redundancy analysis (dbRDA; Legendre and Anderson

1999) following the recommendation of Kierepka and Latch
(2015) to combine statistical tests to assess IBD. Mantel tests
were assessed using 5000 permutations inArlequin (ver. 3.5.1.2,
see http://cmpg.unibe.ch/software/arlequin35/, accessed 18

December 2013; Excoffier and Lischer 2010). Distance-based
(db)RDA used the Fstat matrix against the sampling locations
run through the R package vegan (ver. 2.4–2, J. Oksanen, F. G.

Blanchet, R. Kindt, P. Legendre, P. R.Minchin, R.O’Hara, G. L.
Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner,
see https://cran.r-project.org/web/packages/vegan/index.html,

accessed 7 February 2018). IBD analyses were conducted on
the complete dataset and on the sampling locations from
Terrigal north (based on the K ¼ 2 outcome from the structure

and pairwise DEST analyses).
A population genetic self-assignment test using a Rannala

and Mountain Bayesian method with threshold 0.05 (Rannala
and Mountain 1997) was conducted in GENECLASS2 (Piry

et al. 2004) to determine the probability of correctly assigning an
individual to a stock in the K¼ 2 stock model. The test was run
both including and excluding the mixed Eden sampling location

from the analysis.

Estimating Ne

The linkage disequilibrium method for estimating Ne (LDNe;

Waples and Do 2008) was applied using NeEstimator 2.01 (Do
et al. 2014) to the samples from each collection area. For each
set of samples, all loci and individuals were used and low fre-

quency alleles were discarded if their observed frequency was
below Pcrit, the minimum allowed allele frequency. Pcrit was
chosen based on the sample size for the particular area according
to standard methodology (Waples and Do 2010). Owing to the

similar sample sizes from each area, Pcrit¼ 0.02 for all the LDNe

estimates produced. For each estimate, a 95% confidence
interval (CI) was also calculated according to the revised jack-

knife method of Jones et al. (2016).

Results

In all, 449 C. auratus were collected and genotyped as part of

this study. Samples were obtained from nine collection areas
over a 2278-km range from Rockhampton in the north to Tas.
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and Geelong in the south (Fig. 1). Sampled fish ranged in size
from 150 to 810 mm fork length (FL), with an approximately
equal sex ratio (sex recorded in ,50% of samples). Genotypes
were obtained for all animals, across nine loci, with missing

values per locus ranging from 0.2 to 9.4% (Table 1). Amplifi-
cation difficulties due to poor-quality DNA samples were
improved by re-extracting and eluting samples into a smaller

volume (50 instead of 100 mL), then amplifying the difficult loci
as singletons using undiluted DNA instead of multiplexed
reactions. A relatedness screen of the samples identified a

duplicate animal in the dataset. One of the duplicates was
removed from subsequent analyses (taking the total number of
C. auratus screened to 448; Table 1).

High allelic diversity was observed in the data, with 18 or

more alleles found in two-thirds of the loci (allele number per
locus ranged from 8 to 27; Table 1). Observed heterozygosity
ranged between 0.342 and 0.879 and was lower than expected

for all loci. With Bonferroni correction, only one locus by
sampling location comparison was out of HWE (Sunshine Coast
with Sal10; Table 2). The inbreeding coefficient (FIS) value for

this comparison was positive, indicating a heterozygote defi-
ciency, most likely due to scoring errors. Although P-values

were low for some of the other exact tests, there was no strong
pattern of deviation from HWE by locus or by location;
however, we note that deviations at one location (Sunshine
Coast) and one locus (Pma68–23) may not be due to chance.

Running the code (x ,- replicate(1000000, sum(runif(9)
, 0.05)) mean(x . ¼ 3) mean(x . ¼ 2)) in R determined the
chance of obtaining three P-values ,0.05 from a uniform

distribution (0–1) if nine values were selected randomly a
million times. The result was extremely unlikely due to chance,
suggesting something biological is possibly happening at this

site. To evaluate the possible effect of these deviations on
population genetic structure, the structure analysis was repeated
without Sunshine Coast and locus Pma68–23 (see Fig. S1). The
results did not change the overall outcome, or interpretation,

suggesting the genetic signal in the data was robust to the
deviations. As a result, all loci and collection sites were retained
for subsequent analyses.

Screening for LD using exact G-tests (log-likelihood ratio
tests) to assess each pair of loci within each collection location
identified three significant pairs (Sunshine Coast: Pma1 with

CM003195; Eden: GA2Awith Pma68–23; Eden: Pma22–9with
Pma68–23). The apparent genetic association of these pairs was

Table 1. Summary statistics of nine microsatellite loci for Australian east coast Chrysophrys auratus

n scored, number of individuals genotyped; A, number of alleles; HObs, observed heterozygosity; HExp, expected heterozygosity; PIC, polymorphic information

content

Locus n scored Percentage of samples

missing genotypes

A HObs HExp PIC Primer source

Pma1 425 5.1 10 0.67 0.743 0.713 Takagi et al. (1997)

GA2A 424 5.4 23 0.877 0.924 0.918 Adcock et al. (2000)

Pma22–9 447 0.2 20 0.875 0.917 0.909 Hatanaka et al. (2006)

CM003195 441 1.6 19 0.857 0.883 0.872 Chen et al. (2005)

CM000278 406 9.4 9 0.342 0.491 0.462 Chen et al. (2005)

Pma68–23 431 3.8 26 0.864 0.93 0.925 Hatanaka et al. (2006)

Sal10 441 1.6 9 0.679 0.71 0.663 Brown et al. (2005)

Sal19 437 2.5 19 0.768 0.809 0.794 Brown et al. (2005)

Pma4–32 440 1.8 28 0.879 0.94 0.936 Hatanaka et al. (2006)

Total 448

Table 2. Population3 locus summaryP-values for exact tests assessingHardy–Weinberg equilibrium (HWE)with Bonferroni corrected a5 0.0056

for nine tests

The number of animals genotyped is given in parentheses (total n ¼ 448). Significant P-values are in bold

Sample location n Locus

Pma1 GA2A Pma22–9 CM003195 CM000278 Pma68–23 Sal10 Sal19 Pma4–32

Rockhampton 50 0.87 (50) 0.31 (50) 0.19 (50) 0.92 (50) 1.00 (44) 0.78 (49) 0.77 (50) 0.18 (49) 0.10 (50)

Sunshine Coast 50 0.67 (46) 0.93 (47) 0.03 (50) 0.25 (48) 0.14 (46) 0.30 (47) 0.001 (50) 0.03 (49) 0.59 (48)

Coffs Harbour 54 0.33(54) 0.33 (52) 0.47 (54) 0.60 (54) 0.05 (52) 0.04 (52) 0.51 (54) 0.76 (54) 0.88 (53)

Wallis Lake 55 0.68 (47) 0.74 (51) 0.80 (55) 0.64 (55) 0.09 (40) 0.15 (53) 0.42 (55) 0.13 (55) 0.14 (55)

Terrigal 56 0.12 (56) 0.30 (54) 0.69 (56) 0.52 (56) 0.68 (56) 0.33 (55) 0.66 (56) 0.51 (53) 0.02 (54)

Eden 49 0.98 (46) 0.06 (49) 0.92 (48) 0.58 (48) 0.84 (49) 0.25 (49) 0.96 (46) 0.29 (48) 0.58 (47)

Lakes Entrance 53 0.74 (46) 0.87 (50) 0.86 (53) 0.02 (52) 0.18 (49) 0.033 (49) 0.48 (53) 0.40 (53) 0.94 (53)

Tasmania 29 0.44 (29) 0.18 (22) 0.46 (29) 0.55 (28) 0.33 (29) 0.93 (28) 0.26 (26) 0.89 (25) 0.13 (28)

Geelong 52 0.42 (51) 0.68 (49) 0.06 (52) 0.24 (50) 0.69 (41) 0.61 (49) 0.07 (51) 0.07 (51) 0.44 (52)
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not supported in other sampling locations and is likely an
artefact of reduced sample numbers at these sites due to missing
genotypes (Gordon et al. 1999; Akey et al. 2001). For this

reason, at the conclusion of the exploratory analyses, all nine
loci were determined to be suitable (largely meeting the
assumptions of HWE and no LD) for downstream analyses.

Based on the power analysis, the microsatellite data contain
sufficient power to detect FST at or above 0.002 with 98%
confidence (Fig. 2).

Analysing the data for genetic structure using Bayesian
modelling (structure; Pritchard et al. 2000) identified a two-
cluster model as the most likely fit for all models, with a genetic

transition occurring around Eden on the NSW south coast
(Fig. 3a). The optimal two-cluster model was determined by
the highest average likelihood score (Fig. 3b) and the highest
change in mean likelihood score (DK; Fig. 3c). The southern

stock extends from Geelong, past Tas., then north to Lakes
Entrance. The sampling locations flanking Eden (Terrigal,
Eden, Lakes Entrance and Tas.) exhibit an intermediate level

of mixing between the two stocks.
Using pairwise DEST statistics to pool undifferentiated adja-

cent collection locations, the spatial boundaries of potential

genetic stocks were further investigated (Table 3a). As a mixed
transition zone between the northern and southern stocks, Eden
was excluded from pooling. The first round of pooling grouped

Rockhampton with Sunshine Coast, Coffs Harbour with Wallis
Lake, and Lakes Entrance with Tas. (note, Lakes Entrance is a
linear neighbour to both Tas. andGeelong). The second round of
pooling combinedCoffs HarbourþWallis Lakewith Terrigal in

the north and Lakes Entranceþ Tas. with Geelong in the south.
The third round of pooling combined Rockhamptonþ Sunshine
Coast with Coffs Harbour þ Wallis Lake þ Terrigal (diagram

summarising pooling order below Fig. 3a Table 3a). The end
result of three rounds of pooling was two significantly different
stocks (Table 3b), the first extending Rockhampton to Terrigal

and the second extending south from Lakes Entrance to Gee-
long, including Tas. with a significantly different DEST¼ 0.048
(P ¼ 0.001).

The optimum number of clusters (K with the lowest BIC
score) determined using the DAPC find.clusters function was

K¼ 1, although the BIC score for K¼ 2 was only a little higher
(Fig. 4a). Results of the analyses run for a priori stock number
K ¼ 2, based on the outcomes from the structure analysis and

population pairwise DEST analysis, clearly showed a distinct
northern and southern stock with a region of overlap at Eden
(Fig. 4b).

Genetic distance was found to be correlated with linear
geographic distance using an IBD genetic model on the com-
plete dataset (Fig. 5). The geographic distance between collec-
tion areas explained 34%of their genetic distance (R2¼ 0.3439).

The IBD signal for the complete dataset was significant using
both a Mantel test (5000 permutations; P ¼ 0.0014) and the
dbRDA analysis (P ¼ 0.001). Focusing on the five sampling

locations from Terrigal north, the northern stock in the K ¼ 2
cluster model, IBD was no longer detected using either test
(Mantel, P ¼ 0.27; dbRDA, P ¼ 0.217).

Loci Pma1, GA2A and CM000278 were excluded from the
AMOVA because they were above the missing data threshold of
5%. Based on the structure andDEST results, Eden was excluded
from the analysis because of its mixed nature, and a K¼ 2 stock

model was tested. Analysis of the remaining eight sampling
locations and six loci using AMOVA found significant differ-
entiation to support the two-stock model, although stock

accounted for only 1.22% of the genetic variability (among
group covariance FCT ¼ 0.01219, P , 0.0001). Most of the
genetic variation in C. auratus (98.73%) was explained by

within-sampling location differences.
Population genetic assignment tests correctly assigned

76.3% (including Eden) and 81.7% (excluding Eden) of samples

to the correct stock in a K¼ 2model. There was no obvious bias
in the direction of incorrect assignments, with 18% of the
northern stock incorrectly assigned to the south and 19% of
animals from the southern stock incorrectly assigned to the north

(K ¼ 2 model excluding Eden).
Using the linkage disequilibrium method, estimates of

LDNe were calculated from six of the nine collection areas

(Table 4). It was not possible to resolve LDNe for Rockhampton,
Wallis Lake or Geelong, possibly due to the fairly low power
of the estimator and small sample sizes analysed. The upper 95%

CI was infinite (i.e. could not be estimated) for any of the sites.
Terrigal returned an LDNe estimate considerably higher than
any other site (7- to 40-fold larger). The wide range of sampling
in Tas.may also be lowering the LDNe estimate from this region.

Discussion

Testing the null hypothesis of one continuous genetic stock of
snapper along Australia’s eastern coast is important to ensure
that the most appropriate spatial structure is applied to assess-

ment and management. This study, using microsatellite mar-
kers, has confirmed a genetic subdivision of C. auratus

populations along the east coast that was previously suggested

based on a weak allozyme signal driven by a single locus
(Sumpton et al. 2008). Temporal replication of genetic sampling
spanning more than a decade has also offered a unique oppor-
tunity to investigate the geographic stability of this genetic

disjunction.
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Fig. 2. Power analysis results of simulations to assess the resolution of nine

microsatellite loci to detect genetic structure in nine Chrysophrys auratus

sampling locations given a range of divergence (fixation index, FST) levels.

Probabilities reflect the average of 500 replicates for which the FST values

were significantly different to zero using Fishers exact tests (POWSIM).
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Table 3. Pairwise Jost’s estimate of differentiation (DEST; Jost 2008) below the diagonal and P-values above the diagonal, based on nine

microsatellite loci from 448 individuals of Chrysophrys auratus among individual sampling locations (a) (significant Bonferroni-corrected P-values

in bold, a 5 0.0014) and pooled sampling locations (b) (significant Bonferroni-corrected P-values in bold, a 5 0.017)

The final set of pooled locationswas obtained after pooling strictly adjacent sampling locations that showed no significant pairwiseDEST until all pairwiseDEST

were significantly different (as a transition zone, Eden was excluded from pooling; diagram at base of Fig. 3a summarises the order of pooling). Pooled

sampling locations are as follows: Pool 1, Terrigal north, Rockhampton, Sunshine Coast, Coffs Harbour, Wallis Lake and Terrigal; Pool 2, Lakes Entrance

south, Lakes Entrance, Tasmania and Geelong. Negative DEST values were assigned zero. NSW, New South Wales; Qld, Queensland; Vic., Victoria

Qld NSW Vic. Tasmania Vic.

Rockhampton Sunshine

Coast

Coffs Harbour Wallis Lake Terrigal Eden Lakes

Entrance

Geelong

(a) Sampling location (north to south)

Rockhampton – 0.906 0.435 0.664 0.601 0.254 0.004 0.009 0.001

Sunshine Coast 0 – 0.572 0.696 0.25 0.123 0.001 0.02 0.001

Coffs Harbour 0 0 – 0.906 0.216 0.01 0.001 0 0.001

Wallis Lake 0 0 0 – 0.563 0.059 0.001 0.01 0.001

Terrigal 0 0.004 0.005 0 – 0.398 0.002 0.016 0.001

Eden 0.005 0.008 0.02 0.013 0.001 – 0.08 0.172 0.012

Lakes Entrance 0.028 0.038 0.047 0.043 0.031 0.012 – 0.196 0.034

Tasmania 0.032 0.025 0.038 0.03 0.024 0.01 0.009 – 0.172

Geelong 0.079 0.067 0.095 0.087 0.061 0.027 0.018 0.011 –

(b) Pooled sampling locations Terrigal north Eden Lakes Entrance south

Pool 1 (Qld and NSW) – 0.012 0.001

Eden (NSW) 0.011 – 0.018

Pool 2 (Vic. and Tasmania) 0.048 0.013 –
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The present study has revealed a consistent genetic signal,

across all methods of statistical analysis (Bayesian modelling,
DAPC and FST/DEST statistics) for two distinct genetic stocks.
The two genetic stocks transition aroundEden in southernNSW.

The northern stock spans most of NSW and Qld, and incorpo-
rates the region where most of the east coast catches are derived.
The southern stock is most distinct in Geelong, but continues

through Bass Strait, past Tas., extending up the east coast to
Eden, with a small amount of encroachment north to Terrigal.
The earlier study by Sumpton et al. (2008) also identified an east

coast genetic disjunction but, in that study, it was identified over
400 km further north than in the present study, between Sydney
and Forster on the central coast of NSW (Fig. 1). If the genetic

disjunction is a consistent feature of this species on the east
coast, then the genetic disjunction of Sumpton et al. (2008),
based on samples collected in the mid-1990s, is likely the same
genetic transition zone identified here, with the shift reflecting a

southward movement of the ranges of the two genetic stocks.
The shifting genetic transition zone of the C. auratus stocks

may be linked to ocean currents, temperature and possibly

salinity. Long-term ocean temperature monitoring shows that
the southward penetration of the EAC has increased over the
past 60 years, resulting in a poleward advance of warmer and

saltier water (Ridgway 2007). Water temperature has been
shown to be linked to spawning periods and spawning success
in C. auratus (Francis 1993; Lenanton et al. 2009). The
southward-shifting EAC has been associated with long-term

shifts in the abundance and distribution of other temperate fish
species (Last et al. 2011).

Themechanism responsible for creating distinct northern and

southern stocks may also be linked to water temperature. Fish
living in warmer waters at the northern end of the range spawn
during winter, whereas fish living in more temperate waters

spawn,3 months later in spring–summer (Ferrell and Sumpton
1997). As a result, northern fish have an extended growing
season and they mature earlier than their southern counterparts

(Ferrell and Sumpton 1997; Stewart et al. 2010). Biological
parameters for the genetic stock occurring south of Eden are not
well characterised; however, there are known spawning aggre-
gations on inshore reefs off eastern Vic. in November, and

recruitment of postlarvae and small juveniles occurs in eastern
Victorian estuaries in late summer and autumn (Hamer and
Jenkins 2004). The structure plot (Fig. 3a) shows that the two

Table 4. Estimates of effective population size calculated using the

linkage disequilibrium method (LDNe), with upper and lower

confidence intervals (CI) estimated using jack-knifing, for east coast

Chrysophrys auratus sampling locations using aminimum allowed allele

frequency (Pcrit) of 0.02

Non-measurable values are indicated by a dash

Location Sample n LDNe Lower 95% CI Upper

95% CI

Rockhampton 50 – 832.1 N
Sunshine Coast 50 1992.0 275.7 N
Coffs Harbour 54 732.6 215.6 N
Wallis Lake 55 – 385.2 N
Terrigal 56 15968.2 320.4 N
Eden 49 572.2 203.5 N
Lakes Entrance 53 586.9 199.5 N
Tasmania 29 371.9 91.1 N
Geelong 52 – 462.7 N

y � 3 � 10�5x�0.0041
R2 � 0.3439
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stocks overlap and transition around Eden. It is unclear whether
the animals in this transition zone are interbreeding to form

admixed animals (individual fish exhibit both northern and
southern genotypes) or whether they co-occur in this region
without interbreeding. There is a suggestion of admixture off

Eden, as well as in neighbouring sampling locations, but this
may be an artefact of the low number of microsatellite loci and
level of missing data (this is the most likely explanation for the

apparently admixed animals off the Sunshine Coast). Future
studies should focus on screening additional geneticmarkers and
sampling locations at a finer scale between Lakes Entrance and
Terrigal to help to resolve this issue. Additional genetic markers

may also reveal further genetic signals to differentiate Geelong
from Lakes Entrance and Tas.

Standardised fixation measures may be less comparable

between studies if mutation rates differ and heterozygosity is
high (Leng and Zhang 2011). The total standardised fixation
indexDEST (0.0232) estimate for the east coast samples was low

but significant (P ¼ 0.001). The estimate was almost an order
of magnitude higher than the value recorded among Western
Australian C. auratus populations from Shark BayDEST (0.002;
Gardner et al. 2017), with the caveat being that only locus Pma1

overlapped between the two studies.
By pooling genetically undifferentiated adjacent collection

areas, the spatial boundaries within the two east coast genetic

stocks were further investigated using comparisons of pairwise
DEST. Following three rounds of pooling, two genetically
distinct stocks were identified, the first extending from Rock-

hampton to Terrigal and the second spanning from Lakes
Entrance to Geelong. Prior to pooling, Eden was the only
sampling location with no significant DEST values, a result

consistent with it having a mixture of both the northern and
southern stocks.

A priori expectations based on tagging data were that Gee-
long would separate from east coast C. auratus stocks (Sanders

1974; Hamer et al. 2011). The microsatellite data do not
support this separation. This result is consistent with allozyme
results that also failed to differentiate between Victorian

sampling locations spanning from Portland in the west to Lake
Tyers in the east (Meggs et al. 2003). Although not significant,
population pairwiseDEST valueswithin the southern stockwere

greater than those measured between sampling locations in the
northern stock. Tasmanian samples were somewhat intermedi-
ate genetically between Geelong and Lakes Entrance. Low
catch numbers unfortunately resulted in the Tasmanian sam-

ples being represented by fish collected from both north-west
and eastern waters (see Fig. 1). The Tasmanian sample may
have captured more than one genetic stock. With increased

sampling, and additional genetic markers, it is possible that
genetic structure in southern AustralianC. auratuswill become
apparent.

High levels of connectivity were found among collection
locations with a weak IBD signature detected using only the
complete dataset. With increasing geographic distance, a linear

increase in genetic differences was observed. The slope of the
IBD correlation, 7 � 10�6, falls within the interquartile range
reported for fish stocks based on a meta-analysis of marine fish
(Cooke et al. 2016). The slightly positive slope value indicates

that fish are probably not actively recruiting back to natal sites

(Cooke et al. 2016), but neither are they moving enormous
distances; they are sharing their DNA with neighbouring loca-

tions, either bymixed spawning aggregations or larval dispersal.
The IBD signature could not be detected when themicrosatellite
dataset was reduced to the northern stock alone (five sites from

Terrigal north) although a weak signal was found by Sumpton
et al. (2008) using allozyme analysis. Biological knowledge of
the fishwould suggest that an IBD pattern likely does exist in the

northern stock but has not been detected with the current genetic
markers. A similar result was obtained using a microsatellite
analyses of New Zealand C. auratus over a 900-km range
(Ashton 2013), with stocks in that study found to be largely

panmictic with no IBD signal and with low-level genetic
differentiation between sites.

This study has demonstrated that suitable genetic markers

exist to characterise the population genetic structure of C.

auratus stocks in Australian waters. Further research is needed
to characterise stocks in southern andwesternAustralian waters.

A broad-scale nationwide study is recommended, with a consis-
tent set of variable genetic markers, before fine-scale spatial
variation is assessed to assist in the management of local stocks.
It would also be valuable to compare Australian C. auratus

stocks to populations from New Zealand, which were found to
be genetically distinct using allozymes (Meggs et al. 2003).
Although the microsatellite loci screened in this study were the

same as those used by Le Port et al. (2017), unfortunately
different size-scaling ladders were used by the two laboratories
for scoring alleles, and consequently the results require cross-

validation before they can be combined.
It would be premature to infer population numbers (N) from

the LDNe estimates calculated without a better understanding of

how the two numbers correlate in C. auratus, but some interest-
ing observations can be made from the results. It is promising
that LDNe values were estimated using a dataset limited by low
sample numbers, few loci and with a high occurrence of rare

alleles (which are currently excluded by the Pcrit). Having
infinite upper bounds, the estimates are currently fairly mean-
ingless; however, withmore intensive sampling and the addition

of more loci, the LDNe estimates could offer a comparative
means to assess trends in the abundance of local stocks.

Conclusion

Microsatellite analysis supports a two-stock genetic model for
C. auratus along Australia’s east coast. The northern stock

extends from Rockhampton to Eden; the northern and southern
stocks overlap around Eden and the southern stock then extends
south from Eden, past Lakes Entrance and Tas., extending

westward to Geelong. The southern stock will likely be found
to extend further west. Other studies have suggested that mixing
of snapper between stocks to the east and west of Wilsons

Promontory in Vic. is limited (Coutin et al. 2003; Hamer et al.
2011). The present study has not detected a significant barrier to
gene flow to separate Geelong (Port Phillip Bay) samples from

eastern Victorian or Tasmanian samples. The consequence of
this finding, in terms of stock assessment and fisheries man-
agement along the east coast, is that Qld and NSW fisheries
should be assessed together. Preliminary genetic analyses sug-

gest that, with increased sampling, the size of local C. auratus
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stocks may be able to be independently estimated using DNA
tissue samples. This finding could prove valuable for the local

management of populations.
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