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Abstract. Trends at 1051 river monitoring sites across New Zealand incrementing annually for time windows of 10 and
20 years over the 28-year period ending 2017 were assessed from regular observations of six water quality variables.
Between-site variation in trend strength and direction was modelled as a function of an indicator based on the Southern
Oscillation Index (SOI) and the mean of and changes to catchment: (1) stocking intensity associated with pastoral

livestock; and (2) area associated with plantation forest. The SOI indicator made consistent contributions to the models for
the 10-year windows, but the land use indicators did not, indicating that land use signals were generally swamped by the
effects of climate variability at this timescale. Some land use indicators made consistent and certain contributions to the

models for the 20-year time windows. Depending on the water quality variable, some land use indicators were associated
with both water quality improvement and degradation. The relationships were generally consistent with plausible
explanations including changes in land use, land use intensity and land management practices. Robust attribution of water

quality changes to changes to specific agricultural land uses will enable the development of precise and effective policies
to achieve water quality improvement.
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Introduction

Deteriorating water quality and freshwater ecosystem health

have been attributed to agricultural land use for over a century
(Brooks 1916; Turner and Rabalais 2003). Efforts to arrest and
reverse this deterioration often take the form of agricultural land
use regulations, such as input and output controls, and mitiga-

tion and intervention requirements (Duncan 2014;Wiering et al.
2020). These regulatory actions are only effective if the
observed deterioration is, in fact, due to agricultural land use and

not to other anthropogenic or natural drivers (e.g. urbanisation,
climate variability). Therefore, effective regulation of agricul-
tural land use needs to be based on accurate attribution of water

quality impacts to specific agricultural land uses and practices.
One of the stated aims ofmany freshwater quality networks is

to identify relationships betweenwater quality and land use (e.g.
Davies-Colley et al. 2011; Behmel et al. 2016). However, the

data from these networks are often used more narrowly to
describe water quality state and detect temporal trends (e.g.
Larned et al. 2016; Oelsner et al. 2017). Investigations of the

environmental drivers that cause those trends are rare, as are

investigations that rigorously attribute water quality trends to
trends in drivers. By ‘rigorous attribution’, wemean quantitative

analyses of relationships between water quality trends and
putative drivers, and consideration of multiple alternative dri-
vers (Ryberg 2017; Ryberg et al. 2018; Murphy 2020). Weaker
alternatives to rigorous attribution include qualitative reasoning,

references to previous studies and simple speculation (e.g. Luo
et al. 2011; Joy et al. 2019). When attribution is weak, there is a
risk that efforts to improve water quality by managing the

presumed driver will be ineffective. Similar risks have been
identified for cases of weak attribution of trends in river flows
and floods (Merz et al. 2012; Harrigan et al. 2014).

Despite the need, examples of rigorous attribution of water
quality trends to drivers are rare for two reasons. First, suitable
data to characterise spatiotemporal variation in environmental
drivers are scarce and fragmented (Merz et al. 2012; Diamantini

et al. 2018; Mellander et al. 2018; Ryberg et al. 2018). Suitable
data consist of time series of measurements of driver magnitude,
with durations and frequencies that correspond to water quality

time series and are spatially congruent with water quality
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monitoring sites (e.g. Howden and Burt 2009; Bouraoui and
Grizzetti 2011). Second,water quality is generally influenced by

multiple environmental drivers, including anthropogenic dri-
vers, such as land use, and natural drivers, such as climate
variability. There may be additive, compensatory or synergistic

interactions among these drivers, making it difficult to reliably
attribute water quality responses to specific land use or manage-
ment actions (Morse and Wollheim 2014; Dupas et al. 2016;

Ryberg et al. 2018; Choquette et al. 2019; Murphy 2020).
The situation has progressed recently, with rapid growth in

the generation and provision of data for characterising drivers at
large spatial scales and improved analytical methods. In the past

decade, attribution studies have been performed using statistical
analyses of relationships between water quality trends and
temporal changes in drivers (Diamantini et al. 2018; Mellander

et al. 2018), structural equation models (Ryberg 2017; Ryberg
et al. 2018), joint hydrology–water quality empirical models
(Choquette et al. 2019; Murphy and Sprague 2019) and deter-

ministic models (Gascuel-Odoux et al. 2010).
Here we report the results of a large-scale statistical analysis

of relationships between agricultural land use drivers and water
quality trends in New Zealand rivers. Agriculture is the domi-

nant land use in New Zealand, accounting for 49% of the land
area, of which over 80% is used for pastoral farming; the
remaining agricultural land is used for plantation forestry,

cropping and horticulture. The negative effects of pastoral land
use on water quality in freshwater and coastal environments are
longstanding public issues (Suthanthangjai et al. 2013; Ministry

for the Environment and Statistics New Zealand 2019).
Repeated studies have shown that water quality state (i.e. the
characteristic current condition) in New Zealand rivers is

strongly explained by the proportion of pastoral agricultural
land cover in the upstream catchment (Larned et al. 2004, 2016;
Davies-Colley 2013), but these studies did not include attri-
bution of water quality trends (i.e. temporal changes in

condition) to land use or other drivers.
After over a century of predominately low-intensity pastoral

agriculture in New Zealand, a period of agricultural intensifica-

tion and diversification commenced in the early 1980s, partly in
response to economic deregulation and the removal of farm
subsidies (Smith and Montgomery 2004; MacLeod and Moller

2006). The changes included increased fertiliser and supple-
mentary feed input, expansion of irrigation schemes, growth of
the dairy, deer farming and plantation forestry sectors and
contraction of the sheep and beef sectors (MacLeod and Moller

2006). In response to public concerns aboutwater quality impacts,
regulatory reforms have been enacted by the New Zealand
government over the past decade that aim to prevent and reverse

river water quality degradation associated with agriculture
(New Zealand Government 2014, 2017, 2020a). These reforms
increased requirements for the agriculture sector to reduce

impacts on aquatic receiving environments through measures
such as improved management of fertiliser, livestock effluent
and irrigation water, reducing stock access to streams, riparian

protection and tree planting on erodible hill country (Monaghan
et al. 2021). In addition, there have been industry-led initiatives
suchas theDairyingandCleanStreams accord,which requires the
exclusion of dairy cattle from channels and riparian zones of

perennial rivers greater than 1 m wide (Bewsell et al. 2007).

River water quality monitoring programs are well estab-
lished in New Zealand and time series of observations have

increased over time; there are nowmore than 1000 sites at which
a range of water quality variables have been observed on a
monthly or quarterly basis for up to 30 years (Larned et al.

2016). These river water quality data have been used to produce
numerous reports onwater quality state and trends, and a smaller
number of quantitative comparisons of water quality trends and

environmental drivers. In the latter cases, a single environmental
driver was considered in some studies (e.g. Hamill andMcBride
2003; Scarsbrook et al. 2003), and multiple drivers were
considered in others, but only as static descriptions of land uses

(e.g. Ballantine and Davies-Colley 2014; Julian et al. 2017).We
know of no previous investigations that met the requirements set
out above for rigorous attribution (i.e. quantitative analyses that

consider multiple alternative drivers and contemporaneous
variation in those drivers).

Climate variability is a complication in attributing changes in

water quality to anthropogenic drivers (Chanat and Yang 2018;
Ryberg et al. 2018; Choquette et al. 2019; Murphy and Sprague
2019). At catchment scales, water quality responses to all
environmental drivers are mediated by biophysical processes,

including contaminant mobilisation, transport, attenuation and
dilution (Mellander et al. 2018). These processes are strongly
influenced by interannual climate variability, producing vari-

ation in water quality that maymask responses to anthropogenic
drivers (Choquette et al. 2019). The primary sources of inter-
annual climate variability are global-scale cyclic processes

such as the El Niño–Southern Oscillation (ENSO) and the North
Atlantic Oscillation (NAO); these processes produce temporal
variations in temperature and rainfall, which, in turn, influence

the biophysical processes identified above (e.g. Gascuel-Odoux
et al. 2010; Harding et al. 2019; Mellander et al. 2018).

In New Zealand, ENSO is the dominant mode of interannual
variation in rainfall and air temperature (Salinger and Mullan

1999; Ummenhofer et al. 2009). Consequently, ENSO also
influences interannual variation in river flow regimes and water
quality, and these ENSO effects may obscure water quality

trends caused by anthropogenic drivers such as land use change
(Mosley 2000; Chiew and McMahon 2002; Scarsbrook et al.

2003; Zeldis et al. 2008).

In this study, an extensive spatiotemporal dataset describing
agricultural land use and land cover was combined with data
describing variation in ENSO strength and observations of six
water quality variables made between 1990 and 2017 at 937

river monitoring sites across New Zealand. We used these data
to investigate potential drivers of trends over discrete time
windows of 10 and 20 years within the 28-year study period.

Materials and methods

The methods involved multiple steps aimed at providing two
primary results, which are shown schematically in Fig. 1.

Water quality data

River water quality trendswere assessed for six variables, namely
dissolved reactive phosphorus (DRP; mg m�3), ammoniacal
nitrogen (NH4-N; mg m�3), nitrate nitrogen (NO3-N; mg m�3),

total nitrogen (TN; mg m�3), total phosphorus (TP; mg m�3) and
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visual clarity (CLAR; m). Water quality data for sites distributed

across New Zealand were acquired from the 16 regional councils

and the National Institute of Water and Atmosphere (NIWA).

Each council and NIWA operate a network of river monitoring

sites at which water quality sampling is performed monthly or

quarterly. We acquired all available data from January 1990 to

December 2017. These dates cover a period from when regular

water quality monitoring in most regions commenced to the most

recent acquisition and federation of all data from the 16 regional

councils. As part of federating the datasets, we undertook data

checks and corrections described by Larned et al. (2016). For

most variables, there was variation in analytical methods across

the data collecting agencies. For each variable, only data corre-

sponding to the most widely used and comparable procedures

were retained and the remaining data were omitted, as described

by Larned et al. (2016). The individual datasets contained cen-

sored values, indicating that reported values were below the

analytical detection limit or above the reporting limit. Censored

values were identified in all datasets, and these entries were

consistently indicated by the combination of the reported values

and a flag indicating the typeof censoring.The individual datasets

were then combined into a single consistent dataset comprising

918 389 observed values of the variables at 1051 sites (Fig. 2).

Correlation between climate and water quality observations

We quantified variation in the ENSO cycle with the SOI, which
is calculated as the normalised anomalies of the monthly mean
sea level pressure differences between Tahiti, French Polynesia
and Darwin, Australia (Salinger and Mullan 1999). The SOI

ranges from –3 to 3 and is quasi-periodic with a typical period of
3–7 years. An El Niño phase is defined as SOI,0 and a La Niña
phase is defined as SOI .0. Monthly values of the SOI for the

period from 1989 to 2017 were obtained from the Australian
Bureau of Meteorology (http://www.bom.gov.au/climate/cur-
rent/soi2.shtml) and were handled using the Troup convention,

whereby index values are multiplied by 10.
We used the Pearson correlation coefficient to describe the

extent to which variation in each water quality variable at each

river monitoring site was associated with fluctuations in the SOI
(Fig. 1, Step 1). We calculated the value of this correlation
coefficient for each site and variable in four steps. First, we
selected all the observations of the water quality variable in the

entire period of record at each site. Second, because regular
seasonal variation in both the water quality measurements and
the SOI values obscured their longer-term interannual variation,

we deseasonalised both sets of values using classical seasonal
decomposition (Hyndman and Athanasopoulos 2021). This

Temporal
SOI data

1. Assess water
quality – SOI
correlation; r

o

2. Assess SOI
trends; dSOI

3. Assess site water
quality trends; τw

6. Assess performance
of fitted models and

direction of relationships

7. Summarise consistency of
relationship of

r
o
 with τw

8. Summarise consistency of
relationship of

dLU and mLU with τw  

5. Model between-site
variation in water quality

trends
τw=f(r

o 
+ dLU + mLU )

4. Quantify land use change
and mean land use;

dLU, mLU

Temporal water
quality data

Spatio-temporal
land use data

A
ll 

tim
e 

w
in

do
w

s
A

ll 
tim

e
In

pu
t d

at
a

In
di

vi
du

al
 ti

m
e 

w
in

do
w

s 
of

 1
0 

an
d 

20
 y

ea
rs

Fig. 1. Schematic overview of the methods. The input data are shown as trapezoids, processing steps

are shown as rectangles and results are shown as ovals.
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analysis used centred annual moving averages to remove the

variability associated with regular seasonal changes for both the

SOI and all water quality variables at each site. Third, because

we wanted to assess only the extent to which fluctuations in the

water quality variable and SOIwere associated, we removed any

monotonic trend that was exhibited through the entire time

series for both the SOI and the water quality variables. Detrend-

ing was performed by regressing the deseasonalised values of

the water quality variable and SOI against time using linear

models and using the residuals of each model to represent the

deseasonalised and detrended time series. Fourth, we calculated

the Pearson correlation coefficient between the deseasonalised

and detrended time series of the water quality variable and SOI.
The correlation coefficients are referred to hereafter as ro.

SOI trends

Although the SOI is cyclic, there is a tendency for SOI values to
exhibit either an increasing or decreasing trend when a time
window is defined by arbitrary starting and ending dates. We

quantified the trend in the SOI for each time window (w) as
dSOIw (Fig. 1, Step 2). We evaluated dSOIw by linear regression
of monthly SOI values against their respective dates for rolling

windows of 10- and 20-year duration starting in 1990 and
incrementing by 1 year to a final window ending in 2017. This
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resulted in 19 and 9 time windows of durations of 10 and
20 years respectively.

Water quality trend analyses

For the same rolling windows of 10- and 20-year duration
defined above, we characterised the direction and strength of the
monotonic trend for each water quality variable at each moni-

toring site (Fig. 1, Step 3). Trends were assessed usingKendall’s
tau (t) statistic, which was calculated using the Mann–Kendall
trend test or the seasonal Kendall test (Hirsch et al. 1982) for

cases where there was a statistically significant difference in the
observations grouped by their sampling month (Kruskal–Wallis
test a# 0.05). The two procedures are robust to non-normal data
distributions, missing values, outliers and non-linear trends, and

are widely used to evaluate the magnitude and significance of
monotonic trends in environmental variables. Both tests are
based on the Mann–Kendall S statistic, which is the difference

between the number of positive and negative changes in the
variable between all pairs of observations. When pairs of
observations included censored values, the changes were eval-

uated robustly using the methods described by Helsel (2011).
We converted S to Kendall’s t by dividing it by the total number
of pairs of observations to provide a standardised measure of

trend direction and strength. Kendall’s t takes values between
–1 andþ1, with negative and positive values indicating that the
observations decreased and increased through time respectively.
Kendall’s t for each site, water quality variable, duration and

time window is denoted as tw.
We restricted the allowable proportion of missing values to

ensure that the observations consistently and adequately repre-

sented both the seasons and the entire time window. Site and
variable combinations were retained for trend analysis provided
80% of sample intervals were represented by observations.

The values of water quality variables in rivers often vary in
response to flow fluctuations (Hirsch et al. 1991). When trend
analyses are conducted on river water quality data, the observa-
tions are often adjusted to account for the effects of flow (flow

adjustment) to decrease extraneous variation and increase sta-
tistical power (i.e. to increase the confidence of trend assess-
ments; Hirsch et al. 1982). We did not flow-adjust the water

quality data because our analyses concerned relationships
between trend direction and strength across multiple sites, and
were not dependent on establishing the highest possible level of

confidence in the direction of individual trends.

Land use indicators

Strong relationships are consistently observed in New Zealand

between water quality state and the proportion of catchment
occupied by grazed grassland (i.e. used for pastoral farming; e.g.
Larned et al. 2016; Julian et al. 2017). The area of grazed

grassland has not changed substantially inmost catchments over
the past 30 years (Ministry for the Environment and Statistics
New Zealand 2018). However, over the same period there have

been significant changes in the spatial distribution and intensity
of the four main types of pastoral livestock, namely sheep, dairy
cows, beef cows and deer (MacLeod and Moller 2006; Ministry
for the Environment and Statistics New Zealand 2018). Where

changes in catchment area occupied by grazed grassland have

occurred, they are generally associated with commensurate
changes in area of plantation forests, with grazed grassland in

some areas being replaced by forest and vice versa (New
Zealand Government 2020b). In addition, within each of the
four main types of pastoral farming (sheep, dairy, beef and deer

farming) and plantation forestry, there have been differences in
land use practices, such as the types and rate of adoption of
mitigation measures (Monaghan et al. 2021).

For this study we used data describing the spatiotemporal
variation in the four main types of pastoral livestock and in the
two relevant land cover categories, namely grazed grassland and
plantation forest. However, we did not have data describing

changes in specific land use practices. Therefore, we derived
two sets of catchment land use indicators for each monitoring
site and each time window describing: (1) the change in land use

intensity (dLU; Fig. 1, Step 4); and (2) the mean land use
intensity in the catchment (mLU; Fig. 1, Step 4). The first set
of indicators are measures of changes in the intensity of the four

types of pastoral livestock and plantation forestry. The five
change indicators are direct measures of change in land use
intensity that have potentially driven water quality trends. The
second set of indicators are measures of the mean intensity of

the four types of pastoral livestock and plantation forestry. The
mean indicators are indirect measures of potential changes in
land use practices that are associated each of the five types of

land use; they provide proxy measures of a catchment’s expo-
sure to any land use practices that are particular to each type of
land use.

The area occupied by different land cover categories is
mapped nationally in New Zealand using the Land Use and
Carbon Analysis System (LUCAS; Newsome et al. 2018),

which includes 12 land cover categories derived from satellite
imagery corresponding to four dates: 1990, 2008, 2012 and
2016. Land cover categories for the 1990 map were determined
from 30-m spatial resolution Landsat-4 and Landsat-5 satellite

imagery and the 2008, 2012 and 2016maps were prepared using
higher-resolution imagery from the SPOT-5 satellite (Ministry
for the Environment 2012). Land cover classes weremapped at a

minimum mapping area of 1 ha and include the categories
grazed grassland, plantation forest planted before 1990 and
plantation forest planted after 1989.

The number of animals in the four stock type categories is
periodically surveyed on all livestock farms by Statistics New
Zealand as part of the Agricultural Production Census (APC).
We used the highest resolution versions of APC data that are

publicly available, which are associated with a spatial coverage
comprising 960 hexagonal grid cells (35 000 ha) that cover all
New Zealand (https://statisticsnz.shinyapps.io/livestock_num-

bers/). For each grid cell, the number of animals in each stock
type category was available for 5 census years (1994, 2002,
2007, 2012, 2017).

We combined the land cover and stock numbers data with a
digital representation of New Zealand’s surface water drainage
network to provide a spatially continuous representation of

catchment agricultural land use for the entire country. The digital
network represents New Zealand’s rivers as 590 000 segments
(delineated by upstream and downstream confluences) and their
catchments and is contained in a geographic information system

(Snelder and Biggs 2002). We converted the stock numbers
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associated with the hexagonal grid and each census year into the
density of animals of each stock type in the catchment of every

network segment in four steps. First, all land cover categorised by
LUCASas grazed grassland (combininghigh- and low-producing
subcategories) was intersected with the hexagonal grid. Second,

the animals of each stock type in each hexagonal grid cell were
evenly distributed over the land categorised as grazed grassland
within the cell and the animal numbers were then converted to

densities (number of animals per hectare of grazed grassland).
The animal numbers before 2008were distributed to the high- and
low-producing grasslands associated with the 2008 version of
LUCAS and the animal numbers in 2012 and 2017 were distrib-

uted to the high- and low-producing grasslands associated with
the 2012 and 2016 versions of LUCAS respectively. Third, the
combined hexagonal grid cells and grazed grassland spatial

coverages were intersected with the digital network catchment
boundaries. Finally, the number of animals of each stock type in
each catchment was calculated as the sum of each area of grazed

grassland within each catchment multiplied by the corresponding
animal densities.

The animal densities were converted to stock unit (SU)
equivalents to provide a measure of land use intensity that is

comparable across the different stock types (Di and Cameron
2002; McDowell and Wilcock 2008; Ledgard et al. 2011). The
SU equivalent is a commonly used measure of metabolic

demand by livestock in New Zealand (Parker 1998; Trafford
and Trafford 2011). The density of animals of each type in each
catchment was converted to stocking intensity (SU ha�1) by

multiplying by their SU equivalent. The conversion accounted
for the increase in metabolic demand of animals of each stock
type over time due to increases in animal weight and levels of

production. For example, the production of milk solids per dairy
cow has risen in New Zealand from,260 kg year�1 in 1990 to
370 kg year�1 in 2017 (Livestock Improvement Corporation
Limited and DairyNZ Limited 2018). Our calculation of land

use intensity accounted for this increasing animal size and
productivity by adjusting SU values over time according to
the values presented in Table 1.

Because changes in areas of grazed grassland since 1990
were generally associated with changes (either increases or
decreases) in plantation forest, plantation forest land cover

was included as a land use indicator. We calculated the propor-
tion of catchment area occupied by plantation forest in the
catchment of every network segment in two steps. First, for each
version of LUCAS (1990, 2008, 2012 and 2016), we intersected

the areas categorised as plantation forest before 1990 and after
1989 with the digital network catchment boundaries. Second,
the area of plantation forest planted before 1990 and after 1989

in each year and each catchment was expressed as a proportion
of the total catchment area (%).

The indicators used to characterise changes in land use
intensity were evaluated for each time window and every
segment of the network as the rates of change of stocking

intensity and rate of change in the proportion of catchment
occupied by plantation forest. Change in stocking intensity was
evaluated as the change in total SUs normalised by the catch-

ment area, divided by the time step in years (dTotal; SU ha�1

year�1). We also evaluated the change in the proportion of the
total SUs associated with each stock type in the catchment for
the time step (dDairy, dBeef, dSheep and dDeer;% year�1).

Change in plantation forest intensity was evaluated as the
change in the proportion of catchment occupied by plantation
forest (dForest;% year�1).

The mean intensity indicators were evaluated for each time
window and every segment of the network as the mean stocking
intensity and the mean proportion of catchment occupied by

plantation forest. Mean intensity was computed for total stock-
ing intensity (mTotal; SU ha�1), for the proportion of total
stocking intensity associated with each stock type (mDairy,
mSheep, mBeef and mDeer;%) and for the proportion of catch-

ment occupied by plantation forest (mForest;%). We used linear
interpolation to estimate the change in intensity and mean
intensity when the beginning or end of time windows did not

coincide with a year for which data were available. For the
beginning of the early 20-year assessment window (1990) we
used stock numbers pertaining to 1994. For the end of the late

20- and 10-year assessment windows (2017) we used plantation
forest areas pertaining to 2016. Geographic information for each
monitoring site was used to associate it with a segment of the

digital network, and the land use indicators for that segment
were used as explanatory variables in the subsequent analyses.

Relationships between trends, SOI and land use changes

For each water quality variable, time window and duration, we
used regressionmodels to explain variation in the site trends (i.e.

tw) as a function of each site’s correlation with the SOI (ro) and
both types of land use indicator (i.e. the change in land use and
the mean land use; Fig. 1, Step 5). All evaluated tw values were

used in all analyses regardless of their significance. The land use
indicators were intercorrelated because they are mutually
dependent (i.e. decreases in one indicator are at least partly
compensated for by increases in another). To allow the sign of

the fitted model coefficients to be interpreted as the direction of
the relationship between the explanatory variables and the
trends, we reduced the land use indicators for all combinations

of sites and time windows to a set of orthogonal explanatory
variables using principal component analysis (PCA). The values
of each land use indicator for each site and time window were

used as input to a PCA analysis, which was based on the cor-
relationmatrix so that each indicator was given the sameweight.
We performed a varimax rotation on the PCA, which assists

interpretability by increasing the correlation of some of the
individual input variables with the resultant components. We
retained the components that made a significant contribution to
the explained variation in the input data (broken stick method;

Jackson 1993). We used the coordinates of the sites on the

Table 1. Stock unit equivalent values assumed for sheep, beef, dairy

and deer livestock classes between 1980 and 2017

Stock type 1980 1985 2000 2017

Sheep 0.95 0.95 1.15 1.35

Beef 5 5.3 6 6.9

Dairy 5 5.5 6.8 8

Deer 1.6 1.6 2 2.3
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retained PCA axes as explanatory variables and refer to these as

synthetic land use indicators denoted by PC1w, P21w,y PCnw.

We interpreted the synthetic land use indicators based on the

loadings of the original land use indicators on the retained PCA

components.

For each water quality variable, time window and duration,

we fitted ordinary least-squares linear regression models of the

form:

tw ¼ b0 þ b1ro þ b2PC1w þ b3PC2w þ . . . bnPCnw

where tw represents the Kendall’s t for each site, time window

and duration, and b1, b2,ybn are coefficients fitted to the

explanatory variables that include ro and PC1w, PC2w,yPCnw.

We inspected whether there were geographic patterns in all

model residuals, the occurrence of which would suggest environ-

mental drivers of trends that were not represented by the models.

We formally assessed the strength of the geographic patterns,

using the Mantel test (Mantel 1967). The Mantel statistic

(Mantel’s r) is the Pearson correlation coefficient between two

dissimilarity matrices and is used to quantify geographic cluster-

ing (i.e. whether there is greater similarity between sites that are

geographically close than between widely separated sites). The

first matrix described the dissimilarity in the model residuals

betweenpairs ofmonitoring sites. The seconddissimilaritymatrix

defined the geographic (Euclidian) distance between all pairs of

sites. The significance of Mantel’s rwas established by permuta-

tion based on the null hypothesis of no correlation (Legendre and

Legendre 1998). We controlled for false discovery by adjusting

the P-values (Benjamini and Hochberg 1995).

We assessed the performance of the models and their overall

significance based on their coefficients of determination (R2)

and the F-test P-values (Fig. 1, Step 6). Because we were

examining multiple models (i.e. 6 variables � 9 windows of

20-year duration and 19 windows of 10-year duration), we

controlled for false discovery by adjusting the P-values

(Benjamini and Hochberg 1995). We assessed the direction of

each explanatory variable’s relationship with tw (i.e. positive or
negative) based on the sign of the fitted coefficient and quanti-

fied confidence in that direction based on the complement of

half the fitted coefficient’s adjusted P-value (i.e. 1 – P/2;

Makowski et al. 2019). Confidence in the direction of the

relationships between the explanatory variables and tw ranged

between 0.5 (as likely to be the opposite of the direction

indicated by the fitted coefficient) to 1 (complete confidence).

For each water quality variable and duration (10 and 20 years),

we summarised confidence in the direction of the relationship

between each explanatory variable and tw as the mean of the

individual confidence values pertaining to that explanatory

variable over all models (i.e. windows).

For each water quality variable and each duration, we defined

the consistency of each explanatory variable’s relationship with

tw as the degree of agreement of the directions indicated by the

fittedb coefficients over all time windows (Fig. 1, Steps 7 and 8).

Our definitions of agreement differed for the coefficient fitted to

ro (i.e.b1) comparedwith the synthetic land use indicators. For ro,

we expected that for time windows when the SOI trend (dSOIw)
was positive, the direction of the relationship indicated by b1

would be positive and for windows when dSOIwwas negative the
direction would be negative.We measured the consistency of the

contribution of ro for each water quality variable and duration as

the fraction of time windows for which this expected relationship

was true. For the synthetic land use indicators, we had no prior

expectation of the direction of the relationshipwith tw. Therefore,
for each indictor, we measured consistency as the fraction of

models for which the fitted coefficients indicated the same

direction as the mode direction:

Consistency ¼ 0:5� Np=N
�
�

�
�þ 0:5

where Np is the number of models for which the fitted b
coefficients were positive and N is the total number of models
(i.e. 19 and 9 for the 10- and 20-year duration time windows

respectively). The measure of consistency for each of the
synthetic land use indicators has a minimum value of 0.5 when
there are as many positive b coefficients as negative and a

maximum value of 1 when all b coefficients have the same sign.
We arbitrarily classified the relationships for each explanatory
variable and duration as consistent and certain if consistency

was $0.9 and mean confidence was $0.8.

Results

SOI trends and association with water quality observations

The SOI trend (i.e. linear trend in the SOI; dSOIw) differed
between time windows and alternated between increasing and

decreasing for both time window durations (Fig. 3). The ampli-
tude of the variation in the linear trend in the SOI was greater for
the 10- than 20-year time window duration (Fig. 3).

Correlations between the monthly deseasonalised and
detrendedwater quality observations andmonthly deseasonalised
and detrended SOI (ro) varied considerably in strength and

direction across sites and variables, ranging from –0.95 to 0.88
(Table 2). The means of the absolute values of rowere lowest for
TP (0.23) and highest for TN (0.28).

Water quality trends

After discarding time windows for which ,80% of sample
intervals and ,80% of years were represented by observations

sites and variables, the lowest number of sites for any window
was 78 for CLAR for the 10-year window ending 1999. The
number of sites analysed increased for all water quality variables

over the study period (Fig. 4). For example, forDRP, the number
of sites increased from 122 for the 10-year window ending 1999
to 821 for the window ending 2017. Information describing the

proportions of observations that were censored and missing is
provided in the Supplementary material (Fig. S1).

Trend strength and direction (i.e. tw) varied across sites for
all water quality variables, time windows and durations (Fig. 4).

Trend directions generally oscillated with advancing time win-
dow for the analyses of 10-year duration. For example, for
CLAR and the 10-year duration, the median values of tw were

positive for windows ending 2000–05, negative for windows
ending 2006–11 and then positive for windows ending 2012–17.
The oscillations in trend directions were weaker for the analyses

of 20-year duration. For example, there were few changes in the
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sign of the median values of tw for the 20-year duration (Fig. 4).
For the 20-year duration, the median values of twwere negative
(i.e. most sites had decreasing trends) and decreased monotoni-
cally (i.e. the number of sites with decreasing trends increased)
with advancing time window for DRP and TP, whereas median

values of twwere positive (i.e. most sites had increasing trends)
for all time windows for NO3-N.

Spatiotemporal patterns in land use indicators

Spatial variation in the land use indicators across the entire study

time period (i.e. 1992–2017) is shown in Fig. 5 and 6. Over the
28-year study period, the mean total stocking intensity (mTotal)
across the entire river network was 3.8 SU ha�1 (interquartile

range, IQR, 0–6.8 SU ha�1) and across all river monitoring sites
it was 5.3 SU ha�1 (IQR 1.6–7.7 SU ha�1). Over the 28-year
study period, the mean change in total stocking intensity

(dTotal) across the entire river network was 0.25 SU ha�1 (IQR
–0.29, 0.58 SU ha�1) and across all monitoring sites it was 0.6
SU ha�1 (IQR –0.46, 1.01 SU ha�1). mTotal was greatest in

Waikato, Taranaki, Manawat%u and Hawkes Bay regions of the
North Island and the Canterbury and Southland regions of the
South Island (Fig. 5). dTotal increased the most in the Waikato
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Fig. 3. SOI trends, defined by linear trends in the SOI, for time window durations of 10 and 20 years. Each point represents

the SOI trend (dSOIw) for the time window indicated by the end year (x-axis).

Table 2. Distributions of ro values by water quality variable

Water quality variable Mean ro Mean absolute ro Range of ro

CLAR –0.12 0.27 –0.90, 0.74

DRP –0.02 0.25 –0.95, 0.86

NH4-N 0.02 0.24 –0.85, 0.85

NO3-N 0.16 0.27 –0.81, 0.88

TN 0.18 0.28 –0.79, 0.88

TP 0.04 0.23 –0.85, 0.84
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and Taranaki regions of the North Island and the Canterbury and
Southland regions of the South Island (Fig. 5). dTotal decreased
the most in the Auckland, Manawat%u–Whanganui, Hawkes Bay

andWellington regions of the North Island and theMarlborough
region of the South Island (Fig. 5).

Over the 28-year study period, the mean proportion of

catchment occupied by plantation forestry (mForest) across both
the entire river network and river monitoring sites was 1.4%.

Over the study period, the mean change in plantation forestry

(dForestry) across both the entire river network and river

monitoring sites was 2.8%. Increases throughout the study

period in the proportion of catchment occupied by plantation

forestry (dForest) were greatest across the North Island and in

the eastern and northern regions of the South Island (Fig. 5).

The change in sheep stocking intensity (dSheep) over the
entire study period was negative across the entire country, with

the largest changes in the Canterbury and Southland regions of

the South Island (Fig. 6). The change in dairy cow stocking

intensity (dDairy) over the entire study period was positive

across much of the country, but particularly in the Waikato

region of the North Island and the Canterbury, West Coast and

Southland regions of the South Island.

Throughout the study period, dairy cows made the greatest

contribution to total stocking intensity (mDairy) in the Waikato

and Taranaki regions of the North Island and parts of the West

Coast, Canterbury and Southland regions of the South Island

(Fig. 6). Sheep made the greatest contribution to total stocking

intensity (mSheep) over much of the eastern side of both islands

and the Manawat%u region in the North Island. Beef made the

greatest contribution to total stocking intensity (mBeef) in the

Northland and Gisborne regions of the North Island and

the southern part of the West Coast of the South Island.

Model performance and direction of relationships

The first 10 components of the PCA used to summarise the land

use indicators were significant and explained 97% of the total
variation in the land use indicators. The number of land use
indicators with high loadings (i.e. absolute values .0.2) were
generally limited on the individual PCA axes, enabling mean-

ingful interpretation of all axes (Table 3). For example, sites
with high scores on PC1 had high mean dairy cow stocking
intensity (mDairy), low mean sheep stocking intensity (mSheep)
and highmean total stocking intensity. Similarly, sites with high
scores onPC2 had increasing dairy cow (dDairy) and decreasing
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sheep (dSheep) stocking intensity, and sites with high scores on
PC10 had increasing plantation forest cover and high mean
plantation forest cover.

Of the 168 fittedmodels (6 variables, 19 windows of 20-year
duration and 9 windows of 10-year duration), 157 (93%) were
significant after adjusting for false discovery rate. The varia-

tion in tw explained by the linear regression models was
generally low (mean R2¼ 0.15), varied between time windows

and was slightly greater for the 20-year duration windows
(mean R2 ¼ 0.18) than the 10-year duration (mean R2 ¼ 0.14;
Table 4). The NO3-N models had consistently high R2 values

across windows for both the 10- and 20-year durations (means of
0.17 and 0.31 respectively). The TP model had the lowest R2

values for the 10-year duration (mean R2¼ 0.11) and the NH4-N

model had the lowest R2 values for the 20-year duration (mean
R2 ¼ 0.09).
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Fig. 5. River network segments (Strahler order$ 4) categorised by land use indicators over the entire study

period, evaluated as (A) mean total stocking intensity (mTotal; SU ha�1), and (B) changes in stocking intensity

(dTotal; 100� SU ha�1 year�1); (C) mean proportion of catchment cover by plantation forest (mForest;%), and

(D) changes in proportion of catchment cover by plantation forest (dForest;% year�1 � 100). Categories are

definedby six equal quantiles of the distributions of the non-zero values of the indicators over network segments.
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Mapped patterns in the residuals of all models were random
and did not suggest the presence of additional environmental
drivers of trends that were missing from the models. The mean

Mantel’s r value across all models was 0 (maximum absolute
value 0.14) and only 8% of Mantel’s r values were statistically

significant after adjusting for false discovery rate (for more
information see Fig. S3 and S4 of the Supplementary material).

Across all models, confidence in the direction of the relation-

ships between the explanatory variables and twwas highest for ro
with a mean confidence of 0.88. For the 10-year duration, ro had

x ≤ 5

�Beef �Dairy

Mean contribution to total stock units (%)

Change in contribution to total stock units (% year–1 × 100)

�Deer �Sheep

�Beef �Dairy �Deer �Sheep

5 < x ≤ 10 10 < x ≤ 20 20 < x ≤ 40 40 < x ≤ 80 x > 80

x ≤ –1 –1 < x ≤ –0.5 –0.5 < x ≤ 0.5 0.5 < x ≤ 1 1 < x ≤ 1.5 x > 1.5

Fig. 6. River network segments (Strahler order$5) categorised by land use indicators over the entire

study period. The top panel shows the mean contribution to total stocking intensity by stock type

(mDairy, mBeef, mSheep, mDeer;%). The bottom panel shows changes in the contribution of each stock

type to total stocking intensity (dDairy, dBeef, dSheep, dDeer;% year�1� 100). Categories are defined

by six equal quantiles of the distributions of the non-zero values of the indicators over network segments.

Table 3. Loadings of the land use indicators on the retained PCA components

Values of loadings with an absolute value .0.2 are shown

PCA axis

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Cumulative variation explained (%) 21 38 50 59 68 75 82 88 93 97

dTotal 1

dDairy 0.9 –0.3

dBeef 1

dSheep –0.9

dDeer 1

dForest 1 0.2

mTotal 1

mDairy 0.9 –0.2 0.3

mBeef 1

mSheep –1

mDeer 1

mForest 0.2 1
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the highestmean confidence (0.90), but for the 20-year duration ro
had the fourth highest mean confidence (0.84). The sign of the
coefficient fitted to ro (b1) was generally consistent with the
direction of the SOI trend (dSOIw) for each time window (Fig. 7).

For the 10-year duration time windows, consistency for ro was
.0.75 for all water quality variables and, when only time
windows with absolute dSOIw values .0.75 were considered
(i.e.when timewindowswithweakSOI trendswere excluded), all

variables had b1 consistency values of unity. For the 20-year
duration, when only time windows with absolute dSOIw values
.0.75 were considered, all water quality variables except CLAR

had b1 consistency values of unity. With two exceptions (CLAR
and TN for the 20-year duration), mean confidence in all fittedb1

values was.0.75.

More relationships between the synthetic land use indicators
and twwere consistent and certain for the 20-year duration (26 of
60 coefficients) than for the 10-year duration (4 of 60 coeffi-

cients; Fig. 8). For the 10-year duration there were more
relationships between the synthetic land use indicators and tw
with highmean confidence (i.e..0.75) but low consistency (29)
than for the 20-year duration (8).

For all water quality variables, three or more of the synthetic
land use indicators made consistent and certain contributions to
the 20-year duration models and, for NO3-N, two and six

explanatory variables made consistent and certain contributions
to the 10- and 20-year duration models respectively (Table 5).
Within water quality variables, the direction of the consistent

and certain associations between the synthetic land use indi-
cators and water quality trends differed. For example, for the
20-year duration, CLAR had negative and positive associations
with PC1 and PC2 indicating degradation and improvement

respectively. Between water quality variables, the direction of
the consistent and certain associations between the synthetic
land use indicators differed. For example, for the 20-year

duration, NO3-N and TP had positive and negative associations
withPC1 indicating degradation and improvement respectively.

Discussion

Although river water quality trends are routinely analysed and

reported in New Zealand, there has been minimal effort to date
to rigorously attribute these trends to environmental drivers (e.g.
Hamill and McBride 2003). Accurate attribution of water
quality degradation to drivers is a prerequisite for effective

water management (Ryberg et al. 2018). In the case of

agricultural land use, reducing adverse effects on water quality

without unnecessarily prohibiting agricultural practices requires

accurate identification of the land uses and practices that cause

water quality degradation (Ryberg et al. 2018). To the extent

possible with the available data, we attributed water quality

trends to the combination of an indicator of climate variability

(i.e. ro) and multiple aspects of pastoral land use. Attribution

was based on statistical models that included multiple alterna-

tive drivers and consideration of the consistency, certainty and

physical plausibility of the associations.

Our model results indicate that SOI trends are associated with

trends in the six water quality variables at the 10-year timescale

and, to a lesser degree, at the 20-year timescale. The lack of

consistent and certain associations between land use indicators

and water quality trends at the 10-year timescale indicates that

land use signals were generally swamped by the noise of climate

variability (Choquette et al. 2019). However, at the 20-year

timescale, land use signals were more discernible and a wide

range of consistent, certain and physically plausible land use–

water quality trend associations were apparent. Confidence in

these conclusions was provided by the consistency of the contri-

bution of the landuse indicators to the explanation of between-site

differences in trends across time windows of 20-year duration.

This confidence was increased by the fact that each window

corresponded to a unique set of climate conditions (Fig. 3) and a

unique set of sites (Fig. 4). Here we consider a subset of these

associations and discuss their possible explanations.
The strongest relationships between water quality trends and

land use indicators were for NO3-N. Independent estimates
indicate that between 1990 and 2012, nitrogen leaching from
agricultural land increased at an average rate of 1.2% year�1

(Ministry for the Environment and Statistics New Zealand

2019). The estimated increase in leaching rates is strongly
associated with the replacement of the formerly dominant sheep
industry by dairy farming and with increasing stocking intensity

in general (Dymond et al. 2013). These observations are
consistent with our attribution of degrading trends in NO3-N
to increasing dairy cow and decreasing sheep stocking intensity

(PC2) and to increasing total stocking intensity (PC4) for both
the 10- and 20-year durations. Our results are also consistent
with catchment-scale studies of the effects of conversion to
dairy farming and increasing total stocking rates on river

nitrogen concentrations (Monaghan et al. 2007, 2009; Wilcock
et al. 2013; Wright-Stow and Wilcock 2017).

Table 4. Summary of explained variation and significance for models representing each time window for durations of 10 and 20 years

‘Explained variation’ is the meanR2 over all models (first value), with theminimum andmaximumR2 values provided in parentheses. ‘Percentage significant’

is the proportion of models that were significant at a¼ 0.05 after adjusting for false discovery rate

Variable 10 years 20 years

Explained variation Percentage significant Explained variation Percentage significant

CLAR 0.16 (0.05–0.3) 95 0.25 (0.1–0.36) 100

DRP 0.17 (0.05–0.41) 100 0.13 (0.08–0.17) 100

NH4-N 0.1 (0.02–0.25) 84 0.09 (0.03–0.21) 78

NO3-N 0.17 (0.09–0.26) 100 0.31 (0.21–0.38) 100

TN 0.14 (0.01–0.28) 74 0.14 (0.1–0.19) 100

TP 0.11 (0.03–0.22) 100 0.17 (0.12–0.28) 100
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We also attributed degrading NO3-N trends to increasing
plantation forest cover (PC3). A plausible explanation for this
association relates to the effect of forestry operations on diffuse

nitrogen loss rates. Catchment-scale studies indicate that NO3-N
and TN concentrations increase in response to forest planting,
thinning and harvesting operations (Bäumler and Zech 1999;
Gravelle et al. 2009; Hughes and Quinn 2019).

Improving trends in river DRP and TP concentrations over
the past two decades have been reported from several recent
national-scale studies (e.g. Larned et al. 2016; Ministry for the

Environment and Statistics NewZealand 2017). These improve-
ments may be attributable to several factors; McDowell et al.

(2019) suggested that the most probable driver is the growing
use ofmitigationmeasures to reduce the loss of phosphorus from
agricultural land (e.g. shifting from high- to low-solubility

fertilisers). We attributed improving DRP trends to high mean
dairy cow and low mean sheep stocking intensity (PC1 in
Table 5). A plausible explanation for this may be that the
implementation of mitigation measures to reduce phosphorus

loss has been growing rapidly on dairy farms, which have had
the greatest pressure to improve land use management practices
under the Dairying and Clean Streams Accord and its successors

(Bewsell et al. 2007; Scarsbrook and Melland 2015; Monaghan
et al. 2021). The reasons for degrading DRP trends in
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association with high mean beef cow and low mean dairy cow
stocking intensity (PC8) and degrading TP trends in association

with increasing total stocking intensity (PC4) are unclear, but
may reflect slower implementation of mitigation measures on
non-dairy farms.

A plausible explanation for improving trends in river NH4-N
in association with increasing dairy cow stocking intensity
(PC2) is the improved management of farm dairy effluent,
particularly as dairy farms have intensified and have often been

required to upgrade their infrastructure. Over the past 25 years,
there has been a widespread shift from discharging dairy
effluent directly to streams and drains to land application. This

management change appears to have reduced effluent-derived
inputs of NH4-N to rivers (Monaghan et al. 2010). By contrast,
degrading NH4-N trends associated with increasing total stock-

ing intensity (PC4) may reflect changes in production and
practices that have overtaken any benefits associated with the
adoption of mitigating strategies over the past two decades.

Two results of this study are indicative of the predictable
effects that climate variability has on the direction and strength of
water quality trends for timewindowsof 10- and20-yearduration.
First, therewas generally high confidence in the coefficients fitted

to ro for all water quality variables and both time durations
(Fig. 7). Second, for models corresponding to individual time
windows, the signs of the coefficients fitted to ro were generally

consistent with the signs of the corresponding SOI trend (dSOIw;
Fig. 7). The more even distribution of the signs of the coefficients

fitted to ro for durations of 10 compared with 20 years was
consistent with the oscillations in strength and direction of water
quality trends and the direction of dSOIw over the shorter

timescale. These results are consistent with relationships between
SOI and water quality trends reported in Snelder et al. (2021).

Although the contribution of ro to the models was generally
consistent and certain, its inclusion as an explanatory variable

should not be construed as comprehensively accounting for the
effect of climatevariabilityonwaterquality trends.ENSOstrength
has a strong effect on New Zealand’s climate, but it accounts for

less than 25% of the year-to-year variance in seasonal rainfall and
temperatureatmostNewZealandmeasurement sites (Salinger and
Mullan 1999). In future investigations, alternative indicators of

climate variability to SOI, such as measures of rainfall and
temperature, could be assessed as in terms of the variation they
explain inwater quality trend direction and strength.We anticipate

that measures of rainfall and temperature that best explain trend
direction and strength will differ between water quality variables
due to differences in how the associated contaminants are mobil-
ised, transported, stored and transformed within catchments.

We did not investigate the mechanisms underlying the
observed correlations between water quality observations at
each site and the SOI (i.e. ro). In a previous investigation,

Table 5. Summary of consistent and certain associations between the synthetic land use indicators and water quality trends

‘Impact’ indicates whether the direction of the indicator’s contribution to the trend represents degradation or improvement in water quality

Indicator Indicator interpretation Variable, duration (years) Direction, confidence Impact

PC1 High mean dairy cow and low mean sheep stocking intensity CLAR, 20 Negative, 0.99 Degradation

DRP, 20 Negative, 0.99 Improvement

DRP, 10 Negative, 0.89 Improvement

NH4-N, 20 Positive, 0.93 Degradation

NO3-N, 20 Positive, 0.87 Degradation

TP, 20 Negative, 0.91 Improvement

PC2 Increasing dairy cow and decreasing sheep stocking intensity CLAR, 20 Positive, 0.93 Improvement

NH4-N, 20 Negative, 0.82 Improvement

NO3-N, 20 Positive, 0.99 Degradation

TN, 20 Positive, 0.98 Degradation

PC3 Increasing plantation forest cover NO3-N, 20 Positive, 0.76 Degradation

TP, 20 Positive, 0.90 Degradation

PC4 Increasing total stocking intensity CLAR, 20 Negative, 0.79 Degradation

NH4-N, 20 Positive, 0.92 Degradation

NO3-N, 20 Positive, 0.99 Degradation

TN, 20 Positive, 0.79 Degradation

TP, 20 Positive, 0.99 Degradation

PC5 Increasing beef cow and decreasing dairy cow and sheep stocking intensity NH4-N, 20 Negative, 0.77 Improvement

TN, 20 Negative, 0.87 Improvement

PC6 Increasing deer and decreasing dairy cow stocking intensity TN, 20 Positive, 0.86 Degradation

PC7 High mean deer stocking intensity NO3-N, 20 Positive, 0.94 Degradation

NO3-N, 10 Positive, 0.93 Degradation

PC8 High mean beef and low mean dairy cow stocking intensity CLAR, 20 Negative, 0.99 Degradation

DRP, 20 Positive, 0.79 Degradation

NO3-N, 20 Negative, 0.91 Improvement

NO3-N, 10 Negative, 0.83 Improvement

PC9 High mean total stocking intensity CLAR, 20 Negative, 0.93 Degradation

DRP, 20 Positive, 0.79 Degradation

PC10 High mean plantation forest and increasing plantation forest cover CLAR, 20 Negative, 0.79 Degradation

NH4-N, 10 Positive, 0.78 Degradation
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Scarsbrook et al. (2003) identified geographic patterns in site ro
values for some water quality variables that are consistent with

the known impact of ENSO variation on rainfall and stream
flow. These patterns suggested that the associations between
water quality observations and the SOI at each site, as well as

between ro and water quality trends across sites, are due, in part,
to the influence of rainfall on the mobilisation, storage and
transport of contaminants. As a corollary, the confounding effect

of climate variability may be reduced by apportioning water
quality trends into components attributable to changes in stream
flow (i.e. discharge trend) and to changes in the concentration–
discharge relationship. The recently developed Weighted

Regressions on Time, Discharge and Season (WRTDS; Hirsch
et al. 2015) performs this type of apportionment and may allow
water quality trends to be more accurately attributed to land use

(Choquette et al. 2019).
The statistical models used in this study explained a small

proportion of the variability in site trends (i.e. tw; Table 4). This is
an expected result for at least four reasons. First, the SOI is an
imprecise proxy for the role of climate variability on water
quality. Second, variation in water quality responses to climate
variability is mediated by multiple biogeochemical and hydro-

logical processes, including contaminant mobilisation, transport,
storage, attenuation, hydrological connectivity and dilution
(Gascuel-Odoux et al. 2010; Mellander et al. 2018). Differences

in these processes between catchments will produce inconsistent
water quality responses between sites to the same climate forcing
and weakens our ability to detect the contribution of agricultural

landuse towater quality trends (Diamantiniet al.2018;Mellander
et al. 2018). Third, there has been significant promotion and
uptake of mitigation measures to reduce the adverse effects of

pastoral agriculture onwater quality inNewZealand over the past
three decades (Monaghan et al.2021).Thesemeasures andothers,
such as improvedmanagement of point source discharges, are not
explicitly represented by our models and are likely to have had

spatially variable effects, further contributing to the unexplained
variation. Fourth, the resolution of our land use indicators was
limited so that land use drivers were represented by the mean of,

and changes to, catchment land use. However, catchment
averages may not represent the most influential drivers of water
quality changes: land use at specific locations may be more

influential than catchment averages. Increased explanation of
between-site trends may be possible if future research is able to
find more precise descriptors of both the climatic and land use
drivers of water quality.

Conclusion

Our study indicates that climate variation strongly contributes to
trends in water quality and, at the 10-year timescale, almost
completely overwhelmed the ability to detect the signal of land

use in water quality trends. At the 20-year timescale, our study
was able to detect the signal of agricultural land use and land use
changes on water quality trends in New Zealand. Our rigorous

approach to attributing water quality trends to land use shows
that associations are complex and depend on both the water
quality variable and the specific land uses and intensity levels.
These results are somewhat at odds with the contention that the

expansion and intensification of dairy farming has negatively

affected water quality over the past 25 years (Foote et al. 2015).
Of the 30 consistent and certain associations between agricul-

tural land use indicators and water quality trends, nine were
associated with water quality improvement. There was a clear
signal of degrading TN and NO3-N associated with the inten-

sification of dairy farming (PC2). However, dairy intensifica-
tion was also associated with improving CLAR and NH4-N and
high mean dairy (PC1) was associated with improving DRP.

Water quality state is strongly associated with the proportion of
catchment area occupied by agricultural land and therefore
improving trends associated with agriculture may represent
slow rates of improvement from a poor state. However, the

association between current water quality state and agricultural
land use is not evidence that ongoing changes in that land use are
driving water quality degradation. Our study shows that con-

siderable analytical effort is required to extract an understanding
of the drivers of water quality trends. The effort to better link
water quality changes to land use will enable more precise and

effective management actions to be prescribed to arrest degra-
dation in the future.
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