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Abstract. Water resources are an essential component of a country’s natural resource potential. Pressure on these
resources is set to increase due to increased water demand, climate change and rainfall variability. This could lead to
conflicts between sectoral users, within or between countries, especially among transboundary countries. Interest in

transboundary water resources is a priority, especially where issues such as uncertainty regarding the status of
transboundary waterbodies and reductions in water volume persist. In this study, we used the feed-forward neural
network to forecast water demand along the Nile River in two countries, Egypt and Kenya. Two scenarios were modelled.

Input data for the first scenario included preceding records of precipitation, gross domestic product, population and water
use in the agricultural sector. The second scenario observed the effects of the growing economy on water resources by
doubling the gross domestic product and keeping all other inputs constant. For Kenya, the results projected a steady
increase in water demand throughout the next 20 years for both scenarios. However, for Egypt, the observed trend in both

scenarios was a decline in water demand, followed by a steady increase. The results underscore the importance of
forecasting for easier future planning andmanagement, and to help governing bodies along transboundary water resources
develop timely strategies in the future to alleviate future water shortages and poor management of water resources.
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Introduction

Water resources are an integral part of the natural resource
potential of a country, play a critical role in the development of

most sectors of an economy and are always under high demand.
Water demand increases continually as a result of population
growth, in addition to the increasing instability caused by global

warming and climate change (Wada et al. 2016). Water demand
can be defined as the total amount of water used by different
water users for a given water system, including in the industrial,
residential and agricultural sectors. Currently, global water use

demand stands at 4600 km3 year�1 and is expected to increase by
20–30% by 2050 (Boretti and Rosa 2019). In the agricultural
sector alone, global agricultural water use is expected to

increase by 60% in 2025 from the 2019 estimates (Pfister et al.
2011). As water demand approaches the total amount of
renewable freshwater resources available, it is critical that the

remaining water resources are managed properly to ensure

secure and sustainable water supplies into the future. This
underscores the importance of proper policy adjustments,
especially of shared (i.e. transboundary) water resources.

Globally, the register of international river basins in 2018
listed 310 international transboundary river basins covering
47.1% of the land surface (McCracken and Wolf 2019). Africa

harbours 80 transboundary water basins that cover 64% of the
continent’s land area and are inhabited by 77% of the African
population. Because of the nature of these resources (i.e.
constant motion and flow of water resources) compared with

other transboundary resources such as land, which is static,
issues of governance and ownership are prominent, leading to
conflicts and uncertainty as to the future of these resources

(Kliot et al. 2001). The importance of preserving shared natural
resources cannot be overstated. This is because they are prone to
overutilisation, especially in cases where there are gaps between

policies, plans and practices (Savenije and Van der Zaag 2000).
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Although many countries with transboundary water basins have
managed to overcome their differences and have cooperated to

benefit all, the uncertainty of future political shifts and other
unforeseeable challenges cannot be overlooked (Kliot et al.
2001). Thus, there is a need for proper data keeping, data

records, better planning and management and a constant up-
to-date evaluation and monitoring of existing programs in these
regions.

The Nile River, the longest river in the world, is a critical
transboundary resource in Africa that supports a large popula-
tion and economy. The Nile basin is the largest hydrographic
basin in Africa, covering ,10% of African territory across the

arid regions and with high population densities (FAO Land
1997). In Egypt, for example, 80% of all the water from the Nile
River is used for agricultural production because there is

insufficient accessible groundwater to meet the high water
demands of agricultural activities, which contribute to 14.5%
of the country’s gross domestic product (GDP) (Bastiaanssen

et al. 2014). In Kenya, although the Nile basin accounts for 9%
of the country’s land area, the Nile basin provides 52% of
Kenya’s water needs and plays a considerable role in the
country’s economy (Nile Basin Initiative 2016). In Kenya, as

in Egypt, irrigation activities account for the majority of water
usage because most of the available land is arid and semi-arid
and thus reliant on irrigation: 98% of the water footprint in

Kenya is used to sustain agricultural activities that drive the
economy (Mekonnen and Hoekstra 2014). In addition to water
use in the agricultural sector for economic gains, water use in the

industrial sector is another critical component that drives the
economy.

Zhao et al. (2017) studied the relationship between economic

growth and water usage and deduced that these factors are not
entirely connected. Instead, there are various factors, such as
technology, population, urbanisation, affluence and industrial
structure, linking them. Zhao et al. (2017) found that population

and technology are significant factors affecting the relationship
between economic growth and water usage. Moreover, they
found an inverted U-shaped relationship between economic

growth and water consumption with the inflection point
expected to occur in 2021 (Zhao et al. 2017). In Kenya, for
example, ,40% of the GDP is from natural resource sectors

such as tourism, agriculture, mining and forestry, all of which
heavily rely on fresh water (Nelson et al. 2012). A specific
example is the Mara River basin, which largely supports the
agricultural and tourism sectors. It is estimated that these two

sectors jointly contribute 10–15% of the Kenya’s GDP (Nelson
et al. 2012).

The demand for water use in many sectors is bound to

increase over time as countries continue to seek development
opportunities. Thus, to ensure the sustainable use of water
resources in the aforementioned sectors, there is a dire need

for the proper planning of water systems, which can be achieved
by forecasting and estimating water supply and demand (Yue
et al. 2017).

Water demand forecasting is an active field of study, with
many existing models and tools that have been tested and
applied in this field (Zhou et al. 2000; Adamowski 2008;
Adamowski andKarapataki 2010). Previous studies have shown

that demand forecasting can lead to significant scientific

advances, as well as regulatory technological and policy
changes, to avert future disasters and ensure the sustainable

use of resources (Tilman et al. 2001). At the global scale,
estimating water demand is complicated because of the limited
observational data available and interactions among various

factors, which include global climate change, population
growth, land use change, globalisation, economic development,
technological innovations, political stability and the extent of

international cooperation. Thus, different methods have been
proposed to deal with complex, large datasets when making
forecasts. With the advances in machine learning, these chal-
lenges have been addressed in recent studies and continue to be

investigated (Bierkens et al. 2001; Adamowski and Karapataki
2010; Lee and Derrible 2020).

In this study we propose a model that forecasts long-term

water demand along the Nile River, a transboundary water
resource. Unlike previous research on the Nile basin, this study
makes assessments at two points along the Nile River, one being

along a tributary in Kenya and the second being at a drainage
location in Egypt, where the Nile River is the primary source of
water. Previous studies along the Nile basin have usually
conducted analyses in a single country and then proceeded to

compare results to those reported in other independent studies
(Allan 2009; Hamouda et al. 2009; Kheireldin 2016; Asaminev
et al. 2020). However, the approach in this study is to conduct a

side-by-side comprehensive comparison of two countries along
the Nile basin. The major aim of this study is to understand the
water use behaviour in these two countries and to assess trade-

offs and synergies among management options in the various
water use sectors. A set of variables influencing water consump-
tion is used in a feed-forward neural network (FFNN) to make

predictions out to 2040. The study also assesses a second
scenario, in which GDP is increased while all other variables
affecting water consumption remain constant. Under these
conditions, certain assumptions were made, specifically: (1)

rapid population growth has increased water use and consump-
tion; (2) most of the water sources have been overexploited due
to high water demand; and (3) policies supposed to ensure that

water is properly used have not been implemented properly.
The results obtained from this analysis will help shape future

policies by accounting for current trends in water use. More so,

with sustainable water practices being encouraged in the Nile
basin region, such an analysis will promote successful water
planning and management and provide an opportunity to mini-
mise potential conflicts surrounding transboundary water

resources in the region (Baumann et al. 1998). Furthermore,
the countries sharing the resourcesmay realise the importance of
sustainable planning based on the outlook of the resource should

current trends persist.

Literature review

This section summarises important literature contributing to this

study.

Forecasting techniques

The most frequently adopted methods of forecasting are
linear regression and time series analysis (Arbués et al. 2003;

Herrera et al. 2010). Time series analysis focuses on patterns and
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changes in patterns, and thus relies on historical data. Some
classical time series analysis methods include autoregression,

moving average, vector autoregression and Holt–Winters expo-
nential smoothening, all of which have been applied in different
fields with great success. For example, Bierkens et al. (2001)

developed a model that was used for space–time conditional
simulation and network optimisation using a time series predic-
tion and Kalman filter for space–time modelling of water table

depth. Although time series analyses have been used success-
fully, with advances and the accuracy levels of deep learning
there has been an increased focus on the use of deep learning in
forecasting and prediction analyses.

Deep learning

Deep learning is a specialised form of machine learning that
uses multiple layers in the network to identify trends. Deep

learning can automatically learn arbitrary complex mappings
from inputs to outputs and support multiple inputs and outputs,
making it the preferred approach when handling complex, large

datasets. Deep learning architectures include convolutional
neural networks, artificial neural networks (ANN) and recurrent
neural networks (RNNs), which are used in different fields

depending on the desired output (Pranav et al. 2020).
Many studies of forecasting water demand have used deep

learning. For example, Ghose et al. (2010) used the radial basis
function network and back-propagation neural network model

to predict groundwater fluctuations from previous data to solve
the problem of water management during the dry season in the
western region of Orissa, in eastern India. Zubaidi et al. (2020)

used ANN and a backtracking search algorithm to estimate
monthly water consumption based on previous data in Gauteng
Province, South Africa, from 2007 to 2016. In a traditional

neural network, all inputs are independent of each other;
however, to make predictions there is a need to understand the
patterns in previous observations so that accurate predictions
can bemade (Chen and Hu 2018). This requires neural networks

such as RNNs or FFNNs, which are designed to recognise
sequential data characteristics and use patterns to predict the
next likely scenario (Brezak et al. 2012).

Recurrent neural networks

The RNN is a prevalent network structure in deep learning
commonly used in sequential learning; it has been used in many

studies with convincing results (Tran and Song 2017; Tsai et al.
2018; van der Lugt and Feelders 2019). RNNs are preferred
because they make it possible to process an input of any length,

account for historical information in the computation process
and can have weights shared across time. RNNs allow for
previous outputs in their structure to be used as inputs while

having a hidden states. The underlying architecture of the RNN
is shown in Fig. 1. The architecture of the RNN consists of
one input unit, one output unit and one hidden layer, which is
the memory of the network (Fig. 1). In the RNN shown in Fig. 1,

‘t – 1’ represents previous values, ‘t’ represents present values
and ‘t þ 1’ represents future values. The number of unfolded
layers depends on the values in the sequence.

RNNs build complex non-linear models by iteratively calcu-
lating model parameters using algorithms like gradient descent
to minimise a loss function, namely, the mean squared error. For

a loss function L, a single step of gradient descent will modify
the model parameter (say W) as shown in Eqn 1:

Wiþ1 ¼ Wi � a
@L

@x
ð1Þ

where a is the learning rate and i is the iteration number. The input

sequence is represented by [x1,x2,y, xm], where m is the length
of the sequence. The first RNNblock is fed the input x1. The input
for the next RNN block will be input x2 and the output of the first

RNN block. The input of the mth block will be the output of the
(m – 1)th block and xm. The output of the mth block will be
compared to y, which represents the next number in the sequence.

While training such a network, the input is [x1, x2,y,xm] and
the output is y.

Feed-forward neural networks

The FFNN is a classification algorithm that consists of
several neuron-like processing units organised in layers, with

Output

Hidden
Layer

Hidden
Layer

t–1 t+1t

Unfold

Output

Input Input

Fig. 1. The basic architecture of an RNN: ‘t – 1’ represents previous values in time, ‘t’

represents present values, and ‘t þ 1’ represents future values in time.
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every unit connected to units in the previous layer. The FFNN
uses a standard neural network with multiple hidden layers to

make a prediction, and can thus be used for time series analysis
(Brezak et al. 2012). In the feed-forward system, the signal
travels in one direction only from input to output (Ghose et al.

2010). The main advantage of using an FFNN is its ability to
make predictions multiple steps ahead; thus, FFNNs are ideally
suited to modelling relationships between a set of predictor or

input variables and one or more response or output variables.
FFNNs have been used in previous studies with considerable
success. For example, Farajzadeh et al. (2014) used the autocor-
relation regressive integrated moving average (ARIMA) and an

FFNN to predict rainfall and water run-off in Urmia Lake basin,
Iran. FFNNs are preferred because of their ability to capture
complex representations of data in their inputs. Fig. 2 shows a

simplified FFNN architecture, with its basic structures.
The output in an FFNN layer l in the neural network is given

by the following equation:

a l½ � ¼ f W l½ �a l�1½ � þ b l½ �
� �

ð2Þ

where a[l] is the number of neurons in a certain layer that
determines its dimensions, W[l] and b[l] are the weight matrix

and weight vector respectively for layer l, a[l – 1] is the output of
the previous layer, f is the activation function (tanh), and tanh is
the hyperbolic tangent function.

Water services and economic growth

The relationship between water and economic growth is
critical for sustainable planning with regard to water resources,

and it is necessary to understand this relationship when evaluat-
ing the future of water resources. When water is a bottleneck to
the growth of an economy, the provision of either more water,
better-controlled water or better-quality water is needed condi-

tion for economic growth. As indicated in Table 1, water
services directly influence economic activities. Thus, the rela-
tionship between water resources and other sectors cannot be

segregated if sustainable water practices are to be achieved.
In the agricultural sector, the role of water resources is

critical and is looped in to economic growth as well. Agriculture

mainly relies on irrigation activities for productivity. This
requires huge amounts of water, especially for large-scale
activities. The impediment to this activity is nitrate pollution

topping highly irrigated areas, making groundwater unusable
(Clawson et al. 1971). This often leads to decreased water
quality and a shortage of clean water. Decreases in water quality
adversely affect water users such as fisheries, as well as

decreasing aesthetic values in general. A decrease in agricultural
activities, especially for agriculturally driven economies, will
negatively affect the economybecause therewill be less produce

for export and a loss of productivity across the population as a
result of a decrease in food availability.

Another sector that relies on water services is the energy

sector. Water is crucial in hydroelectric schemes for the produc-
tion of electricity. A constant supply of water improves hydro-
electric production, which, in turn, supports the economy. There
is a strong link between hydroelectricity and manufacturing: the

former provides the energy required to run machines and
improve productivity in the latter.

Waste disposal services provided by water resources are of

critical importance. The capacity of water to assimilate various
types of wastes means that disposal services provided by water
resources are vital, especially for industry. Water standards are

being set globally for water pollution and, according to Howe

Input
Layer

Hidden
Layer

Output
Layer

Fig. 2. A multilayer FFNN showing the three layers that a signal travels.

Table 1. Importance of direct water services to various sectors in the economy

Services include recreation.Macro refers to whether or not the availability of a particular service will, with high probability, affect the basic economic viability

of an activity and its choices of major regional location.Micro refers to whether or not the particular service will, with high probability, affect the intraregional

location decision of the activity within a particular urban area or not

Agriculture, forestry, fisheries, mining Manufacturing and transportation Services Population

Macro Micro Macro Micro Micro Macro Micro

Irrigation and drainage X X

Navigation X X

Hydroelectric power X

Waste disposal X X X

Water quality X X

Municipal supply X X X X
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(1976), the costs of industrial waste reduction increase sharply
as the percentage reduction increases; thus, the capacity of

waterbodies to assimilate waste remains a valuable resource.
The importance ofmunicipal water supplies is directly linked

to manufacturing, services and the ability to support the popula-

tion. An affordable and constant supply of municipal water
determines the population carrying capacity. With unplanned
and strained use of water resources, there could be declines in

sanitation and domestic water, resulting in high water costs in a
given region. At the microlevel, sewerage and the provision of
domestic water can be used to shape urban development trends
and growth (e.g. homes being largely built where there is access

to water; Chakamera andAlagidede 2018). In themanufacturing
and service industries, heavywater users look for ways to ensure
their water supply, especially when they require huge amounts

of water. The availability of sufficient water from municipal
systems can determine the feasibility of a particular industrial
location (Howe 1976).

As economic growth takes place, changes in the importance
of the services provided by water are inevitable. This under-
scores the importance of accommodating economic growth
through reallocation of existing water supplies while being

mindful that existing water laws, the lack of a clear jurisdiction,
clear markets and rights to water, especially in the case of
transboundary water resources, can stifle sustainable economic

growth, particularly when water usage is diminishing the value
of an economy. For countries like Egypt, which relies heavily on
the Nile River, more specialised agricultural development

efforts are more likely to be successful growth initiators than
attempts at integrated basin development. This is more impor-
tant when agricultural expansion is at the heart of regional

economic growth in a country. It is also important to note that
irrigation is a necessary but not sufficient condition for the
initiation of growth of agriculture in arid and semi-arid zones.
Therefore, requisite complementary inputs can result in high

productivity and growth effects. Even the best predictions of the
effects of large water projects on economies and societies
contain sufficient uncertainty about ensuing events that the

provision of resources for continued monitoring and and evalu-
ation is warranted (Howe 1976).

Materials and methods

Study area

This studywas conducted along the Nile River, which has a total

length of,6650 km (4130miles) between the LakeVictoria and
the Mediterranean Sea (Fig. 3). The Nile has a basin drainage
area of ,3.35 � 106 km2 and covers 11 countries: Burundi,

Tanzania, Rwanda, Kenya, Uganda, Republic of Sudan, Ethio-
pia, South Sudan, the Democratic Republic of Congo, Eritrea
and Egypt (Mumbi and Fengting 2020). Egypt and Sudan are the

twomajor users of the river, and Ethiopia andKenya harbour the
tributaries of the Nile. The flow of the Nile has benefited eco-
nomic activities in the north-eastern countries through agricul-

ture and tourism. Approximately 80% of the water from the Nile
River is used in agricultural activities (Mekonnen and Hoekstra
2014). Complete reliance on water resources throughout the
years has caused the Nile River basin to deplete, particularly

with regard to essential material resources, with an associated

decline in water quality (Rahman 2013; Abdel-Satar et al.

2017). According to Goulden et al. (2009), these changes can be

attributed to three factors: a global greenhouse effect resulting
from climatic changes, regional factors (e.g. land use) and river
basin factors (land management). This argument is consistent

with that of Abdel-Satar et al. (2017), who attributed decreases
in water quality and depletion along the Nile River to a lack of
proper water management interventions, such as hydrodynamic

regimes regulated by the Nile barrages; land and water use,
including agricultural return; and waste water from industrial,
municipal and river ships. In addition to these factors, political
tension over ownership rights and user benefits engulf the Nile

river basin, particularly in the case of countries that depend on
the Nile entirely but are not the source of the Nile (Swain 1997).
As in the case of other transboundary resources, conflicts among

these countries has been inevitable, with emerging hydropower
in the region pushing countries like Egypt and Ethiopia to
dominate other countries in this region (Rahman 2013).

With previous literature highlighting the importance of
undertaking side-by-side analysis such as ours, as opposed to
blanket analyses of countries within the Nile (Mumbi and
Fengting 2020), two study areas were selected. This study

focuses on Kenya and Egypt based on their geopolitical loca-
tions in theNile (Fig. 3). Kenya is located upstream and harbours
one of the tributaries of the Nile River, namely the White Nile,

which has almost 85% of its water coming from Lake Victoria
(FAO Land 1997). Egypt is located downstream and is the
drainage point of the Nile as it empties into the Mediterranean

Sea. Egypt depends heavily on the Nile, with over 95% of
Egyptians living a few kilometres from the Nile River (Nile
Basin Initiative 2016). TheNile River has been termed the artery

of Egypt, because nearly all the freshwater used for drinking and
irrigation in the Egypt comes from the Nile River. The Nile also
supplies 65% of industrial water needed in the Egypt and
receives 57% of the effluent (Abdel-Satar et al. 2017). With

the expansion of industrial, agricultural and recreational activi-
ties, in addition to the poorly structured drainage and sewerage
systems along the Nile River, both the quality and quantity of

water used are of serious concern (Goher et al. 2015).
In addition to the geopolitical aspect in selecting these two

countries for evaluation in this study, another strategic aspect is

the bilateral cooperation of Egypt and Kenya. Although, unlike
Egypt, Kenya does not primarily depend on the Nile River, it is a
major player in the Nile basin initiative that promotes coopera-
tion among the countries sharing the Nile. For example, in 2010,

Kenya and five other nations, including Ethiopia, signed a River
Nile Basin Co-operative Framework agreement. The deal after
its ratification by the respective parliaments established a

permanent commission to decide on the Nile’s water allocation,
albeit without consulting Egypt and Sudan (Kimenyi andMbaku
2015; Mumbi and Fengting 2020). This, framework was put in

place to protect theNile River and promote peaceful coexistence
among the countries that share this resource (Mumbi and
Fengting 2020).

Data sources and selection

The present study used existing data from different sources. The
data were carefully selected, tested, verified and complied

before the training process for the neural networks. Owing to the
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large amount of data used, measures undertaken to ensure
trustworthiness during the process included triangulation, peer

scrutiny and taking into consideration the background and
authority of the sources and publishers (Shenton 2004; Mumbi
and Fengting 2020). The data sources and the date range used in
this study are provided in Table 2. Evidently, as indicated in

Table 2, there were differences periods for data were available
and sources between the two countries, which is as expected
when dealing with a wide range of data among many countries.

Where the required data were missing, extrapolation was done
using a basic least squares fit to find intermediate values. The
next step was to drop the extra years and equalise the amount of

data available between the two countries. In this case, the data
cut-off was set at 1979 for both countries. In addition, different

data sourceswere compared to validate the data being used.Data
were carefully selected and curated to suit our models, and the
data used for training and testing the RNNs and FFNNs are
presented in Table 3.

Data preprocessing and normalisation

Data scaling was conducted before the training process could

begin. Data scaling is a recommended preprocessing step when
working with neural networks, especially when dealing with
different datasets (Brownlee 2019; Nawi et al. 2013). The data
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used in this study were at different scales and had different
distributions both among variables and between the two coun-

tries. These differences could increase the difficulty of the
modelling process; for example, large input values (e.g. a spread

of hundreds or thousands of units) can result in a model that
learns large weight values, leading to an unstable model because

of the large weights, resulting in higher generalisation error. To
overcome this, data scaling is suggested, with a good rule of
thumb being small values in the range of 0–1 or standardised

with a mean of 0 and a standard deviation of 1 (Brownlee 2019).
Data normalisation is a rescaling of the data from the original
range so that all values are within the range 0–1.

Because the data used in this study were not normally
distributed, data normalisation for the input variables was done,
otherwise standardisation would have been an option. The same
was done for the output variables plotted and was set to match

the activation function (transfer function) on the output layer.
The normalisation equation used in this study was:

y ¼ x�minimumð ÞC maximum�minimumð Þ ð3Þ

where the minimum and maximum values pertain to the value x
being normalised.

Consequently, the next step was to convert the total water
withdrawal data to withdrawal per person. Once data were
transformed into the desired input form for the model being

trained, data were split into training and test sets (80 and 20% of
the dataset respectively).

RNN v. FFNN: performance evaluation and model design

To achieve the objectives of this study, two tasks were con-
ducted. First, both the RNN and FFNN had to be trained before
the actual comparison could begin. Second, tests were done to
compare the performance of the FFNN and RNN to determine

which network to use in the study. There is no rule of thumb for
the division of the data to use for training and testing; this varies
on case-by-case basis. Many researchers have used different

divisions; for example, Boadu (1997) and Kumar et al. (2019)
used 80% of their available data for training, Pal (2006) used

Table 2. Data sources and the period for which data were obtained for

Kenya and Egypt

FAO, Food and Agriculture Organization of the United Nations; IMF,

International Monetary Fund

Kenya Egypt

Agriculture

Period 1958–2016 1967–2018

Source FAOA Central Agency for Public

Mobilization and Statistics

of EgyptB and FAOA

GDP

Period 1960–2019 1965–2019

Source FAO and World BankC FAO and World BankC

Precipitation

Period 1979–2014 1979–2014

Source 350 weather stations; The National Center for Environmental

Prediction and Climate Forecast System ReanalysisD

Population

Period 1958–2016 1958–2016

Source IMF and FAOA IMF and FAOA

AData available at http://www.fao.org/land-water/databases-and-software/

aquastat/en/ (accessed 23 November 2020).
BData available at https://knoema.com/EGOP2018/agricultural-output-

production-in-egypt (accessed 23 November 2020).
CData available at https://data.worldbank.org/country/egypt-arab-rep?

view=chart (accessed 23 November 2020).
DData available at https://globalweather.tamu.edu/ (accessed 23 November

2020).
EData available at https://www.imf.org/en/ (accessed 10 October 2021).

Table 3. Data used for FFNN and RNN training

Population in given in millions of people. Water withdrawal refers to total annual freshwater withdrawal (m3� 109). GDP per capita is reported in US$ and

aggregate growth rates were calculated using constant 2010 US$ GDP weights. Agricultural water withdrawal is given in billions of cubic metres (m3� 109)

per year. Precipitation is the mean (mm) of 430 weather stations. Data sources are provided in Table 1

Year Egypt Kenya

Population Water

withdrawal

GDP Agricultural water

withdrawal

Precipitation Population Water

withdrawal

GDP Agricultural water

withdrawal

Precipitation

2001 65.18 68.30 1370.72 3.35 2.56 30.31 2.40 401.78 47.20 314.17

2002 66.53 68.30 1210.23 3.44 2.57 31.15 2.40 395.85 47.10 478.34

2003 67.91 68.64 1120.88 3.43 4.50 32.01 2.32 436.69 47.20 406.02

2004 69.31 68.64 1045.94 3.49 3.93 32.89 2.32 458.88 47.40 392.93

2005 70.75 68.64 1168.12 3.54 1.65 33.80 2.32 519.80 47.40 376.46

2006 72.21 68.64 1375.20 3.55 2.45 34.74 2.32 697.01 47.50 579.03

2007 73.64 68.64 1640.48 3.55 1.05 35.70 2.32 839.11 47.60 509.91

2008 75.23 72.30 2011.25 3.56 5.30 36.69 3.22 916.90 47.60 417.47

2009 76.93 72.30 2291.67 3.71 3.65 37.70 3.22 920.08 47.90 401.58

2010 78.73 72.30 2602.48 3.69 11.09 38.50 3.22 967.35 48.00 711.85

2011 80.50 72.30 2747.48 3.64 5.59 39.50 3.22 987.48 48.50 845.71

2012 82.40 72.30 3181.44 3.71 10.20 40.70 3.22 1153.23 48.70 798.48

2013 84.70 77.50 3213.39 3.75 6.37 41.80 4.03 1229.10 48.50 975.91

2014 86.70 77.50 3327.75 3.73 16.35 43.00 4.03 1335.12 48.50 425.46
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69%, Coulibaly and Baldwin (2005) used 90% and Kurup and
Dudani (2002) used 63%. In the present study, we used 20% of

the available data for testing in both the RNN and FFNNmodels,
as did Boadu (1997) and Kumar et al. (2019).

No precise guidelines govern the proper layout of a neural

network. In most cases, analyses that are more intricate require
networks that are more complex. However, when the number of
free parameters is large, the network will be slower to train and

more susceptible to overfitting. Therefore, care should be taken
when dealing with complex datasets. To ensure that the models
developed in this study would generalise other data, we used
regularisation techniques (i.e. L2 regularisation) for the drop-

out layers in the RNN and FFNN. The data were also split
randomly into training and testing data to ensure that that final
model generalises to new data.

The inputs for predicting the future level of water consump-
tion were prepared using current trends in the first scenario and
with GDP doubling in the second scenario. To calculate future

inputs, a polynomial fit was performed for each input parameter.
Based on the obtained fit, future values were generated. In the
second scenario, with GDP doubling, an artificial constraint was
used so that the GDP doubled every year while the other three

input parameters showed existing trends. The performance of
both the RNN and FFNN was evaluated and test accuracy was
recorded (Fig. 4 and 5) with the consumption units scaled to

between 0 and 1. The final model configuration used was
discovered by trial and error, based on skill. This leaves the
door open to explore new and possibly better configurations

(Kumar et al. 2019). The values of control parameters of the
RNN and FFNN were selected initially and thereafter varied in
trials until the best fitness measures were produced.

To investigate the performance of the proposed RNN and
FFNNmodels, the root mean square error (RMSE)was used as a
statistical indicator using the following equation and the values
reported in Fig. 4 and 5:

RMSE ¼ test error � withdrawal maximumð
�withdrawal minimumÞ þ withdrawal minimum

ð4Þ

RNN model used for the comparison test

The RNN model was generated using the Keras package

(T. Keras, see https://keras.io/api/, accessed 11 October 2021),
which is written in Python (see https://www.python.org/doc/,
accessed 11 October 2021) (Kingma and Ba 2014). To train the

RNN, two dropout layers and one RNNwere used. Using Eqn 2,
each of the inputs x1,x2,y,xm was four-dimensional, corre-
sponding to the values of GDP, agriculture, population and

precipitation that were used for the model. Two layers of RNN
were used with dropout layers in between to avoid overfitting
(Srivastava et al. 2014). The best results were obtained with a

sequence length of 7 and an a[l] with a dimension 30; tanh was
used as the activation function and there were 200 training
epochs. The mean squared error was used as the loss function to
be minimised. The input parameters for the RNN model are

given in Table 4.
As indicated in Table 4, the output layer was two-

dimensional (7 � 150), where 7 corresponds to the sequence

length used in the RNN, and so represents the size of the input

vector for each training set iteration (this is because each output
value depends on a sequence of data points and not just one data
point) and 150 represents the number of RNN layers. The

probability of a certain hidden unit layer being included in the
training is specified in the dropout layer; for example, a dropout
of 0.45 indicates that each unit has a 0.45 probability of being
included in the training. Most importantly, we used this method

for regularisation of the neural network architecture. Conse-
quently, the input for the RNN is a sequence vector of size 4, and
a sequence length of 7, where the inputs for each term are

specified into four inputs, namely population, agriculture, GDP
and precipitation. The RMSE for the RNN was 0.071 � 103 m3

year�1 for Kenya and 0.897 � 103 m3 year�1 for Egypt.

Fig. 4 shows the test accuracy for the RNN for modelling
water consumption. As shown in Fig. 4, the testing years (x-axis)

Test accuracy for recurrent neural network = 0.196333(a)

(b) Test error for recurrent neural network = 0.133696
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Fig. 4. Water consumption test accuracy using an RNN for (a) Kenya and

(b) Egypt. The test accuracy for the RNN for Kenya and Egyptwas 0.196333

and 0.133696 respectively.

Forecasting water consumption along the Nile River Marine and Freshwater Research 299

https://keras.io/api/
https://www.python.org/doc/


were randomly drawn from the initial data to make sure that the
training data and testing data did not cause any inherent bias to

the model. The random predicted values are plotted against the
actual values to determine the accuracy of the performance of
the model. Fig. 4a shows the test prediction using the RNN for

random years 2014–16. As can be seen, the prediction curve
deviates considerably from the actual data, indicating that the
performance of the RNN was not optimal. The test accuracy of

the RNN for Kenya and Egypt was 0.196333 and 0.133696
respectively.

FFNN model used for the comparison test

Similar to the RNN model, the MLP Regressor module in

the Sklearn library of Python (see https://www.python.org/
doc/) and Keras package (see https://keras.io/api/) was used to
build the FFNN model, which was tuned by adjusting the a
parameter in the MLP Regressor. To train the FFNN, two
hidden layers with one input and one output layer were used. To
avoid overfitting, L2 regularisation was used (Krogh and Hertz
1992). The best results were obtained for a¼ 0.04. Thereafter,

the FFNN models were optimised using an Adam optimiser
with a learning rate of 0.01 and a tolerance of 1 � 10�6

(Kingma and Ba 2014). The tolerance rate is a variant of the

gradient descent but is more efficient in finding the minima in a
multiparameter space. Hyperparameters (see Eqn 2) like the
dimension of a[l] the learning rate a, the number of dropout

layers, the L2 regularisation parameter and the sequence length
m were tuned to obtain the best results. The RMSE for the
training data was 0.0689 � 103 m3 year�1 for Kenya and

0.883 � 103 m3 year�1 for Egypt.
The test accuracy of the FFNN using data from Kenya and

Egypt was 0.116145 and 0.099894 respectively. Fig. 5 shows
the test accuracy and errors for the FFNN. Similar to the

RNN plots, the testing years were randomly drawn from the
initial data to make sure that the training data and testing data
did not cause any inherent bias to the model and are plotted

along the x-axis. The random predicted values were plotted
against the actual values to determine the accuracy of the
performance of the model. As shown in Fig. 5, there was not

considerable deviation between the predicted values and
actual data using the FFNN. Therefore, compared with the
RNN, the FFNN performed better and was consequently used
in the study.

To model the two proposed scenarios, the inputs for the
FFNN model were the independent variables GDP, agriculture,
population and precipitation for the first scenario. For the second

scenario, with GDP doubling, an artificial constraint was put so
that the GDP doubled every year while the other three input
parameters showed existing trends. The results of these predic-

tions are elaborated in the Discussion. The loss metric to be
minimised was given by the mean squared error using Eqn 4 and
as shown below:

Mean squared error ¼ 1CNð Þ � y model� y datað Þ2 ð5Þ

whereN is the number of data samples, y_model is the predicted
value from the model and y_data is the actual value from the
data.

Table 4. Architecture of the RNN used for time series prediction

‘None’ represents the number of training set examples. Because this depends

on the data itself, it is not included in the shape of the RNN elements directly

and is just represented as ‘none’

Layer Output shape Parameters

Simple RNN (None, 7, 150) Activation¼ ‘tanh’

kernel_initialiser¼ ‘glorot_uniform’

Dropout (None, 7, 150) 0.45

Simple RNN (None, 150) Activation¼ ‘tanh’

Dropout (None, 150) 0.45

Dense (None, 1) –
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Fig. 5. Water consumption test accuracy using FFNN for (a) Kenya and (b)

Egypt. The test accuracy for the FFNN for Kenya and Egypt was 0.116145

and 0.099894 respectively.
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Results and discussion

Scenario 1

Water consumption in Kenya

The best results for the FFNN were obtained using 2 hidden
layers with 30 hidden units each, with a learning rate of 0.01 and
the L2 regularisation parameter set at 0.04. The ranges used
were 1–4 hidden layers and 5–50 hidden units in each with a

training validation ratio of 80:20. Fig. 6a shows the future
prediction for water consumption per person in Kenya per year
using an FFNN. The prediction results show a massive increase

in water consumption per person steadily over the next 20 years
(Fig. 6a). Plausible explanations for this projected increase
could be because, according to theMinistry ofWater, Sanitation

and Irrigation in Kenya, Kenya’s projected per capita water
supply is expected to fall to 235 m3 year�1 by 2025 from the
current 647 m3 year�1. One of the reasons for this is a projected

population increase. As has been observed in the census reports,
Kenya’s population is increasing at a very high rate. As
expected, an increase in population size leads to more demand

for water, not only for direct consumption, but also for use in
other sectors, including the agricultural sector, to drive the

country’s economy, with Kenya being largely dependent on
agricultural exports (Kenya National Bureau of Statistics 2019).
Climatic changes are another plausible explanation for this

projection. Most parts of Kenya that earlier on used to receive
high rainfall are now experiencing less rainfall. This has led to a
decline in water levels and, in worst cases, there has been severe

drought. Continued mismanagement of the limited water
resources poses another challenge in Kenya. With such a
projection, Kenya would be expected to come up with strategic
policies that are sustainable to protect the country against

possible economic collapse, drought and increased water
shortages in the future.

Water consumption in Egypt

For Egypt, the best results for the FFNNwere obtained using
3 hidden layers with 50 hidden units each. A learning rate of 0.01
and an L2 regularisation parameter of 0.1 were used. In Egypt,

based on the trend in the previous year, the results show a small
decrease in the predicted value at the start up until 2032;
thereafter, there is a huge increase in expected water consump-

tion (Fig. 6b). This observed increase can be explained by the
geographical location of Egypt. Egypt receives ,80 mm of
rainfall per year and only 6% of its land is arable, with the rest
mostly desert. With the country relying heavily on agriculture,

and given the low supply of water from its sources, water
demand in the agriculture sector is bound to increase if the
sector is to stay afloat. This is similar to previous studies, which

have estimated that Egypt’s demand for water will exceed
supply within the next few years (Wehling 2020a). Another
plausible explanation is the steep population growth in the

country, which is associated with a correspondingly steep rise
in demand for water for agricultural, domestic and industrial
use. Egypt is one of the countries whose economy would be
severely affected if countries upstream on the Nile River

interfered withwater flow because of its reliance on hydropower
and its need for water (Wehling 2020a).

As stated earlier, the primary source of water in Egypt is the

Nile River with almost the entire population completely depen-
dent on the Nile water (Gad 2017; Wehling 2020a). In addition
to the Nile River, the water supply for agriculture in Egypt is

supplemented to a very small extent by rainfall and groundwa-
ter. The agriculture sector is crucial for Egypt because it adds up
to 14.5% to the country’s GDP, provides a livelihood for 29.6%

of the population and accounts for 11% of exports (Gad 2017),
but it uses 85% of Egypt’s water. Although the government in
Egypt has reduced the cultivation of high water-consuming
crops like rice because of increasing water demand, demand

for both water and food has risen due to population growth,
which itself has triggered agricultural development and
increased industrial activity in the country (Gad 2017). Over

the years, Egypt has hadmajor control over water use in the Nile
because of a colonial-era treaty that guaranteed Egypt a 90%
share of water in the Nile River and prevented the other users of

theNile River from extractingwaterwithout Egypt’s permission
(Wehling 2020a). However, with countries like Ethiopia build-
ing dams upstream, Egypt has valid concerns is that this could
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Fig. 6. Water consumption per person prediction up to 2040 for (a) Kenya

(from 1988) and (b) Egypt (from 1980) in Scenario 1 with the input data

including the preceding records of precipitation, gross domestic product,
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decrease the amount of water it receives. A reduction in water
supply from the Nile River will hinder Egypt’s efforts to

alleviate water shortages in the dry months in the country
(Wehling 2020a).

Scenario 2

Doubling GDP for Kenya

Scenario 2 considered an expected increase in the GDP. This
scenario assumes no change in the other variables affecting

water consumption. Given the current trends, especially in
Kenya, where the economy has been increasing, it is only
rational to assume that the trend would maintain an upward

projection over the coming years. As shown in Fig. 7a, the
projected water demand in Kenya increases to 0.5 units with
time to 2040.

These results indicate that unless urgent steps are taken to
control population growth, rehabilitate irrigation and water
supply networks and rationalise water use, it will be difficult
to provide enough water for economic expansion and growth in

the future. Therefore, Kenya, needs to consider alternative
measures, such as water recycling or water-saving technologies,
especially in the industrial sector, to curb any possible future

shortages that would be brought about by the ambitious eco-
nomic growth.

Doubling GDP for Egypt

In the case of Egypt, as shown in Fig. 7b, doubling the GDP
results in a significant decrease in the curve following the

previous year’s trajectory, which is then followed by an increase
to 0.8 m3 of water consumption per person in 2040. A plausible
explanation for the observed pattern is that, although economic

growth accounts for most water use in Egypt, agriculture has
been proven to be the main factor controlling water demand in
Egypt, followed by tourism as observed by Ahmed et al. (2014)

in their study of water use at Luxor, Egypt. Thus, the reverse
pattern in predicted water consumption per person would have
been observed if water use in the agricultural sector had been

doubled while the other factors were kept constant. Based on the
observed results, there should be enhanced sharing and cooper-
ation of various water users in Egypt for integrated management
of future water demand (Ahmed et al. 2014). Therefore, Egypt

should strive to ensure water balance among different sectors.
Furthermore, with expectations of climate conditions becoming
drier and upstream countries continuing to increase their use of

Nile waters, Egypt cannot afford to neglect the importance of
water conservation anymore and must act immediately to
augment its natural water reserves (Wehling 2020b).

Implications of the study, global outlook and future studies

Many countries may face water resources-based vulnerability
under expected global changes (Kulshreshtha 1998). With a
continued decrease in the amount of renewable global water

resources, there is a need for forecasting to aid proper devel-
opment and planning. Moreover, climate change and changes in
water withdrawal could aggravate water resource stress world-
wide. Understanding possible changes and likely scenarios

using tools such as forecasting is critical for future planning and
resources management. Forecasting both long- and short-term
outcomes necessitates explicit judgements about economic

forces that matter and those that do not (Brandt and Rawski
2008; Perkins and Rawski 2008). Although both long-term
(.20 years) and short-term (1–2 years) forecasting are impor-

tant, long-term forecasting is preferred because it is largely
independent of sudden shocks or short-term behaviours and is
driven primarily by the growth rate, development and expen-
diture (Perkins and Rawski 2008), which is why we used long-

term forecasting in the present study.
Globally, the effects of global warming on the hydrological

cycle have been studied and documented (Houghton 1996;

Arnell 2004; Oki andKanae 2006).With a projected increase in
global water demand, it is imperative to have informed policies
and governing structures in place, mainly because the global

water crisis is more of a governance issue rather than the result
of the actual availability of the resource (Steduto et al. 2012).
This will promote effective rules for the sustainable utilisation

and protection of international water, especially transboundary
resources that are shared by many countries. With more than
half the world’s 263 transboundary water basins still not
covered by a framework between the riparian states to regulate

cooperation in water management, the countries that harbour
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302 Marine and Freshwater Research A. W. Mumbi et al.



these resources are set for a catastrophic future given the

forecast decline in the potential of these resources (Connor
2015). Similar to other riparian states in the world that have
already signed water agreements, efforts should be made to

have basin-wide treaties in place for important transboundary
watercourses such as the Nile, Jordan, Tigris and Euphrates
rivers to promote a general framework for basin users (Wehling
2020b).

As shown in Fig. 8, given the forecast trajectory of water
demand through consumption in Kenya and Egypt, caution
should be observed with regard to water use in these countries

and the measures suggested in Fig. 8 should be implemented.
Based on the results of this study, we suggest measures that can
be adapted to help promote sustainable water use practices in the

Nile basin region, as well as for other transboundary water
resources around the world. In addition, based on this study,
there should be an emphasis on understanding water usage in all

sectors so that appropriate efforts and measures can be allocated
to ensure that water demand in the different sectors is met and
that water resources are equally distributed. More so, dissemi-
nation of information on issues aroundwater scarcity should be a

priority to ensure the uptake of water behaviours such as water
recycling and the proper use of the limited available resources.

This study identifies existing gaps and recommends a few

measures for future studies. This study focused on a transbound-
ary resource in one upstream (Kenya) and one downstream
(Egypt) country, but the impacts of both political and social

water use in countries between Kenya and Egypt on the projec-
tions cannot be ignored. Such issues in other countries were not
investigated in this study, but could be followed-up in future
studies. Using a similar approach in the other countries in the

region that were not part of the present study will aid our
understanding of the implications of the current trends in water
use and help with the development of management models and

strategies being adopted by the Nile basin initiative, making
them more efficient and accurate.

Another important contribution of this study is the develop-

ment of amodel that uses a combination of different input data to
model a singular output (i.e. water demand) that can be inter-
preted and help with better planning. Future studies should use

this methodology in other geographical areas, sectors, resources

or transboundary waterbodies to forecast and promote sustain-

able resource utilisation.
Research such as ours provides a snapshot of the future given

continued trends. With such information, other transboundary

countries can replicate our model and use the information
obtained to develop compact management models and to
strengthen existing management models. We also recommend
creating many hypothetical scenarios (e.g. accounting for

changes in other variables, not only GDP) and analysing their
effects onwater demand by forming a grid of values for different
variables and observing changes in them.

Study limitations

This study analysed water resources and their use on a country-
by-country basis. There are a few limitations that should not be

overlooked. This study did not include water usage and inter-
relationships for human activities such as the recreational sector,
which is popular in Egypt, where the Nile River supports

cruising activities. Another limitation of the study lies in the
selection of variables, with only the effect of doubling the GDP
evaluated while the other variables were kept constant. It should

be noted that changes in the population, for example, may have a
considerable effect on the GDP and interact with other sectors
that rely heavily on water usage. These are some prominent gaps

in the study that should be considered in future work. Finally,
information at the country level regardingwater use is poor, with
outdated figures and data lacking in some sectors. Attempts
should be made to develop appropriate datasets for a compre-

hensive assessment of water resources, especially in developing
nations.

Conclusion

In this study, FFNN was used to make a long-term forecast of

water demand along the Nile River in two countries (Egypt and
Kenya) up to the year 2040. This was done through under-
standing the complex relationship between different sectors (i.e.

intensive urbanisation, booming population, climate change and
water use in the agricultural sector) for the proper planning and
management of transboundary water resources. From the

results, it is evident that the FFNN performed better than the

Capacity building programs

Increased role in scientific research to continue
development  of agricultural crops and seeds that have a
higher productivity, disease resistance and low water
consumption

Increased governmental and private sector interventions
to promote awareness on water scarcity and need for the
protection of watercourses

Empowerment of the existing water use and water
pollution

Rationalisation of water use in the domestic and
industrial sectors

Intensify efforts to manage the increasing population 

Decentralisation of the water management up to the
district level

Water use and
consumption

Forecasting,
planning and
management

Fig. 8. Recommendations based on the results of this study.
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RNN during the testing process and can be used as a reliable
machine learning technique for various studies and other phe-

nomena, such as hydrological or rainfall forecasting. A scenario
in which the GDP was doubled was also modelled in both
countries, and its effects on per-person water intake were

observed while water consumption in the other sectors was held
constant. The results of the first scenario indicate that, in Kenya,
given the current trends, water consumption is forecast to

increase steadily to 2040, whereas the reverse was observed in
Egypt, with a decrease in water consumption followed by a
slight increase. When the GDP in both countries was doubled in
the Scenario 2, the forecast in Kenya is for an immediate

increase in water consumption, whereas in Egypt the water
consumption trend continues in its current state, decreases and
then increases again just before 2040. From these results, it is

clear that conducting time series analysis is of great signifi-
cance, because it provides a snapshot of future expectations.
This can offer timely strategies for the management of water

resources and provide long-lasting solutions.
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