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Geostatistical tools to assess shifts in recreational fishing 
Shannon J. BurchertA,* , Glenn A. HyndesA , Karina L. RyanB and Ute MuellerA

ABSTRACT 

The use of geostatistical indices to examine fishery-dependent data over time is novel. We assess 
the value of a range of these indices for describing trends in boat-based recreational fishing in 
Western Australia and areas of high effort and catches for two demersal species with varying 
biological characteristics, life histories and distributions. The number of blocks (10- × 10-nautical 
mile (~19- × 19-km) area) visited decreased by 40%, while the number of fishing trips with 
demersal species catch increased by 15%. Spatial indices showed a south-easterly shift in demersal 
catch per unit effort (CPUE) across survey years. The southerly shift of West Australian dhufish 
(Glaucosoma herbraicum) CPUE and subsequent return to the north likely to reflect the response 
of this temperate species to a marine heatwave. In comparison, CPUE of retained Baldchin groper 
(Choerodon rubescens) shifted north, whereas released catches shifted south with high probabilit
ies of hotspots present associated with habitat structure. We identified hotspots of retained and 
released CPUE, highlighting potential areas where species experience high post-release mortality 
through barotrauma, and targeted spatial management strategies. Spatial indices allow quantita
tive definition of the structure of the fishery, identify high catch areas, and assess changes over 
time at a broader scale to sustainably manage multispecies fisheries.  

Keywords: angling, catch rate, centre of gravity, fisheries management, fishery-dependent data, 
geostatistics, hotspot, index of collocation. 

Introduction 

Fishery-dependent data are useful for the monitoring and management of a multi-sector 
fishery, where resource utilisation is based on stock assessments and sustainability 
modelling (McPhee et al. 2002; Griffiths and Fay 2015). Catch rate estimates, or catch 
per unit effort (CPUE), from commercial, charter and private boat-based recreational 
fishing have been used to determine the status of a fishery, evaluate historical trends and, 
in some cases, estimate population abundance (Morgan and Burgess 2004; Gaughan and 
Santoro 2020). Whereas these types of stock assessments are vital for the sustainability of 
the fishery resource, understanding the spatial and temporal structure of the stock is 
invaluable because CPUE changes through time and space in response to various envir
onmental and anthropogenic factors (Perry et al. 2005; Booth et al. 2011; van Putten 
et al. 2017; Humphries et al. 2019). 

Fishing and its impacts are known to change spatially and temporally (Petitgas et al. 
2003; Kleisner et al. 2010); however, this has been documented mainly for commercial 
fisheries. Spatial modelling approaches using recreational fishing data were initially 
investigated in 2010 (Parnell et al. 2010); however, spatio-temporal modelling has 
been limited, with few studies exploring survey data (Tao et al. 2012; Aidoo et al. 
2015, 2016; Winfield 2016; Petitgas et al. 2018; Polansky et al. 2018; Navarro et al. 
2020). Understanding these spatial and temporal shifts is important because sharing of 
the stock and fishing grounds in a multi-sector fishery could potentially cause a particular 
species or area to be overexploited. Also, species within multi-species fisheries are often 
managed collectively; however, they have unique biological characteristics, life histories 
and geographic distributions (Newman et al. 2018). Characterising locations for catch, 
effort and CPUE not only provides the ability to assess trends and patterns within key 
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fisheries at a resource level but also provides insights into 
fisher behaviour in terms of CPUE hotspots and exploitation 
of bag and boat limits in a multi-species fishery. 

The identification of areas of high concentration of 
effort or CPUE, termed hotspots, is fundamental for the 
development of management strategies in terms of resource 
conservation (Petitgas et al. 2016). Spatial management 
approaches, such as the introduction of marine parks or 
‘no-take’ zones, are becoming a more viable option to reduce 
targeted effort and, consequently, catch (Lynch 2006, 2014;  
Smallwood and Beckley 2012; Lynch et al. 2020). The con
cept of spatial predictability of hotspots has been applied to 
biodiversity indices, trophic interaction areas, fish distribu
tions and single species distributions by using long-term 
data (Myers et al. 2000; Santora et al. 2011; Stuart-Smith 
et al. 2013; Yasuda et al. 2014; Petitgas et al. 2016). 
Monitoring and management of spatially complex resources 
are primarily undertaken using commercial catch data 
(fishery-dependent) and fishery-independent surveys of 
key species to inform policies and implement restrictions 
such as size at capture, gear type, effort, and seasonal and 
spatial closures. The use of spatial information from private 
boat-based recreational fishing (not including charter) is 
novel in terms of adoption into management, because 
these large datasets are collected infrequently and are lim
ited in terms of catches, scope, and temporal and spatial 
scale (Henry and Lyle 2003; Roa-Ureta and Niklitschek 
2007; Hartill et al. 2016; Santos et al. 2019). Although 
spatial information is captured within these fishery- 
dependent surveys, these data have not been fully explored 
with respect to developing an understanding of the recrea
tional fishery in space through time, by using geostatistical 
techniques (Woillez et al. 2005; Santos et al. 2019). 
Techniques include co-kriging hotspots and various descrip
tive spatial indices such as the centre of gravity (CG) which 
is the mean location weighted by the variable of interest, 
inertia (I) which is the square distance between data loca
tions and the CG, but also global and local index of colloca
tion, positive area and equivalent area. 

In the past two decades, spatial indices have been explored 
with fishery-independent trawl and dredge data, and also 
acoustic survey data to demonstrate their ability to capture 
and detect changes in spatial distributions of various marine 
species (Petitgas 2001; Woillez et al. 2005; Petitgas et al. 2017,  
2018). Spatial indexes such as CG and I have been applied in 
many studies to assess the mean location of a population and 
the dispersion of that population around its CG across a time 
series (Woillez et al. 2005; Mueller et al. 2012; Petitgas et al. 
2017; Currie et al. 2019). The global and local indexes of 
collocation, which are not as commonly applied in marine 
science, are used to measure the spatial overlap of two popu
lations, and the similarity of the populations at locations in two 
given periods (Kulka et al. 2003; Aidoo 2016). 

Adapting these techniques to specialised areas of fisheries 
science has the potential to inform resource management in 

terms of fine-scale trends relative to catch and CPUE, so as 
to determine areas of high activity. These approaches also 
form valuable tools in examining shifts using fishery- 
dependent data. This study aims to assess the utility of 
geostatistical spatial indices to describe private boat-based 
recreational fishing in terms of temporal shifts and areas of 
high fishing activity, to inform fisheries management. To 
achieve this, multiple-years of phone-diary surveys on rec
reational boat-based catches (retained and released) of two 
key Western Australian demersal species will be used. These 
two species were selected because they form a substantial 
proportion of catch for the Western Australian demersal 
fishery, have different life-history characteristics and distri
butions in a multi-species fishery, which will allow the 
methodological approach to be generalised for a wider 
application. Retained and released catches were analysed 
separately to determine general compliance levels of bag 
and boat limit regulations, and to identify areas of high 
release rates, which can result in post-release mortality 
(Cooke and Schramm 2007; Post and Parkinson 2012). 
High release areas with targeted effort are potential candi
dates for spatial closures, where spatial indices and hotspot 
mapping can provide managers with additional information 
to introduce relevant policies. 

Materials and methods 

Study area 

The study area follows the western coast of Australia from 
27°S, 114°E to 34°S, 115°30ʹE (Supplementary Fig. S1). Our 
focus is on boat-based recreational fishing in the West Coast 
Bioregion, a management region for fisheries in Western 
Australia. This study focuses on the demersal scalefish spe
cies that reside within 20–250-m water depth (Department 
of Primary Industries and Regional Development 2021). 
Boat-based recreational fishing (which requires a licence) 
was considered for analysis where fishers target, retain or 
release a demersal species during a given survey period. The 
analyses focused on the combined demersal species that are 
targeted and caught by recreational fishers, as well as two 
key species (West Australian dhufish, Glaucosoma herbrai
cum; and Baldchin groper, Choerodon rubescens) within that 
group of fishes. These two species are long-lived, endemic to 
Western Australia, have a recovering fisheries status and are 
targeted across multiple sectors (commercial, charter and 
recreational); however, they have varying life histories, 
unique biological characteristics and geographic distribu
tions. West Australian dhufish is gonochoristic, has sex- 
dependent growth rates that also show geographic differ
ences and is a more temperate species, where its distribution 
is widespread within the study region (Smallwood et al. 
2013). Baldchin groper is protogynous, and its catches are 
concentrated in the mid-west of the West Coast Bioregion 
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(Hutchins 2001). These commonalities and differences make 
them ideal candidates to explore spatial and temporal sta
tistical methods. For the recreational sector, management of 
these species is currently through boat, bag and size limits at 
a bioregional scale, and a 2-month seasonal closure to 
reduce catch. In addition to this, Baldchin groper at the 
Abrolhos Islands is currently protected during its spawning 
period, to provide additional protection from exploitation 
(Newman et al. 2018; Gaughan and Santoro 2020). 

Survey data 

Data used in this study were collected as part of the state- 
wide recreational fishing surveys conducted on a biennial 
basis (March 2011–February 2012, May 2013–April 2014, 
September 2015–August 2016 and September 2017–August 
2018; Ryan et al. 2019). All components of these surveys 
were completed by recreational boat fishing licence holders. 
The phone-diary survey data consist of deidentified numeric 
and categorical response variables in relation to fishing 
events (records) for individual licence holders randomly 
selected from the recreational boat fishing licence database 
for each survey period. In the most recent survey year 
(2017–18), 2931 recreational boat fishing licence holders 
participated, with response rates being consistent across sur
vey years (Ryan et al. 2019). The phone-diary survey data are 
recorded on an event basis across the designated year for 
each survey period. A fishing event is defined as an attempt 
to catch a fish species, irrespective of success, using a line 
from a boat at any one point in time. For this study, fishing 
records were aggregated by block for individual survey years. 
Variables used for spatial analyses include fishing duration 
(time spent fishing in hours), the number of fishing records, 
retained and released catch numbers (survey data), and 
retained CPUE and released CPUE for each block across 
species of interest. Positive area and equivalent area were 
calculated with catch data because these spatial indices are 
used to describe and summarise species catch distributions in 
terms of population density for a given area. 

For each 10- × 10-nautical mile (~19- × 19-km) block 
b, CPUE (Řb retained or released) was calculated using the 
ratio of means estimator (Hoenig et al. 1997), where Nb 
denotes the number of events in block b, ci,b retained or 
released catch for event i in block b, fishing effort hi,b = 
ti,b × ni,b, with ti,b time (h) and ni,b number of licence and 
non-licence holders whom participated in the fishing activity. 
Because non-licence holders on board with a licence holder 
are able to contribute to the bag limit for that licence holder, 
and therefore putting effort into the fishery, the total number 
of fishers was used to calculate effort, as follows. 

c
h

=b
i
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i b

i
N

i b

= 1 ,

= 1 ,

b

b
(1)  

For this study, all blocks or fishing records in marine waters 
where demersal species were retained or released were 

considered. Data for non-demersal fishing locations, predom
inantly 50 nautical miles (~93 km) from the coastline and 
inland river systems, were excluded (8.4% of records in 
2011–12, 7.3% in 2013–14, 3.8% in 2015–16 and 3.2% in 
2017–18). 

Geostatistical spatial indices 

This study applied geostatistical spatial indices described 
within the ICES Cooperative Research Report (Petitgas 
et al. 2017) to capture the spatial structure of boat-based 
recreational fishing and they are listed in Supplementary 
Table S1, with references to their application. Indices, includ
ing total area (TA) in square nautical miles, total records, 
total catch, percentage of records with catches >0 (% posi
tive records), percentage of records with catches = 0 
(% zeroes), exploitation (Exp%) or the percentage of records 
for a given survey year with catches equating to or exceeding 
the mixed demersal species boat limit, overall CPUE inertia 
(I, nautical miles2), CPUE inertia in the north–south (N–S) 
direction (nautical miles2), CPUE inertia in the east–west 
(E–W) direction (nautical miles2), positive area (PA, nautical 
miles2) covered by records with catches >0 using catch data, 
and equivalent area (EA, nautical miles2) using catch data, 
are used to describe spatial patterns within a given survey 
year to characterise boat-based recreational fishing targeting 
or catching demersal finfish species in the study region 
(Table 1). Polygons were created on the basis of the spatial 
extent of fishing in each survey year, delineating the maximal 
sampled area. The latitudinal range of data extends to ~450 
nautical miles (~833 km), where the longitudinal range 
varied from 10 to 50 nautical miles (~19–93 km). 

Centre of gravity and associated inertia 

Spatial shifts were identified within the study region across 
survey years by calculating a series of spatial indices includ
ing the centre of gravity (CG), associated inertia (I) and 
inertia in the north–south and east–west directions for a 
range of variables including, retained CPUE, released 
CPUE, number of records and mean effort. The CG = 
(xCG, yCG) represents the mean location of aggregated data 
(zi) weighted by the variable of interest (Woillez et al. 2005) 
and I describes the mean square distance (nautical miles) 
between the block locations ui = (xi, yi), i = 1,…N (as 
measured by the coordinates of the block centres) and the 
CG weighted by the variable selected. 
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Table 1. Spatial indices for catches of all demersal species by boat-based recreational fishers in the West Coast Bioregion of Western Australia from 2011–12 to 2017–18.              

Survey 
year 

TA 
(nautical 
miles2) 

Total 
records 

Total 
catch 

Percentage 
positive 
records 

Percentage 
zeroes 

Exp% I (nautical 
miles2) 

I N–S 
(nautical 
miles2) 

I E–W 
(nautical 
miles2) 

PA 
(nautical 
miles2) 

EA 
(nautical 
miles2)   

All retained demersal species  

2011–12  13 100  2786  4797  93.9  6.1  3.9  12 643.8  12 373.6  270.2  12 300  3174.7  

2013–14  9200  2498  4906  96.7  3.3  3.8  14 795.4  14 398  397.4  8900  2943.6  

2015–16  8900  3157  6322  98.9  1.1  4  15 611.9  15 161.5  450.3  8800  3207.6  

2017–18  7800  3058  5850  96.2  3.9  3.3  16 329.3  15 904.7  424.6  7500  3197 

All released demersal species  

2011–12  13 100  2786  7866  94.7  5.3 –  12 166.5  11 922.5  243.9  12 400  3213.2  

2013–14  9200  2498  8447  91.3  8.7 –  16 026.8  15 671.7  355  8400  2907.4  

2015–16  8900  3157  9756  96.6  3.4 –  13 903.4  13 556.9  346.5  8600  2801  

2017–18  7800  3058  8422  94.9  5.1 –  15 400.4  15 034.7  365.8  7400  2912.5 

Retained West Australian dhufish  

2011–12 – –  1161  74.8  25.2 –  11 437.8  11 196.8  241  9800  2753.1  

2013–14 – –  1220  82.6  17.4 –  13 401.5  13 113.5  288.1  7600  3109.9  

2015–16 – –  1787  88.8  11.2 –  13 481  13 175.9  305.1  7900  2723.3  

2017–18 – –  1671  89.7  10.3 –  13 256.3  12 956.4  299.9  7000  2942.8 

(Continued on next page) 
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Table 1. (Continued)             

Survey 
year 

TA 
(nautical 
miles2) 

Total 
records 

Total 
catch 

Percentage 
positive 
records 

Percentage 
zeroes 

Exp% I (nautical 
miles2) 

I N–S 
(nautical 
miles2) 

I E–W 
(nautical 
miles2) 

PA 
(nautical 
miles2) 

EA 
(nautical 
miles2)   

Released West Australian dhufish  

2011–12 – –  2001  82.4  17.6 –  9912.2  9718.4  193.8  10 800  2854  

2013–14 – –  2407  83.7  16.3 –  13 046.6  12 816.7  229.9  7700  2572.5  

2015–16 – –  3725  91  9 –  12 837.1  12 555.1  282  8100  2293.7  

2017–18 – –  2486  83.3  16.7 –  12 533  12 199.8  333.2  6500  2136 

Retained Baldchin groper  

2011–12 – –  972  56.9  43.1 –  6716.2  6569.4  146.8  7000  1490  

2013–14 – –  748  59.5  40.5 –  6450.9  6255  195.8  5000  1722.6  

2015–16 – –  1309  63.4  36.6 –  6995.8  6753.7  242.2  5200  1720.4  

2017–18 – –  1077  73.9  26.1 –  6714.8  6491.9  222.9  5100  1842 

Released Baldchin groper  

2011–12 – –  564  34.2  65.9 –  4543  4431.8  111.3  4200  725.6  

2013–14 – –  432  41.7  58.3 –  7411.5  7224.2  187.3  3500  1436.9  

2015–16 – –  862  50  50 –  7991.6  7815.1  176.5  4100  1538.5  

2017–18 – –  640  59.4  40.6 –  5642.6  5463.8  178.9  4100  1557.7   
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To test whether the elongated shape of the study region 
influenced the various CGs, the CG was calculated for 
locations weighted with a value of 1, which showed no 
shape effect on the centres of gravity for the variables of 
interest. 

Global and local index of collocation 

To determine whether data are geographically distinct 
across survey years, the global and local indices of colloca
tion were both calculated for variables including retained 
CPUE, released CPUE, number of records and mean effort 
(Woillez et al. 2005; Petitgas et al. 2017). The global index 
of collocation (GIC) measures the overlap of regions with 
records for different survey years by comparing the distance 
between the CG from 2 years (ΔCG) and mean distance 
between block locations (I1 and I2). The local index of 
collocation (LIC) then provides a measure of the similarity 
of the selected variables z1 and z2 at locations where records 
are available in both survey years. Owing to the nature of 
boat-based recreational fishing data, NA values are present 
in the data because some block locations were not visited in 
each survey year. 

I I
GIC = 1 CG

CG + +
2

2
1 2

(4) 

z z

z z
LIC = i

N i i

i
N i i

N i

= 1 1 2

= 1 1
2

= 1 2
2

(5)  

Positive area 

The total area (nautical miles2) of the study region with 
a catch record (zi) greater than zero is referred to as 
positive area (PA). Here, it was calculated separately 
for West Australian dhufish, Baldchin groper and the 
demersal species as the sum of the areas of all blocks, 
where a fisher had retained or released at least one fish, 
as follows: 

I zPA = ( > 0) × 100
i

N
i

= 1
(6)  

where I(zi > 0) = 1 if (zi > 0) and 0 otherwise and 100 
(nautical miles2) is the area of a fishing block. 

Equivalent area 

To determine the area that would be covered if retained or 
released catch from boat-based recreational fishing was 
constant, the equivalent area (EA, nautical miles2) was cal
culated as 

z
z

EA =
( )

× 100i
N i

i
N i

= 1
2

= 1
2 (7)    

Boat limit 

To determine the level of exploitation, the number of recre
ational fishers and retained catches for individual records 
were assessed. For each individual record, there are man
agement restrictions on what can be retained from the 
demersal fishery to avoid exploitation of resources. Bag 
limits for the mixed demersal fishery in the West Coast 
Bioregion are restricted to two fish per licence holder, 
with no maximum number of retained fish per vessel. The 
percentage of individual fishing records per 10- × 10- 
nautical mile (~19- × 19-km) block with retained catches 
zi ≥ bag limit × number of licence holders was calculated 
and aggregated across survey years for the West Coast 
Bioregion. 

Hotspot definition 

A hotspot was defined as a region where retained CPUE and 
released at block locations within the study area were above 
a cut-off value and spatially uncorrelated with the remain
der of the distribution below the cut-off value (Petitgas et al. 
2016). A sequence of cut-off values were chosen on the basis 
of the distribution of the retained CPUE and released CPUE 
for each species across survey years increasing in value 
0.001 < 0.02 < 0.08 < 0.20 < 0.40 < 0.80 and were 
then coded as ‘hard’ indicator values. 

If Ai represents the set of all block locations u with 
Z(u) ≥ zi, where zi is a cut-off value, then the indicator 
function associated with it can be defined as 

I u u A
u A

( ) = 1 if
0 ifA

i

i
i (8)  

The indicator variogram is then defined as 

( )h
N

I u I u( ) = 1 ( ) ( )i
h u u h

A A
2

i i (9)  

where uα and uβ represent block locations separated by a 
distance h. The indicator variograms γi(h) measures the 
likelihood that a vector of length h has one extremity inside 
and one outside Ai. 

h P u A u h A( ) = [ , + ]i i i (10)  

The indicator cross-variogram is then defined as 

(

)( )

h
N

I u

I u I u I u

( ) = 1 ( )

( ) ( ) ( )

i j
h u u h

A

A A j

× i

i j (11)  

where Aj and Ai are the sets associated with cut-offs zj and zi 
respectively. It can be interpreted as a measure of the likeli
hood that a vector of length h has one extremity inside Aj 
and one outside Ai (Petitgas et al. 2016). 
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h P Z u A Z u h A( ) = [ ( ) , ( + ) ]i j j i× (12)  

Consequently, the quotient of γi × j (h; zi) and γi (h; zi;  
Eqn 13) then measures the probability of being inside of 
Aj when entering Ai from separation distance (h; Petitgas 
et al. 2016). 

h
h

P Z u A Z u A Z u h

A

( )
( )

= [ ( ) | ( ) , ( + )

]

i j

i
j i

i

, ×

(13)  

When the likelihood of moving from Ai to Aj at a separation 
distance of h is no longer dependent on h, suggesting that 
higher values are spatially uncorrelated (variogram showing 
pure nugget, which means that variance does not depend on 
distance; Supplementary Fig. S7, S8) and therefore cannot 
be predicted within Ai, zi represents the ‘top’ cut-off value 
and Ai represents the hotspot (Petitgas et al. 2016). 

Indicator variograms were fitted using the ‘model.auto( )’ 
function implemented in the RGeostats package (ver. 12.0.0, 
MINES ParisTech & ARMINES, see http://rgeostats.free.fr/) 
with two structured spherical models and a nugget effect. In 
total, 15 lags were used at a distance of 10 nautical miles 
(~19 km). A cut-off was sufficiently high when the associ
ated variogram showed a loss in structure, i.e. it could be 
modelled as pure nugget. 

Co-kriging hotspots 

To produce probability maps of the retained and released 
CPUE hotspots occurring, indicators I( )Ai were co-kriged 
(multivariate form of kriging, Petitgas et al. 2016). The 
experimental indicator and cross-variograms were calcu
lated using 15 lags at a distance of 10 nautical miles 
(~19 km). A linear model of co-regionalisation with two 
structured spherical models and a nugget effect was then 
fitted. For co-kriging, a moving neighbourhood was used 
with a minimum of four and a maximum of 20 samples at a 
radius of 120 nautical miles (~222 km). To allow for 
co-kriging among survey years, indicators of hotspots were 
selected at the same sample locations and interpolated on a 
5- × 5-nautical mile (~9- × 9-km) grid (Bivand et al. 2008;  
Petitgas et al. 2017). 

Software and assumptions 

RStudio was the computing environment utilised for this 
study, with the package RGeostats to compute all spatial 
indices (ver. 12.0.0, MINES ParisTech & ARMINES, see 
http://rgeostats.free.fr/) and ggplot2 for producing the 
maps (ver. 3.3.5, H. Whickham, see https://ggplot2. 
tidyverse.org). Within the geostatistical modelling frame
work and throughout this study, there is an assumption 
that observations of CPUE are spatially autocorrelated, 
where space is characterised by patterns rather than random
ness (Cressie 1991; Griffith 2007). This assumption follows 

Tobler’s first law of geography, where ‘everything is related 
to everything else, but near things are more related than 
distant things’ (Miller 2004). 

Results 

Maps of the records of fishers targeting demersal species 
showed a contraction of fishing events towards the coast
line, with high recreational fishing effort (>200 records) 
being concentrated adjacent to population centres (e.g. adja
cent to Perth and Geraldton; Fig. 1), and fishery access 
points being within the Perth metropolitan region. 
Similarly, fishing effort contracted towards the coast after 
2011–12, with high effort being situated offshore rather 
than adjacent to population centres in 2011–12 and, subse
quently, closer to the coast across most of the bioregion 
(Fig. 1). High effort was also observed adjacent to popula
tion centres and access points. Maps of retained CPUE for all 
demersal species (Fig. 2) showed high values at the Abrolhos 
Islands and Geraldton in survey years 2011–12, 2015–16 
and 2017–18. Retained CPUE for all demersal species were 
highest south of Perth in 2013–14, off the coast of Bunbury 
in 2015–16 and between Perth and Geraldton in 2017–18. 
Likewise, released CPUE for all demersal species were high
est at the Abrolhos Islands in all survey years, near Perth 
and Mandurah in 2011–12 and 2013–14, and near Bunbury 
in 2015–16 and 2017–18. Released CPUE of West Australian 
dhufish across survey years were often higher than were 
retained CPUE in several areas of the study region (Fig. 3). 
Released CPUE of West Australian dhufish was widely dis
tributed across the West Coast Bioregion, with retained 
CPUE being high near Geraldton and Bunbury. Similarly, 
the released CPUE of Baldchin groper was often higher than 
was retained CPUE, with CPUE at the Abrolhos Islands being 
high (Fig. 4). Unlike West Australian dhufish, both retained 
and released CPUE of Baldchin groper showed similar loca
lised distributions in the West Coast Bioregion. 

The CG for the number of records, mean effort targeting 
demersal species (Fig. 1), retained CPUE (Fig. 2) and 
released CPUE (Fig. 2) all showed a southerly latitudinal 
shift from 2011–12 to 2013–14 and a slight northerly shift 
in subsequent years. A southerly shift in the CG was evident 
for retained and released CPUE of West Australian dhufish, 
where latitudinal shifts were similar in 2015–16 and 
2017–18 (Fig. 3). However, Baldchin groper showed minor 
fluctuations among survey years (Fig. 4). 

The total area (TA) with recorded demersal fishing activ
ity decreased by 40% across the survey years (Table 1). 
Although there was a decrease in total area, the total num
ber of records alongside total catch and the percentage of 
blocks with positive (non-zero) catch records for retained 
catches increased slightly across survey years (Table 2). The 
percentage of records with a positive released catch of all 
demersal species showed no trend, with values ranging 
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between 91.3% in 2013–14 and 96.6% in 2015–16 
(Table 1). Owing to the elongation of the study region, as 
described by the overall inertia across species and CPUE 
(Table 1), anisotropy was present where inertia along the 
two principal axes was greater in the N–S direction than in 
the E–W direction. Inertia in the N–S direction increased 
slightly across years for retained and released CPUE. On a 
species level, retained and released CPUE for West 
Australian dhufish showed an increase in overall inertia 
and inertia in N–S and E–W directions between 2011–12 
and the remaining survey years. However, retained and 
released CPUE for Baldchin groper increased in overall iner
tia and, in the N–S and E–W directions for released CPUE, 
but not for retained CPUE. 

Similarly to TA, positive area (PA) showed a contraction 
across survey years, where 2011–12 displayed a greater 
spread of retained and released catch for all demersal spe
cies than did other survey years (Table 1). Overall, the 
positive area for all demersal species has decreased across 

survey years, with the greatest change between 2011–12 
and 2013–14 (Table 1). Positive area for retained and 
released CPUE of West Australian dhufish followed the 
same pattern as did those of all demersal species, except 
equivalent area for retained CPUE of West Australian dhu
fish, which increased overall. However, retained and 
released CPUE of Baldchin groper showed spatial patterns 
regarding equivalent area different from those of West 
Australian dhufish. The equivalent area for Baldchin groper 
increased across survey years for retained and released 
CPUE. 

The global index of collocation (GIC) for effort shows 
stability across survey years for locations where fishing is 
occurring. The GIC highlights minor differences between 
2011–12 and subsequent years for retained and released 
CPUE for all demersal species as well as West Australian 
dhufish and Baldchin groper (Table 2). The local index of 
collocation (LIC) showed some local variability for mean 
effort, where 2011–12 showed a difference from all other 
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Fig. 1. Number of fishing events (top) and mean effort (bottom) per block across survey years, with their 
associated centre of gravity (black cross) and defined 250-m depth contour (grey line).   
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survey years (Table 2). The LIC for West Australian dhufish 
and Baldchin groper both indicated strong differences 
among years for released CPUE and moderate differences 
for retained CPUE (Table 2). Comparing retained against 
released CPUE, all demersal species showed minimal local 
variability across survey years. However, there were strong 
differences for retained and released CPUE of West 
Australian dhufish in 2013–14, and Baldchin groper in 
2011–12 and 2017–18. 

The appropriate cut-offs to define the likelihood of an 
area being a hotspot across species were selected on the 
basis of the variogram of the indicators (Supplementary 
Fig. S3–S8). Cut-off values were applied for all demersal 
species (retained CPUE = 0.08 and released CPUE = 
0.20), West Australian dhufish (retained CPUE = 0.20 and 
released CPUE = 0.40), and Baldchin groper (retained 
CPUE = 0.20 and released CPUE = 0.08; Supplementary 
Table S3). The likelihood of a retained CPUE hotspot for all 
demersal species was high in the northern region at the 
Abrolhos Islands and in the southern region, south of 
Bunbury (Fig. 5). The likelihood of a hotspot for released 
CPUE of all demersal species was higher in the northern 

region, near Geraldton and the Abrolhos Islands. Variogram 
ratios for retained and released CPUE of West Australian 
dhufish (Supplementary Fig. S5, S6) showed no evidence of 
pure nugget, suggesting instability where no definitive hot
spots were found in the study region. Probability maps of 
retained and released CPUE of Baldchin groper identified a 
high likelihood of a hotspot at the Abrolhos in 2011–12, 
which dissipated in consecutive years for retained CPUE, but 
remained present in 2015–16 and 2017–18 for released 
CPUE. When a cut-off of >0.5 was applied to the probability 
maps (Fig. 5), areas outlined in darker colours (purple) 
presented as hotspots. 

Discussion 

Geostatistical spatial indices (such as the CG, PA, GIC, LIC 
and EA), in conjunction with hotspot analysis, have success
fully been used on fishery-dependent data from a boat-based 
recreational fishery to show shifts in effort and CPUE over 
time that may correspond to changes in management, socio- 
economic or environmental conditions. In previous studies, 
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these spatial indices have been utilised to detect changes 
and patterns in spatial distributions of marine populations in 
terms of fish egg and larvae distributions in marine waters 
(Woillez et al. 2005; Woillez et al. 2016). However, they 
have not been applied to data in a management context 
such as recreational fishing data (Woillez et al. 2005). 
Recreational fishing data are often collected infrequently, 
zero-inflated with sporadic high catches, and comprise 
unsampled locations. Despite these issues, spatial indices 
were useful in characterising the boat-based recreational 
fishery in our study region through time and space and 
are likely to form a valuable set of tools to characterise 
other fisheries on the basis of fishery-dependent data. 

The spatial footprint of the boat-based recreational fish
ers, on the basis of fishing events and effort, had a greater 
spread, and extended further into more offshore areas in 
2011–12 than in any other subsequent survey year. This 
pattern was supported by the decreasing total area, positive 
area, equivalent area and the interannual variability of GIC 
and LIC. Such temporal variation in fishing events and effort 
potentially reflects shifts in fisher behaviour in response 
to changing abundances of target species and catch 

compositions within the area as a result of trophic-level 
changes (Humphries et al. 2019), but also may be due to 
various socio-economic or cultural factors (Lai et al. 2019). 
From 1998 onward in Western Australia, progressive man
agement changes included reduced bag limits and size lim
its, that aimed to restrict catch because of declines in the 
CPUE of key target species (Jackson et al. 2016). These 
management regulations were followed by the introduction 
of a demersal finfish closure in the West Coast Bioregion 
(from 27°S, 114°E to 34°S, 115°30ʹE) between 2007 and 
2010 (Fairclough et al. 2014). These regulations resulted 
in demonstrable stock recovery by 2011 (Newman et al. 
2018), suggesting that fishers did not need to travel as far 
to gain their catch limits post 2011–12. 

The CG for retained and released CPUE of all demersal 
species showed a southerly shift between 2011–12 and sub
sequent years, with a gradual northerly shift after 2013–14, 
alongside a positive area contraction of fishing events and 
effort. Similarly, the CG for retained and released CPUE of 
West Australian dhufish both shifted ~1° south between 
2011–12 and 2013–14, then proceeded to migrate north in 
subsequent survey years. In comparison, the CG for retained 
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and released CPUE of Baldchin groper showed only slight 
shifts, which is likely to reflect the fact that the species 
preferred habitat at the Abrolhos Islands and fewer habitats 
in more southerly, temperate waters (Newman et al. 2018). 
The southerly shift in CPUE of all demersal species and West 
Australian dhufish may reflect the response of target species 
to the 2010–11 marine heatwave that occurred off Western 
Australia, increasing sea surface temperatures by 4–5°C, and 
reaching depths of 100 m (Caputi et al. 2014). 

The marine heatwave of 2010 appears to have had a 
short-term impact with a long-term recovery, because dis
tributional shifts in catches were recorded. A southerly 
latitudinal shift was noted by commercial and recreational 
fishers for subtropical and temperate species, which eviden
tially influenced the recruitment and survival of species in 
the West Coast Bioregion (Caputi et al. 2014). Temperate 
species, such as West Australian dhufish, were more vulner
able to temperature changes where a shift in community 
structure can be attributed to habitat loss and relative tro
picalisation of fish assemblages, where West Australian dhu
fish migrated to deeper waters buffering the effects of the 
increasing temperatures (Caputi et al. 2014). This southerly 

shift between 2011–12 and 2013–14, in conjunction with 
contraction of recreational fishing effort towards the coast
line, was highlighted by the decrease in the positive area, 
suggesting that species are redistributing following this 
major disturbance, gradually migrating back north and 
returning to a pre-perturbed state (Caputi et al. 2014). 

Areas with a greater likelihood of a hotspot for retained 
CPUE for all demersal species showed spatial consistencies 
across survey years, with the Abrolhos Islands and south of 
Bunbury being identified as high-activity areas over the cut- 
off. The likelihood of a hotspot for released CPUE for all 
demersal species was also high just offshore of Geraldton, 
adjacent to the Abrolhos Islands, in 2015–16 and 2017–18. 
Baldchin groper presented similar results, which was likely 
to reflect their aggregating nature to preferred habitat types, 
making the species particularly vulnerable to fishers and 
susceptible to overexploitation (Jennings et al. 2001; Clark 
and Dunn 2012; Robinson et al. 2014; Bouchet et al. 2017). 
Recreational fishers target demersal species with the use of 
global positioning systems and echo-sounder technology or 
prior knowledge of fish aggregations, and much like com
mercial fishers, fish a patch until bag and boat limits are 
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Table 2. Global index of collocation (GIC) and local index of collocation (LIC) for CPUEs of demersal species by boat-based recreational fishers, associated effort and two key 
species (West Australian dhufish and Baldchin groper) in the West Coast Bioregion of Western Australia from 2011–12 to 2017–18.           

Survey year 2011–12 2013–14 2015–16 2017–18 2011–12 2013–14 2015–16 2017–18    

Retained (released) all demersal Total demersal records (mean effort)  

2017–18  0.969 (0.950)  0.987 (0.992)  0.997 (0.994)   0.996 (1)  1 (1)  1 (0.999)   

2015–16  0.946 (0.977)  0.996 (1)   0.815 (0.909)  0.994 (1)  0.999 (0.999)   0.960 (0.961)  

2013–14  0.914 (0.984)   0.702 (0.774)  0.746 (0.783)  0.996 (1)   0.933 (0.919)  0.942 (0.924)  

2011–12   0.671 (0.715)  0.672 (0.725)  0.629 (0.716)   0.857 (0.825)  0.189 (0.811)  0.847 (0.843)  

Retained (released) West Australian dhufish Retained (released) Baldchin groper  

2017–18  0.779 (0.769)  0.990 (0.993)  0.955 (0.966)   0.953 (0.857)  0.990 (0.988)  0.978 (1)   

2015–16  0.915 (0.893)  0.986 (0.988)   0.784 (0.585)  0.994 (0.868)  0.997 (0.986)   0.740 (0.548)  

2013–14  0.845 (0.824)   0.813 (0.352)  0.752 (0.323)  0.983 (0.936)   0.618 (0.462)  0.379 (0.264)  

2011–12   0.255 (0.247)  0.643 (0.266)  0.712 (0.377)    0.748 (0.251)  0.714 (0.566)  0.708 (0.251)  

Retained v. Released LIC 

Species 2011–12 2013–14 2015–16 2017–18  

All demersal 0.906 0.886 0.923 0.926  

West Australian dhufish 0.702 0.268 0.782 0.783  

Baldchin groper 0.491 0.767 0.739 0.36 

Note: values above the diagonal are GIC, whereas those below the diagonal are LIC.  
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achieved and return to those successful locations (Marriott 
et al. 2011; Lambert et al. 2014; Robinson et al. 2014;  
Hilborn et al. 2015). Identifying the likelihood of hotspot 
locations is of interest in a conservation approach to the 
spatial management of fisheries, but also may help inform 
on the drivers and long-term impacts of fishing in a region 
(Petitgas et al. 2016). 

With developments in gear, advancements in fishing 
technology (sounders and global positioning satellites) that 
are widely available and the increasing efficiency of vessels 
(technological creep), the catchability of targeted species is 

increasing, especially for recreational fishers (Tidd 2013). 
Recreational fishing, if not managed accordingly, can poten
tially lead to high stock exploitation, selective harvest of 
‘trophy fish’, causing shifts in population structures, and 
unwanted post-release mortality (FAO 2017). Although we 
did not account for technological creep in effort of the 
recreational fishery, we identified hotspots for released 
CPUE within the West Coast Bioregion, which is concerning 
because of the likelihood of barotrauma (expansion of gases 
within fish owing to rapid decompression) and post-release 
mortality (Cooke and Schramm 2007; Wise et al. 2012). 
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Owing to bag and size limits, released CPUE are generally 
higher than retained CPUE for all demersal species and West 
Australian dhufish, which is consistent with estimated 
released catches being nearly twice those for estimated 
retained catches (Ryan et al. 2019). Recorded in the most 
recent 2017–18 survey, 60% of respondents released West 
Australian dhufish and Baldchin groper because of their 
being undersize (Ryan et al. 2019). Yet, since West 
Australian dhufish is assumed to experience a 50% post- 
release mortality (Department of Primary Industries and 
Regional Development 2021), the released CPUE would 
account for additional mortality to that shown by retained 
CPUE. High released CPUE across survey years coincide 
with areas of high retained CPUE supported by the LIC 
(0.9), suggesting fishers are releasing catches in these 
high-activity areas. Although current fishery management 
regulations are notably effective where spatial indices sug
gest a fishery returning to a pre-perturbed state, there is 
potential for alternative targeted spatial management strat
egies such as no-take zones for areas with high released 
CPUE. Because a range of targeted recreational species 
around the world experience high post-release mortality 
(Arlinghaus et al. 2007; Post and Parkinson 2012), the use 
of indices such as LIC is likely to assist with identifying areas 
of high activity and release mortality for spatial manage
ment strategies across the globe. 

The distribution of retained and released CPUE for all 
demersal species, as well as West Australian dhufish and 
Baldchin groper, may have been influenced by external 
factors, including their unique spatial and sex-dependent 
growth rates, and fishing pressure from multiple sectors 
(commercial, charter and recreational; Morgan and Burgess 
2004; Pennino et al. 2016; Maunder and Thorson 2019). 
Areas with high released CPUE dominate the northern 
region for the demersal fishery, in particular, released 
CPUE of Baldchin groper at the Abrolhos Islands. This archi
pelago is noted as an area with a few blocks of concentrated 
effort and is known to be a highly abundant small propor
tion of area (Hutchins 2001). These spatial indices, along 
with probability maps of released CPUE hotspots, suggest 
that the Abrolhos Islands are an isolated case where there is 
potential scope for targeted spatial management, given indi
vidual reporting of access to the fishery at the Abrolhos 
Islands is mandatory. An example of this type of manage
ment challenge can be seen in the Gulf of Mexico, where the 
declining health of the red snapper fishery is attributed to 
the derby-style behaviour of fishers, where they compete to 
attain high harvest levels before seasonal closures (Hackett 
et al. 2005; Smith et al. 2009; Farmer et al. 2020). Bag limits 
and seasonal closures alone have proven ineffective for a 
derby-style fishery, as effort compression can lead to higher 
CPUE, resulting in high released CPUE. Management 
restrictions for the mixed demersal fishery in the West 
Coast Bioregion have been effective, with <4% of annual 
recorded fishing events being non-compliant with bag limits 

exceeded (Supplementary Fig. S2). Although compliance 
levels in conjunction with spatial patterns suggest that the 
demersal fishery is returning to a pre-perturbed state, spa
tially targeted effort restrictions may become necessary to 
manage areas with high released catches, alongside bag and 
size limits and seasonal closures. Spatio-temporal analyses, 
such as those adopted in the current study, provide an 
effective tool to identify areas that could be targeted for 
spatial management. 

Conclusions 

The spatial behaviour of the recreational fishery is linked to 
fisher behaviour, unprecedented climatic events, and spe
cies biology, where patterns of retained and released CPUE 
were unique on a species level within the study region. This 
study demonstrated the value of utilising geostatistical spa
tial indices, including the CG and positive area, collectively 
with a time series of fishery-dependent data to delineate and 
understand potential drivers of spatial shifts in effort and 
CPUE distributions. Furthermore, local index of collocation 
helped confirm whether CPUE hotspots or areas of high 
fishing activity were consistent through time. These indices 
provide a set of tools to allow fisheries managers to adapt 
and apply appropriate short- to long-term management 
strategies, such as targeted spatial closures, to improve 
fish stocks. As suggested in this study, current restrictions 
for the demersal fishery appear effective, because effort and 
CPUE remained stable after 2011–12, when there was a 
contraction of fishing effort towards the coast and a gradual 
northerly shift of CPUE following the 2010–11 marine heat
wave. However, there is the potential for spatially targeted 
effort restrictions in areas of high released CPUE, alongside 
existing regulations, to minimise the likelihood of baro
trauma and post-release mortality. The spatial indices and 
hotspots used in this study are likely to assist fisheries 
scientists and managers to identify high fishing-activity 
areas and assess their potential impacts, to manage a fishery 
returning to a pre-perturbed state, especially in multispecies 
and multisector fisheries. 

Supplementary material 

Supplementary material is available online. 
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