Climate change impacts on the terrestrial
biodiversity and carbon stocks of Oceania

GRANT W. WARDELL-JOHNSON**, GUNNAR KEPPEL*® and JULIANE SANDER*

We review the threats from anthropogenic climate change to the terrestrial biodiversity of Oceania, and quantify
decline in carbon stocks. Oceania’s rich terrestrial biodiversity is facing unprecedented threats through the interaction
of pervasive environmental threats (deforestation and degradation; introduced and invasive species; fragmentation)
and the effects of anthropogenic climate change (sea level rise; altered rainfall patterns and increased fire frequency;
temperature rises and increased storm severity, extreme weather events and abrupt system changes). All nine of
Oceania’s terrestrial biomes harbour ecosystems and habitat types that are highly vulnerable under climate change,
posing an immense conservation challenge. Current policies and management practices are inadequate and the need
for new legislation and economic mechanisms is clear, despite powerful interests committed to limiting progress.
Mitigation can be achieved by increasing the effectiveness of the protected area network, by maintaining and effectively
managing existing carbon stocks and biodiversity, and by reforestation to sequester atmospheric carbon. A price on
carbon emissions may encourage less carbon-intensive energy use while simultaneously encouraging reforestation on
long-cleared land, and reducing degradation of native forests. However, realizing these changes will require societal
change, and depend on input and collaboration from multiple stakeholders to devise and engage in shared, responsible
management.
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INTRODUCTION

CLIMATE is the primary driver of com-
position, structure and function in terrestrial
ecosystems (Schimper 1903; Good 1931), with
biogeographic history, edaphic factors and
disturbance also important (Bond et al. 2005;
Mucina and Wardell-Johnson 2011). There is
scientific consensus that serious anthropogenic
climate change is taking place, and that early
projections were highly conservative (Steffen et
al. 2009; Climate Commission 2011). The major
processes by which greenhouse gases influence
Earth’s climate are well accepted and long
established (Crawford 1997). Vastly increased
greenhouse gas emissions since the industrial
revolution (~1750) are the overwhelming driver
of recent global warming (Climate Commission
2011). Altered climates, associated with elevated
atmospheric CO, concentration, have already
been documented in many areas of the world
(IPCC 2007) and the speed of anthropogenic
climate change is likely to have considerable
impacts on terrestrial biodiversity.

The biodiversity, as well as the geological and
cultural diversity of Oceania are extraordinary
(Keast and Miller 1996; Legra et al. 2008).
Oceania includes Australia and New Guinea in
the west, New Zealand and offshore islands in
the south, and the Pacific Islands in Melanesia,
Micronesia and Polynesia in the east (sensu
Kingsford et al. 2009; Kingsford and Watson this
volume), covering over 80 million km?. Because
many of Oceania’s islands are small and far
apart, the combined land area is about 11% of

the total, with Australia (84%), New Zealand
(3.0%), New Guinea (11%) and New Caledonia
(0.21 %) accounting for over 8.4 million km?
(98.6%). Australia, parts of New Guinea, New
Zealand and New Caledonia are of Gondwanan
origin and act as major evolutionary centres and
source areas for Oceania’s biodiversity (Whiffin
and Kikkawa 1992; Keppel et al. 2009). Many
Oceania islands are geologically recent and
include volcanic, fertile islands, elevated lime-
stone islands and, infertile reef atolls or coral
cays (Mueller-Dombois and Fosberg 1998).

Based on a substantial increase in recent fossil
fuel use, and continuing emissions from land-
use change, Earth is on course to warm by 3.5°C
by 2100 (IEA 2010), with a range of 1-5°C,
depending on projected emission scenarios
(IPCC 2007). Climate change models are
restricted in scale and dependent on different
emissions, and hence warming scenarios (see
Yates et al. 2010). Furthermore, the nature of
future local and regional climates remains
uncertain (Araujo and Rahbek 2006). By 2100,
climatic models forecast rising temperatures, an
increase in extreme events and a rainfall decline
for most of Oceania, with the exception of the
tropics (CSIRO 2007). This will aftect biota and
carbon stocks of Oceania, already depleted by
millennia of anthropogenic influences.

We conservatively examine climate change
impacts on biodiversity and carbon stocks in
Oceania for global warming of about 2°C, even
though more than 3.5°C rise in global
temperature by 2100 is highly likely (see
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Meinshausen et al. 2009; TEA 2010; Climate
Commission 2011). Warming above 2°C will
strain humanity’s capacity to secure sufficient,
tractable environments, producing a runaway
greenhouse effect through feedback mechanisms
(Cox et al. 2000). We take the optimistic position
that humanity will substantially decarbonize
energy requirements and the land-use footprint,
to reduce atmospheric greenhouse gas levels and
prevent increased impacts. We firstly highlight
the importance of Oceania’s terrestrial bio-
diversity and carbon stocks. We then examine
direct climate change impacts and indirect
interactions with pervasive environmental
threats, on biodiversity and carbon flux in
terrestrial ecosystems in the nine. Finally we
evaluate policy and management approaches to
limit biodiversity and carbon losses, under
changing climatic conditions.

Terrestrial biodiversity and carbon stocks in
Oceania

Terrestrial biodiversity in Oceania is extremely
rich and highly threatened on a global scale. As
a result of island biogeographic processes,
terrestrial biomes in Oceania have high species
diversity, lineage diversification and localized
endemism (Steadman 2006; Keppel et al. 2009;
Kier et al. 2009). The insular nature of much of
the region has probably stabilized local climates,
moderating effects of global climatic change
(Barnett and Campbell 2010). Nevertheless, the
biota and ecosystems are considerably depleted
throughout much of Oceania. For example, 50%
of the global decline in mammal species over
the last 200 years is Australian (Mackey et al.
2008), and human settlement of the Pacific
Islands has resulted in the extinction of 20% of
the global bird fauna (Steadman 1995). The
occurrence of six of the world’s 34 global
biodiversity hotspots (Polynesia and Micronesia,

Melanesia, New Zealand, New Caledonia,
Wallacea and south-western Australia (Myers et
al. 2000; Mittermeier el al. 2005; Kingsford et
al. 2009) highlights both the richness and the
threats facing the biodiversity of Oceania.

Of the nine global biomes recognized for
Oceania (CIESIN 2007) (see Fig 1), “Desert and
Xeric Shrubland” (Arid regions) and “Tropical,
subtropical grasslands, savannas, shrublands”
(Tropical savanna) occupy more than 60% of
terrestrial Oceania (39% and 24%, respectively),
mostly within Australia (Table 1). “Mediterranean
forest, woodlands, scrub” (Mediterranean wood-
lands), “Temperate grasslands, savannas, shrub-
lands” (Temperate grasslands), and “Temperate
broadleaf, mixed forest” (Temperate forests) all
occupy significant areas (particularly of
Australia). “Montane grasslands, shrublands”
(Alpine regions), “Tropical, subtropical dry
broadleaf forest” (Tropical dryforest), “Mangroves”
(Mangroves) and “Tropical, subtropical moist
broadleaf forest” (Tropical rainforest) occupy
relatively small areas overall (Table 1), but
constitute considerable cover in non-Australian
Oceania (Olson et al. 2001).

Australia

Australia has all nine biomes (Olson et al.
2001) (Table 1, Fig. 1), representing unique
environments that have evolved in isolation on
an island continent with climatic extremes
(Steffen et al. 2009). Australia’s edaphic and
climatic characteristics, particularly ancient and
leached nutrient-poor soils, are reflected in
specialized biotic adaptations. This is exempli-
fied in the Mediterranean climate-region of
south-western Australia (Hopper 2009; Mucina
and Wardell-Johnson 2011) with over 7 300
(49% endemic) of Australia’s approximately
25000 vascular plant taxa (Hopper and Gioia

Table 1. Biomes, their land area in Australia and all Oceania; their rangeland component and carbon loss from broad-scale
deforestation. Note that the edges of biomes are not distinct over distances of up to 100 km and therefore only major
areas can be mapped; e.g., mangroves (Macnae 1965) and small, remnant patches of Tropical dryforest (Fensham 1996)
occur in Australia. Methods and data sources are are given in Appendix 1.

Area C in Bio 9 area
Area(km?, % of deforested % C in bio- mass lost (% commercial

Country and Biome 1000s) Oceania  (km? 1000s) deforested mass lost (Pg) of potential) rangeland
Australia (total) 7590 84 13 6.2(x1.7) 28(+7.9) 49
Arid regions 3510 39 20.0 0.571 0.0317 0.88 46
Mediterranean woodlands 721 8.0 312 43.2 1.11 50 17
Alpine regions 12.2 0.14 0.519 4.25 0.00531 3.9 0
Temperate grasslands 627 6.8 1789 28.5 1.61 39 57
Temperate forest 485 5.5 234 48.2 2.19 44 0.12
Tropical rainforest 33.2 0.38 8.98 27.0 0.166 26 3.1
Tropical savanna 2130 24 198 9.30 1.12 17 74
New Zealand (total) 279 3.1 154 71 3.1(=0.41) 75(=10) 3.7
New Guinea (total) 971 11 145 14 3.9(x2.6) 15(x10) 0
Hawaii (total) 16.72 0.19 8.28 58 0.12(=0.06) 55(%27) 31
Solomon Islands (total) 28.4 0.31 6.54 23 0.19(%=0.070) 23 00
New Caledonia (total) 18.7 0.21 15.6 84 0.37(x0.21) 84

Tropical rainforest 14.3 0.048 11.3 42 0.058 42 0
Tropical dryforest 4.35 0.16 4.31 90 0.064 90 0
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Fig. 1. Terrestrial biomes of Oceania. Map based on biome GIS data from Olson et al. (2001) and the commercial rangeland
GIS layer from Dean et al. (2009). Projection = Lambert Conformal Conic, datum = Australian Geodetic Datum 1984,
central meridian = 135° E, standard parallel 1= 18° S, standard parallel 2= 36° S, linear unit = metres. High

resolution maps are available in Appendix 1.

2004). High rates of species’ richness and
endemism also occur in Australia’s once more-
expansive Tropical rainforest (Williams et al. 2003);
in eastern Australia’s Temperate forests; and across
the vast Tropical savanna. The remaining
relatively undisturbed south-eastern Australian
temperate forests are among the world’s most
carbon dense forests (Keith et al. 2009). These
complex, multi-aged and layered forests have
fast growth rates, low decomposition rates, and
occur in relatively cool and moist environments.

New Zealand

Three of the nine global biomes occur on the
two main islands of New Zealand (Alpine regions,
Temperate forest and Temperate grasslands, Fig. 1),
where the terrestrial diversity is distinguished by
the absence of native land mammals. With the
exception of bats, mammals became extinct 26
— 35 million years ago, when most or all of New
Zealand’s landmass (268,000 km?) was
submerged (Pole 1994; McGlone 2005). This led
to a remarkable diversity of endemic (70%) bird
species, prior to the arrival of humans
(Steadman 1995). Today 80% of the c. 2 300
vascular plant species and all species of bats,
amphibians and reptiles are endemic (Allen and

Lee 2006; McGlone et al. 2010). Prominent
examples of evolutionary relicts with Gond-
wanan ancestry include three tuatara species
(Sphenodon — Sphenodontidae), the only sur-
viving genus of the reptile order Sphenodontia,
restricted to small islands (Lutz 2006). The
Gondwanan heritage is also particularly
noticeable within the diverse invertebrate fauna
with intensive lineage diversification, typified by
a substantial proportion of large and flightless
insects (Cranston 2010).

New Guinea

Due to its varied topography and complex
evolutionary history (Pieters 1982; Heads 2001),
New Guinea has the greatest diversity of habitats
among islands of comparable size worldwide
(Miller et al. 1994). New Guinea (including New
Britain, New Ireland and other archipelagos) is
dominated by Tropical rainforest (92% of land
area, Fig. 1) but includes Tropical savanna (3.0%),
Alpine regions (1.8%) and Mangrove biomes
(3.1%). Cold tundra, bogs, montane rainforests,
cloud forests and coastal ecosystems occur within
these biomes (Johns 1982). New Guinea’s
terrestrial biota is highly diverse and typified by
high endemism, despite its close evolutionary
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links with Australia (Miller et al. 1994). Covering
less than 0.5% of the earth’s land surface
(971,200 km?), New Guinea harbours about 10%
(more than 1,550 terrestrial species) of the
world’s vertebrate fauna and 7% (more than
20,000 species) of the world’s described, vascular
plant taxa (Allison 1996; Legra et al. 1996).
Lowland terrestrial environments are dominated
by plant taxa of Asian origin while montane and
cloud forests include evolutionary, relict plant
taxa that evolved in rich, fertile environments
(Miller et al. 1994; Haberle 2007).

New Caledonia

New Caledonia (19 100 km?) includes two
global biomes (Tropical rainforest and Tropical
dryforest), associated with more than 3,270
species of vascular plants and the highest
biodiversity per unit area of any region in the
world (Kier et al. 2009). More than 75% of
species and 14% of genera of native angio-
sperms and gymnosperms are endemic to New
Caledonia (Jaffre 1993). Although of continental
origin, the island was mostly or entirely
submerged in the Oligocene, implying sub-
sequent colonization and divergence of bio-
diversity (Grandcolas et al. 2008). Geographic
isolation, dispersal, ecological diversification and
hybridization produced the present biota
(Bartish et al. 2005; Keppel et al. 2011a).

Other Pacific Islands

The other, smaller islands of Oceania harbour
a diverse biota with numerous endemic species
(Mueller-Dombois and Fosberg 1998; Keppel et
al. 2009). For example, the combined East
Melanesian Islands and Polynesia-Micronesia
hotspots have more than 12 000 vascular plant,
and more than 500 bird species (Mittermeier et
al. 2004). Pacific islands are mostly of volcanic
origin, harbouring most of the locally endemic
biota, but also include uplifted limestone, and
coral atoll islands (Mueller-Dombois and
Fosberg 1998). The oldest and still emergent
islands date to less than 40 million years ago
(Yan and Kroenke 1993). Generally, greater age,
size and isolation of islands equates to greater
diversity and endemism (Keppel et al. 2010),
reinforcing the importance of biogeography.

Impacts of climate change on Oceania’s
biodiversity and carbon stocks

Compared to the Northern Hemisphere, there
is limited understanding of climate-change
related trends derived from long-term datasets
and phenological monitoring in Oceania
(Hughes 2003). However, recent observations in
Oceania (e.g. Welbergen et al. 2007; Chambers
2008; Pickering et al. 2008) reveal changing
patterns consistent with a warming Earth. Past

climate change shifted distributions of taxa and
biomes (Stevenson and Hope 2005; Byrne 2008)
and anthropogenic induced climate change will
probably have similar consequences. Sea level
rise and associated inundation, rainfall and
hydrological change, temperature rises, more
extreme weather events, and an increased
likelihood of abrupt system changes (Leslie et al.
2007; Richards and Timmermann 2008; Climate
Commission 2011) will considerably impact on
terrestrial biodiversity and carbon stocks (Table
2), interacting with one another and existing
pervasive threats (deforestation and degradation,
introduced and invasive species, and frag-
mentation). All nine biomes include ecosystems,
ecological communities and species threatened
by <2°C of anthropogenic climate change (Table
2) and many species and ecological communities
are already threatened, regardless of climate
change.

Sea level rise

Sea-level is projected to rise (<20cm-2m) to
2100 and later, regardless of future greenhouse
gas emissions (Solomon et al. 2009). Rising sea
levels are already reducing the small landmass
of islands, and further aggravating existing
environmental stressors in coastal zones
throughout Oceania, such as erosion and
salinization of soil and groundwater (McLeod
and Salm 2006). A sea-level rise of 1 m would
cause high inundation of substantial land masses
of islands during spring tides and intensified
storms, rendering small, low-lying coral atoll
islands (e.g., Tuvalu) uninhabitable (Barnett and
Campbell 2010). Low-lying coastal vegetation
will experience severe reduction in area (e.g.,
Legra et al. 2008), with impacts inversely related
to shoreline gradient (Table 2). Coastal
ecosystems (e.g., mangroves and salt marshes)
will decrease in extent because there is little
space for retreat. This will considerably reduce
carbon stocks because mangroves are highly
carbon-dense ecosystems (Kauftfman et al. 2011).
Mangroves are also adversely affected by high
temperatures (> 35°C) and high salinity from
reduced rainfall (McLeod and Salm 2006).
Rising sea levels will exacerbate existing
problems of high exploitation and urbanisation
of habitat, with considerable uncertainty of
cascading effects on biodiversity and carbon
stocks (Mack 2008).
increased storm

Temperature rises and

severity

Average air temperature has increased at a
rate of 0.17 per decade over the past three
decades (Climate Commission 2011), noticeably
affecting montane and alpine regions (Table 2).
Ranges of tropical threatened species have
contracted due to losses of bioclimatic envelop,
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Fig. 2. Examples of Oceanian environments and habitats vulnerable to < 2 °C warming. These include areas harbouring
ecological communities that are vulnerable to cattle and fire such as isolated tropical dry forest fragments in the
Kimberley, Western Australia (1a); very restricted habitats such as moist, organic-rich swamp habitat in Mediterranean-
climate south-western Australia (1b); upper slope habitat of montane environments such as alpine treefern and grassland
communities in the Sarawaget Highlands, Papua New Guinea (lc); species-rich sandstone gully headwater habitat in
the Tropical Savanna Biome, Northern Territory, Australia (1d); species-rich heathlands above 1000 m in the otherwise
flat landscapes of south-western Australia (1e); high altitude grassy eucalypt forest in the Temperate Forest Biome of
south-eastern Australia (1f); and high rainfall environments in areas of projected rainfall decline such as the tall open-
forests of Mediterranean-climate south-western Australia (1g). Not all of these environments are rare at present.
Photograph credits 1a, b, ¢, d, e, f. g: G. Wardell-Johnson.
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particularly temperature rise (Table 2). Tropical
montane cloud forests are already restricted to
the highest peaks in Australia and on many
Pacific islands. However, they continue to
support a considerable proportion of the
endemic biodiversity (Meyer 2010), and provide
refuges for taxa from highly degraded lowlands
(Benning et al. 2002). The forecast lifting of the
cloud base (Still et al. 1999; Pounds and
Puschendorf 2004) is predicted to destroy much
of the ecosystem and its endemic species
(Williams et al. 1996; Loope and Giambelluca
1998; Table 2). Cloud forests and other
highland rainforest types in northern Queens-
land are projected to halve with a temperature
increase of 1°C and a small reduction in rainfall
(Hilbert et al. 2001).

Most alpine environments in Oceania, apart
from in New Zealand, are small and isolated
(Wardle 1988; Mueller-Dombois and Fosberg
1998), with high levels of endemism (Smith
1982; Halloy and Mark 2003). Global warming
poses a severe threat, especially for Australia,
which has limited capacity for altitudinal
migration because of limited elevational range
(Smith 1982; Green and Osborne 1994).
Increasing land temperatures in New Zealand
have contributed to reduced frost frequency and
alpine snow mass and retreating glaciers and
snowlines (Mullan et al. 2008). While this will
increase short-term carbon biomass, increasing
fire frequency and intensity with elevated
temperatures is likely to subsequently reduce soil
organic carbon. Furthermore, high-intensity
storm events, prolonged periods of drought and
frequent high-intensity fires will assist invasion
of exotic taxa into high-altitude habitat,
reducing native vegetation (Pickering et al. 2008;
Table 2). Increased sea temperatures also lead
to extreme, high-intensity storms and cyclones
(Leslie et al. 2007), increasing flood frequency
and tree mortality (Elmqvist et al. 1994), leading
to loss of carbon in all biomes. Selective
mortality of species with vulnerable traits will
change species’ composition and structure of
forests (Curran et al. 2008; Keppel et al. 2010;
Webb et al. 2011).

Altered rainfall patterns and increased fire
frequency

Australia’s total annual rainfall has slightly
increased, over the past century (Climate
Commission 2011) but with substantial regional
variation (CSIRO and BOM 2007), increasing in
north-western Australia and with a substantial
reduction along the central east coast and in
south-eastern and south-western Australia
(Suppiah et al. 2007). Reductions in winter rain-
fall in Mediterranean south-western Australia
since the mid-1970s are attributed to increased
greenhouse gases, natural climate variability, and

land-use change (CSIRO 2007, 2009; Bates et al.
2008). Water availability is similarly likely to
decline in south-western and south-eastern
Australia. In Australia’s wet tropics, severe
intensification of the dry season and changes to
seasonal precipitation patterns are forecast to
alter ecosystem dynamics (Schloss et al. 1999),
and impact severely on taxa restricted to moist
environments (e.g., microhylid frogs, Table 2).

Reduced rainfall and long droughts will
increase the frequency of fires, potentially
affecting tropical dryforests, probably the most
threatened biome in Oceania (Gillespie et al.
2011). Introduced grasses may also increase fire
intensity and frequency in savanna and arid
landscapes, increasing carbon emissions and
biodiversity loss (D’Antonio et al. 2011;
McDonald and McPherson 2011). Furthermore,
modest changes in climate may disproportion-
ately increase frequency and intensity of extreme
events (e.g., high-intensity fires, extensive
droughts, heat waves, high-intensity storms,
Alexander et al. 2007; Climate Commission
2011), detrimentally affecting native biodiversity
in Oceania (Low 2011). For example, extreme
droughts and fires associated with El Nifo
events have produced considerable mortality in
rainforests (Edwards and Krockenberger 2006;
Mack 2008). This may change thresholds,
potentially rapidly changing or reorganizing
ecosystems to alternative states (Climate
Commission 2011), with natural recovery
unlikely (D’Antonio et al. 2011). For example,
the rainfall decline in south-western Australia
has shifted stream flow regimes from perennial
to ephemeral, reduced water-tables and runoff
coefficients, and led to the development of a
new hydrological regime (Petrone et al. 2010).
Widespread forest density loss in the lower
rainfall eastern areas of the jarrah (Eucalyptus
marginata) forest may be from altered hydrology
(Wallace et al. 2009).

Pervasive threats to terrestrial biodiversity and
carbon stocks

Existing drivers of biodiversity and carbon loss
(Dean and Wardell-Johnson 2010) continue to
impact terrestrial biomes in Oceania (Frazer
1997; Lees 2007; Lindenmayer 2007; Kingsford
et al. 2009; Bryan et al. 2010; Woinarski 2010).
Deforestation and degradation of terrestrial
biomes for urban development, agriculture and
logging remains the predominant threatening
process in Oceania (Lindenmayer 2007; Kings-
ford et al. 2009; Woinarski 2010), and is the
major cause of extinctions (Sodhi et al. 2009)
and carbon loss. Thus more than half of all
IUCN red-listed species in Pacific island nations
are threatened by habitat loss (IUCN 2011), and
Papua New Guinea lost almost 20% of its carbon
stocks through deforestation and degradation
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from 1972-2002 (Bryan et al. 2010). The carbon
stock loss in New Guinea is approximately 50%
from logging and 50% from subsistence
agriculture (Shearman and Bryan 2011), with
area of each increasing. Logging in the Solomon
Islands and Papua New Guinea is progressing
at a rate that will leave little mature and
undisturbed forest within a decade (Frazer 1997;
Keppel 2006; Shearman and Bryan 2011).

Depletion and fragmentation by agriculture
and logging in Australia and New Zealand over
the past 200 years (Table 1) has sometimes led
to novel ecosystem dynamics, including those
involving the bell miner (Manorina melanophrys,
Table 2). In New Zealand, ecosystem loss and
fragmentation has occurred throughout the
country (Hennessy et al. 2007), leading to the
indirect loss of forest biomass in adjacent areas,
through salinity and increased fire risk from
introduced grasses. Deforestation continues in
Australia and New Zealand, for agriculture,
urbanization and mining, although rates of
clearing native forests for agriculture and
plantation establishment have substantially
declined since 2000.

There are several other important and
continuing threats to ecosystems in Oceania,
including invasive species, which impact native
biodiversity in all ecosystems (Lonsdale 1994;
Craig et al. 2000; Olson et al. 2006). For
example, there are many introduced species in
New Zealand; at least 30 mammals, 34 birds,
2000 invertebrates, and 2200 plants (Allen and
Lee 2006; Norton 2009). In addition invasive
species may cause the collapse of native species
and ecosystem processes in the Pacific islands
(Walker and Vitousek 1991; Meyer and Florence
1996). Mining operations, while occupying
relatively small areas overall, often occur in
areas of high endemism, and can contribute
substantially to habitat degradation (e.g., Paull
et al. 2006, Fig. 2). Commercial livestock grazing
occupies half of Australia’s, and about 4% of
New Zealand’s area (Table 1), making it the
largest land use in Oceania. The impacts on
rangelands of deforestation, overgrazing, intro-
duced fauna and flora, and altered fire regimes
result in a net carbon emission (e.g., Walker and
Steffen 1993; Radford et al. 2007) and decreased
biodiversity (e.g., Williams and Price 2010).

Overall, many existing stressors interact to
exacerbate climate-change impacts (Williams et
al. 2008; Kier et al. 2009; Shoo et al. 2011).
These include deforestation, degradation, habi-
tat fragmentation, invasive weed species,
introduced predators and the spread of patho-
gens (e.g. Phytophthera cinnamomi and related
taxa, Wardell-Johnson and Nichols 1991;
Shearer et al. 2004). Understanding the synergy
between climate change scenarios and the
threats posed by existing pervasive threats is

urgently required for incorporation into new
approaches to land management (e.g., Hobbs et
al. 2009; Hopper 2009).

Management and policy responses under a
changing climate

Current policy responses to increased
greenhouse gas emissions vary with region and
country, but are inadequate to slow or arrest
global warming. There is a need to establish
effective financial and legislative mechanisms to
safeguard current carbon stocks, and re-
sequester carbon, while also providing positive
biodiversity benefits. Furthermore, protected
areas need to be increased and off-reserve
conservation improved, including increasing the
area of reforestation and improving the manage-
ment of existing carbon stocks. A price on
carbon emissions throughout Oceania can
redirect energy use to less polluting forms. New
Zealand and recently Australia have shown
leadership in reducing greenhouse gas emissions.
Broad-scale logging and deforestation of natural
forests in New Zealand declined with the
introduction of an emissions trading scheme
(NZ Ministry for the Environment 2011).

Protected areas, connectivity and refugia

Protected areas may fail to adequately
conserve biodiversity with future projected
changes in climate (Steften et al. 2009) because
they do not provide sufficient area for
alterations of species’ ranges and distributional
patterns in terrestrial biomes. Furthermore, most
forest types in Australia will experience future
climatic conditions that are currently associated
with other forest types (Hughes 2003). In many
Pacific islands, the protected-area systems are
not only inadequate and unrepresentative (Jaftré
et al. 1998; Lees 2007; Shearman and Bryan
2011), but are also poorly enforced, resulting in
considerable anthropogenic degradation (Shearman
et al. 2008). Furthermore, conservation processes
established in developed countries are often
ineffective in Pacific islands because of different
social, economic, political and cultural
complexities (Hunnam 2002; Hviding 2006).
This is exacerbated by large gaps in the
knowledge of the distribution of biodiversity
(James 2008; Kool et al. 2010).

Increasing connectivity along environmental
gradients will enhance migration opportunities
for many species (Hilbert et al. 2001; Heller and
Zavaleta 2009; McGlone ef al. 2010), and allow
for changes to species’ habitat ranges (Foran
and Plody 2002). Hence increases to national
reserve systems in Oceania need to focus on
meta-population and source-sink population
dynamics, species core habitat, migration
corridors and stepping stones, refugial habitats
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Fig. 3. Examples of interacting threatening processes that exacerbate the impacts of anthropogenic climate change. These
include deforestation, weed invasion and frequent fire in former Tropical dryforest habitat of New Caledonia (2a);
sea-level rise, increased wind intensity and storm surges on pacific Islands such as Ouvea, New Caledonia (2b); increasing
fire frequency associated with higher extremes of wind and temperature such as in woodland habitat in the Great
Western Woodlands, south-western Australia (2c); increasing impacts of weed invasion such as by cats-claw creeper
(Macfadyena unguis-cati) in areas of disturbed Temperate forest in Queensland, Australia (2d); an increasing incidence
of peat fires associated with drying wetlands in south-western Australia (2e); and the interacting impacts of insects,
birds and disturbance leading to Bell-minor Associated Dieback or BMAD, in south-eastern Australian forests (2f).
Photograph credits 2a, b, d, e, f. g: G. Wardell-Johnson: 2c: C. Dean.
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Fig. 4. Examples of land management activities that exacerbate the impacts of anthropogenic climate change. Disturbance
of fragile, ancient soils leading to erosion, biodiversity loss and long-term carbon emissions such as in old ultramafic
soils in New Caledonia (3a); Logging of mature native forests such as in jarrah (Eucalyptus marginata) forest in south-
western Australia emits carbon and changes forest structure, leading to the establishment of a higher-water-demanding
regrowth stand — exacerbating further drying of the landscape (3b); Logging in Pacific island nations such as in the
Solomon Islands represents a significant carbon emission, a serious biodiversity loss, and predisposes terrestrial biota
to climate-change-induced stresses (3c); Deforestation for agriculture in old-stable landscapes such as in south-western
Australia has led to water table rises and concomitant landscape salinity, rendering restoration problematic (3d);
Continued overgrazing of Australia’s rangelands has led to widespread erosion and loss of soil organic carbon and
concomitant biodiversity loss (3e); Conversion of old-growth forests to plantations such as in this site in Tasmania,
Australia, provides continuing carbon emissions and biodiversity decline (3f). Photograph credits 3a: G. Wardell-Johnson,
3c¢: Patrick Pikacha, 3b, d, e, f: C. Dean.
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and adaptation pathways (Parmesan 2006;
Williams et al. 2010).

The maintenance of refugia minimises
environmental stress in natural areas (Wardell-
Johnson and Coates 1996; Keppel et al. 2011b).
While the localized evolution of many narrow
endemic species (Hopper and Gioia 2004;
Williams et al. 2010) may limit the adaptive
capacity of biodiversity, refugia and phenotypic
plasticity in species may maintain vulnerable
biodiversity under climate change (Horwitz et al.
2008; Keppel et al. 2011b). Examples of refugia
include rock-boulder fields associated with
sheltered and cooler climatic conditions in
Australian tropical montane forests (Shoo et al.
2010; 2011), and granite outcrops and wetland
ecosystems in south-western Australia (Horwitz
et al. 2008). Old-growth, mature, and natural
forests are also important refugial habitat
because they are structurally diverse, harbour
phylogenetic relicts (Wardell-Johnson and Coates
1996; Sander and Wardell-Johnson 2011), retain
moisture, have relatively low water demands,
have a very high carbon store (Dean and
Roxburgh 2006; Dean and Wardell-Johnson
2010), and are stable thermodynamically
(Keppel et al. 2011b).

Detailed knowledge of ecosystem functioning
is required for landscape-level conservation
under climate change. Understanding the
buffering capacity of refugia is necessary for
translocation and ex-situ strategies, and to
address risks of extinction (Shoo et al. 2010;
Keppel et al. 2011b). For this, fine-scale data are
required to resolve the important interactions
between climatic and landscape factors (Austin
and Van Niel 2011). Addressing knowledge gaps
in species’ resource use and their ability to adapt
to climate change is also crucial (Halloy and
Mark 2003; Williams et al. 2008; Shoo et al.
2011). This requires an enhanced understanding
of dispersal mechanisms and behaviour, flow-on
effects on species interactions, genetic structure
within and among species populations (Parmesan
2006), and the extent of phenotypic plasticity.
On a broad level, research into the rules of
ecosystem functioning is required to understand
the dynamics of ecological cascades, and to
forecast susceptibility to climate change (Heller
and Zavaleta 2009).

Reforestation

Widespread  reforestation  provides an
opportunity to reverse many of the threats
associated with near-future climate change in
terrestrial ecosystems (see Climate Commission
2011) but it needs to begin soon. Plantations on
long-cleared land can increase biodiversity and
carbon stocks (e.g., Kanowski et al. 2005) but
may also depend on strategic land purchase,

good land management, and corridor establish-
ment. Many degraded natural ecosystems still
retain important conservation value and carbon
stocks (see Bishop et al. 2010), although others
are so badly degraded that restoration or
recovery is prohibitive (Hobbs et al. 2009). Most
restoration projects in Oceania are currently
publicly or volunteer funded because they have
a relatively low economic return with no current
economic value in emission reduction. Current
“carbon offsets” are small in scope and effect,
but economic value on carbon stocks may
profoundly alter the scale of available land use
options. Some in the private sector are already
responding to changed societal signals (e.g.,
Saffitz 2010).

Management of carbon stocks

Mature forests have higher carbon stocks than
regrowth forests and a more complex insulating
structure (Dean and Wardell-Johnson 2010;
Hatanaka et al. 2011). Continued logging of
mature and primary forests increases carbon
emissions, which are not offset by storage in
wood products (e.g., Dean and Wardell-Johnson
2010; Sathre and O’Connor 2010). Furthermore,
substantial amounts of course woody debris from
forests are presently used as fuel to offset fossil
fuel use (Brown et al. 2009) with greenhouse
gases from this substitution remaining a net
anthropogenic emission. Short commercial
logging cycles in remnant forests have produced
a mosaic of young stands, greatly reducing
representation of mature and old-growth stands
and carbon stocks (e.g. Calver and Wardell-
Johnson 2004). Degradation of remnant forests
also represents considerable carbon loss in
temperate and tropical ecosystems (e.g.,
Roxburgh et al. 2006; Shearman and Bryan
2011).

Soil organic carbon is influenced by over-
grazing, land rehabilitation, deforestation,
regrowth, proliferation of woody cover
(thickening), fire and weed interactions, land-use
history and climate change (Dean et al. 2009).
Australian rangelands remain a major emitter of
greenhouse gases in Oceania (Dean et al. 2009),
requiring a change in management, and
improved understanding of the magnitude and
importance of rangeland carbon. Avenues which
reduce carbon emissions from rangelands,
sequester carbon and enhance biodiversity
include; reduced deforestation, protection and
enhancement of soil organic carbon, reforesta-
tion, protection of riparian areas, and use of
alternative protein sources such as kangaroos or
in vitro production (Wilson and Edwards 2008;
Dean et al. 2009; Taylor and Dean 2009). None
of these recommendations are currently being
enacted at large scales.
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Numerous administrative processes, and inter-
governmental and conservation bodies are
attempting to reduce the rate of both legitimate
and illegal deforestation, through carbon
trading with conservation initiatives (e.g., REDD
and REDD+ projects — Reduced Emissions
from Deforestation and Forest Degradation), and
increased village-level forest management (e.g.,
Seppili et al. 2009). While national planning
schemes have been developed for most countries
in Oceania (e.g., Schuster and Butler 2001;
NBSRTG 2009), implementation and co-
ordination is often difficult. Increasing
institutional capabilities may enable more
effective conservation (Steffen et al. 2009),
particularly in many Pacific island nations and
New Guinea, where governments have little
funding and few personnel (Lees and Siwatibau
2009; Shearman et al. 2009). There are different
mechanisms to make REDD schemes more
robust, including ensuring viability of forests
under climate change (Fry 2008; Seppéld et al.
2009, Hoisington 2010).

Illegal logging undermines carbon conserva-
tion including REDD projects and may outweigh
legal logging in area (Hoisington 2010). For
example, Australian wood product currently
includes 9% illegally sourced timber (Hoisington
2010). Banning imported illegal logged wood-
products may provide a temporary solution but
alternative sources of income will be required to
reduce pressure on natural resources (Hunnam
2002; Ningal et al. 2008). Carbon trading may
provide an avenue, with increasing regional
interest (Bond 2006; Kintisch 2009). However,
according to trends emerging from western
Indonesia, deforestation for oil palm plantations
is expected to increase in Oceania. Use of
biofuels perversely reduces carbon stocks where
mature forests are cleared for palm oil so that
the greenhouse benefit of using biofuel rather
than fossil fuel becomes questionable (Fargione
et al. 2010).

Anthropogenic climate change provides the
greatest challenge of our time because of the
magnitude of its effect, its all-encompassing
nature and its interactions across multiple
sectors of society (e.g., Hsiang et al. 2011).
Unfortunately, powerful interests remain
committed to limiting the effectiveness of
responses (see reviews by Hamilton 2010;
Oreskes and Conway 2010). Therefore manage-
ment and policy responses to climate change
will need to encompass a broad consideration
of biodiversity which involves social justice
(Wardell-Johnson et al. 2011). This will require
appropriate combinations of local, scientific and
indigenous knowledge (see Wardell-Johnson
2007; WinklerPrins and Sander 2003) to
improve existing management and policy
responses, and develop and implement new

approaches that match the magnitude of the
challenge.

CONCLUSION
The terrestrial environments of Oceania are
highly  diverse, harbouring considerable

biodiversity. Anthropogenic climate change,
whether directly or through synergies with other
environmental stressors, poses a serious threat
to terrestrial biota and carbon stocks. Urgent,
comprehensive and integrated strategies are
required to improve conservation of biodiversity
and carbon stocks, accounting for differences in
culture, social structure and economics
throughout Oceania. Many ecosystems are so
fundamentally transformed that restoration
becomes prohibitive. Even with a rapid turn-
around, there will be substantial losses of bio-
diversity and carbon, with different ecosystems
in the future. Humanity must act urgently to
stabilize and reduce greenhouse gas emissions,
and implement many other priority actions to
meet the most important conservation challenge
in Oceania’s history. All actions and approaches
will require significant resources or subsidies for
climate-change adaptation — orders of
magnitude greater than currently provided.

Past management has resulted in a continuing
loss of biodiversity and carbon. Current
management is inadequate and will limit our
capacity to respond to the all-encompassing
threat of anthropogenic climate change.
Successes have been small and limited in scope,
with a few patchy conservation outcomes,
despite the dedication of many. In an environ-
ment where it is now widely reported that global
warming can no longer be kept below a rise of
at least a further 2°C (the edge of dangerous
climate change), serious resourcing changes are
needed to provide the best chance for
biodiversity and society. Closure of the many
knowledge gaps associated with terrestrial
biodiversity and climate change will not stop
unsustainable land use, and further attrition of
biodiversity and carbon stocks. Use of combined
scientific, local and Indigenous knowledge is
essential. There is a clear disjunct between what
is understood to be necessary scientifically, and
what is potentially achievable socially, economi-
cally and politically. Unfortunately these
impediments are compounded by powerful
interests committed to limiting the effectiveness
of urgent responses to climate change.
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APPENDIX 1
Table 3. Selected biome areas of larger islands in non-Australian Oceania. Nomenclature as per
Table 1.
Biome Area(km? , 1000s) % of Oceania

Tropical rainforest
Tropical savanna
Mangroves

Alpine regions

New Guinea total
Temperate forest
Temperate grasslands
Tropical rainforest
Alpine regions

New Zealand total
Solomon Islands
Tropical rainforest
Tropical dryforest
New Caledonia total
Tropical rainforest
Tropical dryforest
Fiji total

Tropical rainforest
Tropical dryforest
Tropical savanna/tundra
Hawaii total

Alpine regions
Temperate grasslands
Temperate forest
Tropical dryforest
Tropical rainforest
Tropical savanna
Mangroves

Oceania, non-Australia total
Oceania total

895 9.9
29 0.32
30 0.34
17 0.19
971 11
179 2.0
57.8 0.64
0.0330 0.00037
42.7 0.47
279 3.1
28.4 0.31
14.3 0.048
4.35 0.16
18.7 0.21
11.6 0.13
6.92 0.077
18.5 0.21
6.73 0.073
6.62 0.075
3.37 0.037
16.7 0.19
60.2 0.667
57.8 0.641
179 1.980
22.6 0.251
1050 11.6
35.1 0.389
30.1 0.334
1440 16
9024 100

BIOME GIS AND CARBON
CALCULATIONS

In biological systems carbon (C) forms the
backbone of organic molecules, and carbon flux
(mass movement per unit area per unit time)
is inherently linked to that of other constituent
elements (e.g. O, H, N, P and S). Carbon alone
is considered here because it forms the
predominant greenhouse gas, CO,. In
discussing carbon stocks and fluxes we consider
the major organic carbon pools of botanical
biomass (above and belowground), soil organic
carbon (including micro-organisms), debris (e.g.
coarse woody debris) and wood products. “Unit-
area carbon stock”, (Mg ha') indicates the
wood-products and emissions (associated with
extraction, decomposition and long-term altered
returns to soil organic carbon) attributed to the
forest area of origin, when quantifying carbon
fluxes. When considering soil organic carbon
flux, sequestration and emission are slower than
those of biomass, due to usually longer half-
lives; however the soil organic pool is at least
of comparable size to the carbon in biomass
(MPIGA 2008). The course woody debris pool
and wood-product pools are generally ~20%
and ~5% (respectively) of the above ground
carbon in [live] forest biomass (e.g., MBAC
2007; Woldendorp and Keenan 2005). The

most recent carbon assessment of Oceania was
from Khanna et al. (1999), where some
mechanisms of carbon flux were discussed (e.g.,
logging, plantations and wood products).
However, Khanna et al. (1999) did not include
some areas of Oceania (e.g. West Papua), and
the reported carbon stocks were unusually low,
being without the benefit of more recent
sampling, mapping and modelling.

Biome GIS data were from Olson et al. (2001),
the World Wildlife Fund Terrestrial Ecosystems
of the World Dataset, available at: http://
www.worldwildlife.org/science/data/
item6373.html.

Maps of Oceania and Australia (showing state
outlines), are avaialbe online so they can be
enlarged for viewing, on screen (Supplementary
Figure 1 and Supplementary Figure 2: http://
pcb.murdoch.edu.au/supp_material.html).

For Australia the deforestation GIS layer was
from DEWR (2007) with 0.1 ° x0.1 °, i.e. ~1km
pixels. Australian carbon in biomass was derived
from potential aboveground biomass (Richards
and Brack 2004; with 0.0025 x 0.0025°, i.e.
~250 m pixels) plus root biomass from biome-

specific root:shoot ratios from Mokany et al.
(2006).
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New Zealand carbon data were from Tate et al.
(2001), areas of deforestation from Ewers et al.
(2006) and commercial rangeland area was from
Greer (2004).

New Guinea carbon data were from the
nationwide, calibrated modelling of Brown et al.
(2001) and deforestation area was from the
1970—2002 remote sensing work of Shearman
et al. (2008).

For the Solomon Islands and New Caledonia,
carbon values for Tropical rainforest were based
on diameter at breast height (1.3m, DBH)
measurements from thirteen 1 hectare plots of
primary forest measured in the work of Keppel
et al. (2011) in Papua New Guinea, Samoa, Fiji
and the Solomon Islands. DBH values ranged
from 0.1 m to 1.48 m. Individual tree
aboveground biomass was calculated using
formula for moist forest (2000-4000 mm yr!
precipitation)  from  Table 4.A.l in
Schlamadinger et al. (2003) and below ground
biomass was calculated from the formula for
generic Tropical rainforest from Table 4.A.4 in
Schlamadinger et al. (2003). From these
allometrics the mean root:shoot ratio was 0.165
— in agreement with other values for tropical
rainforest. Mean carbon in biomass for the
thirteen plots was 276(60) Mg ha'. Carbon per
tree was checked by regression against values
derived using a second allometric — the
allometric reported as the “best” overall fit in
Chave et al. (2005) using DBH and basic density:
the difference in mean carbon density for all
thirteen plots, compared with that calculated
from Schlamadinger et al. (2003), was only -
1.7%, being slightly higher than Schlamadinger
et al. (2003) for trees of low DBH, and slightly
higher for trees of high DBH.

For the Tropical Dryforests of New Caledonia
and Hawaii, the carbon density used was the
global average for tropical dry forests from
Brown (1997) plus a below-ground portion from
the root:shoot ratio given in Mokany et al.
(2006) for Tropical dryforest: totalling 122.8 Mg
ha'.

For the Tropical rainforest in Hawaii, the
carbon density used was the mean value from a
site-specific Hawaiian study in Asner e/ al.
(2009), plus a belowground portion from the
root:shoot ratio given in Mokany et al. (2006)
for Tropical rainforest: totalling 211.0 Mg ha™.

For the Tropical savanna in Hawaii, the
carbon density used was that from Richards and
Brack (2004) for the Cape York IBRA (Inter-
national Biogeographic Region of Australia) of
124 443 km? on the northern-most tip of
Australia, plus a below-ground portion from the
root:shoot ratio given in Mokany et al. (2006)
for Tropical savanna: totalling 81(47) Mg ha'’.

Areas of original forest for each biome for
Hawaii were determined from the biome GIS
data from Olson et al. (2001), with subtraction
of areas that had never been forested, such as
glaciers, beaches, bare rock etc. The latter areas
were derived from the land use/land cover GIS
layer from Hawaii Government (2011), which
was based on 1997 data. The subtraction
indicated that ~85% of Hawaii had vegetation
cover prior to human arrival. The rangeland
areas for Hawaii were also derived from the land
use/land cover data set.

Percentages of deforestation for Hawaiian
Tropical Rainforest and Tropical dryforest were
from Bruegmann (1996). Area deforested of
Hawaiian Tropical Savanna was determined by
overlaying anthropogenic land covers from the
land use/land cover layer on the Tropical
savanna Biome.

Areas of deforestation for the Solomon Islands
were from FAO (2010) and for New Caledonia
were from Petit and Prudent (2008).

Throughout, biomass was assumed to be 50
wt% carbon. Values for carbon and area were
rounded only after summation, for display
purposes.

Areas deforested and regrown to plantation or
orchards etc were not tallied as forest, because
the carbon stock (including wood products) is
generally much lower than for the primary
forest, unless fertilizer or other management is
used, in which case some input is derived
externally to the system, and therefore the
carbon accounting must cover that area too.
Similarly the carbon stock of infrastructure,
where it replaced forest, was not included.
Secondary forests were counted as forests and
not as deforestation, and their change in carbon
comes under the heading of forest degradation,
which was discussed in the main text.
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