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Context. Skinks comprise the dominant component of the terrestrial vertebrate fauna in
Oceania, New Guinea, and Eastern Wallacea (ONGEW). However, knowledge of their diversity
is incomplete, and their conservation needs are poorly understood.Aims. To explore the diversity
and threat status of the skinks of ONGEW and identify knowledge gaps and conservation needs.
Methods. We compiled a list of all skink species occurring in the region and their threat
categories designated by the International Union for Conservation of Nature. We used available
genetic sequences deposited in the National Center for Biotechnology Information's GenBank to
generate a phylogeny of the region’s skinks. We then assessed their diversity within geographical
sub-divisions and compared to other reptile taxa in the region. Key results. Approximately
300 species of skinks occur in ONGEW, making it the second largest global hotspot of skink
diversity following Australia. Many phylogenetic relationships remain unresolved, and many species
and genera are in need of taxonomic revision. One in five species are threatened with extinction, a
higher proportion than almost all reptile families in the region. Conclusions. ONGEW contain a
large proportion of global skink diversity on <1% of the Earth’s landmass. Many are endemic and
face risks such as habitat loss and invasive predators. Yet, little is known about them, and many
species require taxonomic revision and threat level re-assessment. Implications. The skinks of
ONGEW are a diverse yet underexplored group of terrestrial vertebrates, with many species
likely facing extreme risks in the near future. Further research is needed to understand the
threats they face and how to protect them.
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The global biodiversity crisis is among the chief challenges facing humanity in the 21st 
Century (Pereira et al. 2012). To ensure the long-term survival of the Earth’s biodiversity, 
we need a strong knowledge base to identify threatened taxa, evaluate biodiversity 
hotspots and inform conservation planning and action (Soulé 1985; Primack 2014). 
With this goal in mind, it has been a priority of conservation biologists to identify which 
species are most at risk, where, and why. The International Union for Conservation of 
Nature (IUCN) has been collecting and curating data on species distribution, demo-
graphics, population trends, and threats since 1964 to assess the extinction risk of the 
world’s biota (IUCN 2021). Global initiatives such as the IUCN Red List represent 
crucial datasets for use in identifying priority areas for conservation, including the 
recognition of global conservation hotspots – areas of exceptional biodiversity at high risk 
(Myers et al. 2000; Mittermeier et al. 2004; Brooks et al. 2006; IUCN 2016). However, it is 
becoming increasingly evident that conservation efforts should also include regional and 
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local assessments to identify scale-dependent processes and 
threats requiring targeted management measures (Ferrier 
2002; Knight et al. 2007; McDonald et al. 2022). 

The region of Oceania and New Guinea encompasses 
Melanesia, Micronesia, and Polynesia (see exact definition 
below; Fig. 1). The region of Wallacea includes additional 
small and medium-sized Indonesian islands west of New 
Guinea, and the sovereign state of Timor-Leste. Despite 
containing less than 1% of the world’s landmass, this 
region is extremely biodiverse. Oceania and especially New 
Guinea are well recognised for their importance in global 
diversity for birds (Stattersfield et al. 1998), vertebrates in 
general (Myers et al. 2000), insects (Toussaint et al. 2014), 
vascular plants (Cámara-Leret et al. 2020), and human 
cultural diversity (Loh and Harmon 2005). However, Oceania 
also holds the infamous distinction of being one of the Earth’s 
extinction hotspots – with a particularly poor record of extinc-
tions for terrestrial vertebrates, especially birds (Steadman 
1995; Blackburn et al. 2004). It is perhaps no surprise 
that an area comprising many islands, with high levels of 
endemism, would be prone to high levels of extinction, 
because insular taxa are particularly vulnerable to human-
induced threats (Fisher and Ineich 2012; Slavenko et al. 
2016; Fromm and Meiri 2021). Indeed, available evidence 
suggests that colonisation of the area by humans has been 
associated with proportionally elevated (above ambient 
or background levels) rates of extinction, principally as a 
function of evolutionarily novel human predation and alien 
species introduction (Duncan et al. 2013). 

One of the dominant features of Oceania, New Guinea, and 
Eastern Wallacea’s terrestrial vertebrate fauna are lizards and 
particularly those of the family Scincidae, generally referred 
to as ‘skinks’ (Squamata: Scincomorpha: Scincidae). Skinks 
make up almost one-quarter of the world’s lizard diversity 

and have a prominent richness hotspot in New Guinea 
(Chapple et al. 2021) which is second only to the global 
hotspot in Australia (Rabosky et al. 2007; Powney et al. 2010; 
Chapple et al. 2021). In addition to their high diversity in New 
Guinea, they are also the most diverse terrestrial vertebrates 
throughout the Pacific Ocean. New Caledonia is home 
to a particularly notable and large radiation of endemic 
skinks (Smith et al. 2007), many of which are endangered 
or vulnerable (Chapple et al. 2021). Some species and 
species complexes are extremely widespread, either due to 
variable microhabitat preferences (Richmond et al. 2021) 
or commensal habits, which facilitated human-mediated 
dispersal (Bruna et al. 1996; Austin 1999; Hamilton et al. 
2010; Linkem et al. 2013; Klein et al. 2016; Tan 2016). 
However, the majority of species are more restricted: many 
species are habitat specialists (Greer and Simon 1982; Blom 
et al. 2019; Richmond et al. 2021; Slavenko et al. 2022), 
and their levels of endemism are high throughout the 
region (Smith et al. 2007; Meiri et al. 2018; Kraus 2021). 

Despite the prominence of skinks among the terrestrial 
faunas of Oceania, New Guinea, and Eastern Wallacea, 
knowledge of their true diversity is incomplete. Little is 
known of their natural history, and relatively few species 
have so far been included in molecular phylogenetic analyses. 
Since the early years of herpetological research in Oceania 
and New Guinea (Lesson 1830; Duméril and Bibron 1839; 
Bavay 1869), many new species have been discovered and 
formally described. However, only relatively recently have 
studies begun to incorporate molecular markers to infer 
phylogenetic relationships and revise species boundaries – 
and many of these studies suggest that true diversity in the 
region is greatly underestimated, even as recognised species 
numbers are increasing at a rapid rate (Austin et al. 
2010; Rodriguez et al. 2018; Slavenko et al. 2020, 2022; 

Fig. 1. Map of the Oceania and New Guinea region, with coloured polygons representing the five different sub-regions, and bar plots
representing species richness of skinks in each sub-region. The bars are divided based on endemism – the bottom stack (darker
colours) are species endemic to the sub-region, and the top stack (lighter colours) are native species that occur elsewhere in the
region. Basemap made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.
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Richmond et al. 2021; Bernstein et al. 2022; Reilly et al. 2022). 
Thus, existing threat assessments (Cox et al. 2022) may be 
outdated or misleading if they apply to inaccurately under-
stood species boundaries and limited species knowledge 
(Mace 2004; Pimm et al. 2014). A clear understanding of 
knowledge gaps and research priorities in the region is 
therefore crucial to provide the foundation for effective 
regional conservation planning. 

We assess the composition, threat status, and state of 
knowledge for the skink biota of Oceania, New Guinea, and 
Eastern Wallacea as part of the larger framework of the 
IUCN Species Survival Commission (SSC) Skink Specialist 
Group: a global network of biologists and wildlife managers 
that study and conserve the world’s skinks (Chapple et al. 
2021). We highlight the uniqueness of this region’s skink 
fauna in a global context, as well as some of the unique 
conservation challenges these species face, and we identify 
knowledge gaps that hinder the continued persistence of this 
unique fauna. We hope our work will inspire further research 
into this global biodiversity hotspot, particularly involving 
understudied, micro-endemic, less conspicuous, smaller, and 
difficult-to-study components of the terrestrial fauna. 

Materials and methods

The focal study region is comprised of all Pacific island 
nations (excluding Japan, Taiwan, the Philippines, New 
Zealand, and Australia’s Overseas Territories, but including 
the UK and US Overseas Territories and Hawaii), all islands 
in the Indonesian provinces of Papua, Highland Papua, 
Central Papua, South Papua, West Papua, North Maluku, 
Maluku, and East Nusa Tenggara, and the sovereign state of 
Timor-Leste (Fig. 1). The Western boundary of the region 
roughly aligns with the boundary between the Oriental and 
Australasian biogeographic realms; however, it is somewhat 
arbitrary due to the complex geological history of the area and 
differs from other traditionally recognised turnover points, 
most notably Wallace’s Line (Wallace 1860; Mayr 1944; 
Simpson 1977; Ali and Heaney 2021). For our purposes 
we view our definition of the Western boundary as an 
appropriate, biologically defensible definition, because it 
corresponds with the western extent of multiple prominent 
skink clades (e.g. tribe Tiliquini, genus Carlia with the 
exception of Carlia nigrauris). 

We further divided the region into five sub-regions based 
on their geological histories and skink assemblages. These 
include: 

1. Eastern Wallacea: Timor-Leste and all Indonesian islands 
in the region, excluding New Guinea and its satellite 
islands that occur on the Australian continental plate 
(e.g. Aru Islands, Raja Ampat Islands). 

2. New Guinea: the island of New Guinea and all of its 
satellite islands that occur on the Sahul shelf (e.g. Aru 

Islands, Raja Ampat Islands) and the islands of the 
Woodlark Basin (e.g. Trobriand Islands, D’Entrecasteaux 
Archipelago, Woodlark Island, and Louisiade Archipelago), 
but excluding Australian territories (Torres Strait Islands). 

3. Solomon Islands: all islands on the Solomon Islands arc 
and the New Britain arc, comprising the islands of the 
Bismarck Archipelago (e.g. New Britain, New Ireland, 
Admiralty Islands), the entire nation of the Solomon 
Islands, and the islands of Bougainville and Buka in 
Papua New Guinea’s Autonomous Region of Bougainville. 

4. New Caledonia: all islands on the French territory of New 
Caledonia, occurring on the mostly submerged continent 
of Zealandia. 

5. Pacific: all remaining islands in the region, comprising 
most of the islands in the Western and Southern Pacific 
Ocean, including American Samoa, Caroline Islands, 
Clipperton Island (in the North-eastern Pacific Ocean),  
Cook Islands, Easter Island, Federated States of Micronesia, 
Fiji, French Polynesia, Guam, Hawaii, Kiribati, Marshall 
Islands, Nauru, Niue, Northern Mariana Islands, Palau, 
Pitcairn Islands, Samoa, Tokelau, Tonga, Tuvalu, US 
Overseas Territories in the Pacific, Vanuatu, and Wallis 
and Futuna. 

We compiled a list of all species of skinks that occur in our 
focal region (Supplementary Table S1). The list was based on 
the most up-to-date list of global skink diversity (Chapple 
et al. 2021). We used global distribution maps of the 
world’s reptiles from an updated version of Roll et al. (2017; 
i.e. Caetano et al. 2022) and overlaid these maps with 
polygons defining our region of interest (Fig. 1). We included 
all species with ranges overlapping these polygons. We 
also included three skink species (Papuascincus buergersi, 
Papuascincus phaeodes, Prasinohaema parkeri) whose locali-
ties are not specific enough to be mapped but nonetheless 
occur in our region (namely, in New Guinea) based on verbal 
description of their ranges in their original description papers. 
We then assessed which sub-regions overlapped each species’ 
range, tallied species-richness values for each sub-region, and 
determined the number of species occurring over multiple sub-
regions. We repeated this procedure for all mapped terres-
trial reptile species to compare richness patterns of skinks in 
the region to patterns exhibited by other reptilian taxa. 

To assess patterns of diversity and taxonomic knowledge, 
we recorded the description year for each skink species in 
the region. We then plotted cumulative species richness by 
year of description to compare rates of species descrip-
tion in the different sub-regions. Additionally, all authors 
(members of the IUCN SSC Skink Specialist Group specialising 
on the region) assessed for each species whether, to the best 
of their knowledge, it is in need of taxonomic revision either 
at the species (i.e. undescribed diversity likely exists in the 
species) or genus (i.e. genus likely in need of splitting 
or species likely needing reassignment to a different genus) 
level. 
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To explore patterns in threat status in the region, 
we compared IUCN threat categories. For each species 
we recorded its tribe, taxonomic authority, and year of 
description (Chapple et al. 2021; Shea 2021; Uetz et al. 
2021). We then used the ‘iucn_summary’ and ‘iucn_status’ 
functions from the taxize package (Chamberlain and Szöcs 
2013; Chamberlain et al. 2020) within the R data analysis 
platform v4.1.0 (R Core Team 2021) to query the IUCN Red 
List for the Red List status of all species in our list. We 
classified each species as being either Least Concern (LC), 
Near Threatened (NT), Threatened (VU, EN, or CR), or 
Unknown (DD or not evaluated [NE]). One species, 
Tachygia microlepis, is classified as Extinct (EX). 

To assess knowledge gaps in molecular sequencing, 
we used the ‘entrez_search’ and ‘entrez_fetch’ functions 
from the rentrez package (Winter 2017) to query  the  
National Center for Biotechnology Information (NCBI) 
GenBank nucleotide database for sequence data for all 
species of skinks in our list, and tallied for each species 
how many unique sequences, and how many loci, are 
available. We then selected the following genetic markers 
for downstream phylogenetic analyses to reconstruct a 
phylogeny  of all  sampled skinks in the  region  (although  
some sequences represent populations outside the 
region), and explore their phylogenetic relationships: the 
mitochondrial (mtDNA) markers ribosomal 12S rRNA 
(12S; 61 spp; 398 base pairs [bp]), ribosomal 16S rRNA 
(16S; 42 spp; 468 bp), ribosomal 18S rRNA (18S; 8 spp;  
1770 bp), cytochrome c oxidase subunit I (COI; 103 spp; 
645 bp), cytochrome b (CYTB; 42 spp;  270  bp),  NADH  
dehydrogenase subunit 2 (ND2; 128 spp; 514 bp), NADH 
dehydrogenase subunit 4 (ND4; 66 spp; 706 bp), and 
the nuclear (nDNA) markers brain-derived neurotrophic 
factor (BDNF; 15 spp; 712 bp), breast cancer type 2 
susceptibility protein (BRCA2; 19 spp; 1248 bp), proto-
oncogene serine/threonine-protein kinase mos (c-mos; 69  
spp; 547 bp), exophilin 5 (EXPH5; 21 spp; 697 bp), 
kinesin family member 24 (KIF24; 19 spp; 567 bp), nerve 
growth factor β polypeptide (NGFB; 34 spp; 582 bp), 
prolactin receptor (PRLR; 13 spp; 564 bp), protein 
tyrosine phosphatase non-receptor type 12 (PTPN12; 14  
spp; 609 bp), RNA fingerprint protein 35 (R35; 33 spp;  
636 bp), and recombination activating gene 1 (RAG1; 61  
spp; 828 bp). These markers were selected because they 
were well represented (present for >5 species of multiple 
genera and tribes). We selected one sequence per-species 
per-marker to use in phylogenetic analyses, preferring 
when possible to use sequences from the same individual 
or geographic locality within species (Supplementary 
Table S2). In addition, we downloaded sequences of 16S, 
BDNF, c-mos, CYTB, EXPH5, ND4, NGFB, PRLR, PTPN12, 
and RAG1 for Acontias meleagris (of the skink subfamily 
Acontiinae, sister to all other skinks; Pyron et al. 2013) to  
use as an outgroup. 

We aligned sequences using MUSCLE multiple-sequence 
alignment as implemented in MEGA 11 (Tamura et al. 
2021). We partitioned the multiple-sequence alignment for 
phylogenetic analyses and selected substitution models by 
running ModelFinder (Kalyaanamoorthy et al. 2017) as  
implemented in IQ-TREE 2 (Minh et al. 2020) using a 
relaxed hierarchical clustering algorithm (Lanfear et al. 
2014), and with initial partitions set to single partition for 
12S, 16S, and 18S, and by codon for all protein-coding 
genes (all others). Partitions and models can be found in 
Supplementary Table S3. 

We performed phylogenetic inference using three 
methods: 

1. Maximum Likelihood (ML) analyses in IQ-TREE 2 
(Minh et al. 2020), as implemented in the IQ-TREE web 
server (Trifinopoulos et al. 2016). We set the partitions 
to be edge-linked (same set of branch lengths among 
partitions, but with partition-specific rates). We assessed 
nodal support with 1000 ultrafast bootstrap (UFBoot) 
alignments with up to 1000 iterations as a stopping 
rule (Hoang et al. 2018). We considered nodes well-
supported if they received UFBoot values ≥ 95%. 

2. Maximum Likelihood (ML) analyses in RAxML v8 
(Stamatakis 2014), as implemented in raxmlGUI v2.0.9 
(Edler et al. 2021). We performed model selection 
using ModelTest-NG (Darriba et al. 2020) and used the 
selected GTR+G+I model of sequence evolution for all 
partitions. We assessed nodal support with 500 rapid 
bootstrap (BS) replicates, and considered nodes well-
supported if they received BS values ≥ 80%. 

3. Bayesian Inference (BI) analyses in MrBayes v3.2.7a 
(Ronquist et al. 2012) as implemented in CIPRES 
Science Gateway (Miller et al. 2010), using the BEAGLE 
library (Ayres et al. 2012). Since ModelFinder has 
more possible models than are accepted in MrBayes, 
we assigned the GTR model to all partitions where 
the best-fit model was K3P, TPM2, TPM, TIM, or TVM. 
In partitions where the best-fit models included 
the FreeRate model, we instead  assigned  the more  
restrictive (but still variable) gamma model for among-
site rate variation. Nucleotide-substitution-model param-
eters were unlinked across partitions, and we allowed 
the different partitions to evolve at different rates. We 
performed two simultaneous parallel runs (Altekar 
et al. 2004) with four chains per  run (three heated,  
one cold) for 107 generations, sampling every 1000 
generations. We examined the standard deviation of 
the split frequencies between the two runs and the 
Potential Scale Reduction Factor (PSRF) diagnostic, 
and discarded the first 25% of trees as burn-in. 

We then repeated the above analyses, from partitioning 
to phylogenetic inference, for concatenated mtDNA (seven 
markers; 173 spp; 4771 bp) and nDNA (10 markers; 
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112 spp; 6990 bp) alignments separately to assess agreement 
in topology between the different markers. Partitions and 
models for the mtDNA and nDNA datasets can be found in 
Supplementary Table S3. 

Results

Skink diversity

We identified 303 species of skinks that occur in our 
target region, one of which is introduced from Australia 
(Lampropholis delicata), and one of which is possibly 
native to New Guinea but its presence is unverified (Carlia 
quinquecarinata). Of the remaining 301 species, 18 are 
native but also occur elsewhere (mostly Australia), and 283 are 
endemic to the region. Together these 301 species constitute 
roughly 17% of the ~1740 species of skinks currently known 
worldwide. Almost half (146 species) occur in New Guinea 
alone (Fig. 1). Skink species vastly outnumber all other 
reptilian families in the region, particularly in New Guinea, 
but this pattern is also evident in all sub-regions (Fig. 2a). 

All skinks in the region belong to the subfamily 
Lygosominae, and within this, most belong to the tribes 
Eugongylini and Sphenomorphini (Fig. 3), the two largest 
tribes in the subfamily (Chapple et al. 2021; Shea 2021). 
There are also several species from the tribe Tiliquini (most 
prominently crocodile skinks of the genus Tribolonotus, 
endemic to the region), two species of the tribe Mabuyini 
(one of which, Eutropis palauensis, is endemic), and a single 
species from the tribe Lygosomini (Lamprolepis smaragdina). 
Species from the tribe Eugongylini are widespread through-
out the region and it is the dominant tribe in Eastern 
Wallacea, New Caledonia, the Solomon Islands, and the 
Pacific, with a prominent hotspot in New Caledonia where 
all skinks are eugongylins (Fig. 3). Conversely, the dominant 
tribe in New Guinea is Sphenomorphini – and indeed most 
sphenomorphin skinks in the region occur in New Guinea. 

Extinction risk

Among the skinks of Oceania, New Guinea, and Eastern 
Wallacea, 56 species (18.7%) are evaluated by the IUCN 
as threatened with extinction, and one Tongan endemic 
(Tachygia microlepis) is extinct. Slightly over half (173 
species) are listed as Least Concern, an additional eight are 
Near Threatened. Another 66 (22.0%) are either listed as 
Data Deficient or have not been assessed. When weighted by 
their species richness, the mean proportion of species in the 
Threatened categories across families in the region is 14.5%. 
Thus, skinks have a relatively high proportion of species 
threatened with extinction, higher than other speciose 
families such as Gekkonidae (121 spp., 9.9% Threatened), 

Colubridae (54 spp., 3.7% Threatened), Elapidae (42 spp., 
7.1% Threatened), and Agamidae (36 spp., 2.8% Threatened). 

Most New Caledonian skinks are classified as Threatened 
(63.1%; Fig. 3), followed by the Pacific (32.5%), and Eastern 
Wallacea (4.5%) sub-regions. New Guinea and the Solomon 
Islands both have no known Threatened species. New 
Guinea and Eastern Wallacea have the highest proportion of 
species with an unknown conservation status (26.0% and 
18.2%, respectively). 

Phylogenetic relationships

Despite the high absolute species richness, skinks are poorly 
sampled relative to other families: 174 species of skinks 
(57.1%) have sequences in NCBI genbank (Fig. 2c), lower 
than the mean proportion among reptile families in the region 
(66.3%). Our final dataset comprised 17 genetic markers 
(7 mtDNA, 10 nDNA) with a total length of 11 761 bp. 
Coverage averaged only 2.6 mtDNA markers and 1.7 nDNA 
markers per species (range 0–7, mean 36.8% and 15.6%, 
respectively). Coverage also varied between tribes and markers 
(Supplementary Table S4): eugongylin skinks had the lowest 
coverage for mitochondrial markers (range 1–7, mean 2.3 
[33.3%] markers per species), followed by sphenomorphin 
skinks (range 0–5, mean 2.9 [41.2%] markers per species) 
and tiliquin skinks (range 2–6, mean 3.3 [46.4%] markers 
per species). Eugongylin skinks also had the lowest coverage 
for nDNA markers (range 0–7, mean 1.5 [14.0%] markers 
per species), followed by tiliquin skinks (range 0–6, mean 
1.6 [14.4%] markers per species) and sphenomorphin skinks 
(range 0–6, mean 1.9 [17.5%] markers per species). 

The higher-order relationships of skinks in our phylogeny 
were only moderately resolved (Fig. 4), with the monophyly 
of Tiliquini and Sphenomorphini receiving low support. 
In most regions, several different lineages of skinks are 
represented. However, most skink species on New Caledonia 
belong to a single, moderately supported eugongylin radiation 
(Fig. 4). Deeper relationships within the Sphenomorphini and 
Eugongylini are not well resolved (Fig. 4), particularly in the 
speciose genus Sphenomorphus and in the large radiation 
of New Caledonian eugongylin skinks. Most genera were 
supported as monophyletic, except Lipinia, Emoia (both with at 
least two distinct clades), Prasinohaema, and  Sphenomorphus 
(both with at least three distinct clades). 

With all three methods of phylogenetic inference, the 
full concatenated gene trees were mostly concordant with 
the concatenated mtDNA trees, and less so with the nDNA 
trees (Figs S1–S3). In general, concatenated nDNA trees had 
poorly supported topology, especially in the Eugongylini. 

Among the full concatenated gene trees, the ML IQ-TREE 
phylogeny generally had better supported topology than 
the ML RAxML phylogeny (Fig. 4). However, the topology 
was similar between the two methods (Fig. S4), with major 
differences only in deeper nodes between genera within the 
Eugongylini (Carlia, Lygisaurus, Caesoris, Phasmasaurus, 

530



www.publish.csiro.au/pc Pacific Conservation Biology

Fig. 2. Comparison of skinks to other reptilian families in Oceania, New Guinea, and Eastern Wallacea. (a) Species
richness per family in each of the five sub-regions. (b) Red List assessments of species per family, divided into Least
Concern (LC), Near Threatened (NT), Threatened (VU, EN, or CR), Extinct (EW or EX), or Unknown (NE or
DD). (c) Numbers of species per family with sequences available in NCBI genbank (blue) vs not available (grey).
For clearer visualisation, in all panels only families with 20 or more species are shown.
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Fig. 3. Comparison between skink tribes in Oceania, New Guinea, and Eastern Wallacea. (a) Numbers of species per tribe with
sequences available in NCBI genbank (blue) vs not available (grey). (b) Red List assessments of species per tribe, divided into Least
Concern (LC), Near Threatened (NT), Threatened (VU, EN, or CR), Extinct (EW or EX), or Unknown (NE or DD). In both panels,
data are faceted by the five sub-regions.

Kanakysaurus). Both the IQ-TREE and RAxML phylogenies 
showed much larger differences to the MrBayes phylogeny, 
although again most differences were in the relationships 
between genera within Eugongylini (Fig. S4). 

Trends in species discoveries

The earliest described skink species from the region are 
widespread large species that would have been noticeable 
to early naturalists, some of which occur outside the region, 
including Tiliqua scincoides (Hunter 1790), Tiliqua gigas 
(Schneider 1801) and Eugongylus rufescens (Shaw 1802). 
Descriptions of species endemic to the region began 
accumulating throughout the 19th Century, with prominent 
spikes in descriptions of New Guinean and New Caledonian 
species towards the end of the century (Fig. 5). Throughout 
the 20th Century, descriptions of species from Eastern 
Wallacea, New Caledonia, the Pacific, and the Solomon Islands 
were published at a steady rate of ~0.19–0.33 species per year 
on average, whereas descriptions from New Guinea have been 
published at a much higher rate (~0.75 species per year on 

average). A pronounced upwards shift in these dynamics 
occurred at the start of the 21st Century. While rates of 
description in Eastern Wallacea, the Pacific, and the Solomon 
Islands remained static, average rates of description in 
New Caledonia and New Guinea increased dramatically to 
1.4 and 1.7 species per year, respectively (Fig. 5). 

Discussion

We identified Oceania, New Guinea, and Eastern Wallacea as 
a global hotspot of skink diversity, especially in the context of 
available land area – less than 1% of the world’s landmass. 
Despite its relatively small area, this region is home to 
almost a fifth of all skink species, making it second only to 
Australia in terms of absolute species richness (Rabosky 
et al. 2007; Powney et al. 2010; Chapple et al. 2021). The 
skink diversity of the region is impressive not only in its 
numbers, but also in terms of the range and magnitude of 
phenotypic and ecological variability including trophic 
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spectra. Skinks in the region possess adaptations for extremely 
high elevations (Greer et al. 2005; Slavenko et al. 2021, 2022) 
and tolerance of highly saline conditions (Richmond et al. 
2021). Some possess unique morphologies associated with 
aquatic (Greer and Simon 1982) or arboreal (Zippel et al. 
1999) lifestyles. Others exhibit rare attributes among 

squamates in general, such as green blood pigmen-
tation (Greer and Raizes 1969; Rodriguez et al. 2018), 
adhesive toe pads (Williams and Peterson 1982; Irschick et al. 
1996), vocalisation (Hartdegen et al. 2001; Bauer et al. 2004), 
carcinophagy (Jowers et al. 2022), living inside ‘ant plants’ 
of the genus Hydnophytum (Brown and Gibbons 1986), 

Fig. 4. Concatenated gene tree (17 loci, 11 761 bp) showing the phylogenetic relationships between skinks in theOceania andNewGuinea
region. The plotted phylogeny was generated using IQ-TREE. Support values are shown at the nodes for bootstrap values (BS; RAxML)/
ultrafast bootstrap (UFBoot; IQ-TREE)/posterior probability (PP; MrBayes). Supported nodes (BS ≥ 80%, UFBoot ≥ 95%, PP ≥ 0.95)
are denoted by black asterisks, unsupported nodes are denoted by grey hyphens. Scale bar at the bottom for branch lengths represents
the average number of substitutions per site. The grid on the right shows presence/absence of each species in the five different sub-
regions, represented in the inset map (top left). On the top right is the full phylogeny, with labels indicating the five tribes (Eugongylini,
Mabuyini, Lygosomini, Sphenomorphini, and Tiliquini). The blown up section of the phylogeny in each page is marked with a red rectangle.
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Fig. 4. (Continued ).

herbivory, low reproductive rates, sociality, and colonial 
aggregations (Iverson 1982). 

Knowledge gaps are still evident. Skinks are similar to 
other squamates (Tingley et al. 2016) in having a high 
proportion of species whose conservation status is unknown, 
with roughly a fifth of species in the region either not 
yet assessed by the IUCN, or assessed as Data Deficient 
(Tingley et al. 2016; Chapple et al. 2021; Cox et al. 2022). 
This assessment gap is particularly evident in New Guinea 
and Eastern Wallacea (Fig. 3). Data Deficient species are 
likely to be at least as threatened (Bland and Böhm 2016), 
or even more so (Gumbs et al. 2020; Caetano et al. 2022), 

New Guinea Solomon Islands 

Pacific 

than the general threat level for other reptiles. Species 
that have not yet been assessed are likely to be even more 
threatened due to their smaller geographic range sizes 
(Meiri 2016). Thus, the actual threat level of skinks presented 
here for Oceania and New Guinea is likely to be a conservative 
estimate (Chapple et al. 2021). 

Another large knowledge gap involves species-level 
diversity. Although species richness of skinks in the region is 
high, this diversity is likely still underestimated. During the 
past decade alone, the rate of description for skinks in 
Oceania, New Guinea, and Eastern Wallacea has more than 
tripled to ~3 species per year (Fig. 5). This amounts to 
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Fig. 4. (Continued ).

15% of the ~20 species of skinks per year that have been 
described worldwide over the past decade (Chapple et al. 
2021) in an area that takes up less than 1% of the Earth’s 
total landmass. 

The foundations for our understanding of skink diversity of 
the region were set during the first half of the 19th Century 
mostly through the work of prominent French naturalists 
(Lescure 2002) such as René-Primevère Lesson (Lesson 
1830), Auguste Duméril, and Gabriel Bibron (Duméril and 
Bibron 1839). However, the true process of exploration and 
description of the skink fauna of the region began in the 
latter half of the 19th Century and the beginning of the 
20th Century (Fig. 5), starting with Arthur Bavay’s original 
description of the fauna of New Caledonia (Bavay 1869) 

and several monographs describing fauna collected in 
British, Italian, and German expeditions into the interior of 
New Guinea (Meyer 1874; Macleay 1877; Peters and Doria 
1878; Boulenger 1887, 1897, 1903, 1914). The 20th Century 
saw a continuation of this trend, as species descriptions 
accumulated at a more or less steady rate (Fig. 5), with 
foundational treatises on the widespread eugongylin genera 
Cryptoblepharus (Mertens 1928, 1931, 1933, 1934, 1964) 
and Emoia (Brown 1953, 1954, 1983, 1991; Brown and 
Parker 1985; Brown and Allison 1986; Brown and Gibbons 
1986), on New Guinea’s sphenomorphin skinks (Vogt 1932; 
Parker 1936; Loveridge 1945; Greer and Parker 1967a, 
1967b, 1971, 1974; Greer 1973, 1974), on the eugongylin 
skinks of New Caledonia (Sadlier 1987), and on the tiliquin 

535

www.publish.csiro.au/pc


Sub−region
Eastern Wallacea
New Guinea
Solomon Islands
New Caledonia
Pacific

150 

100 

50 

0 

N
um

be
r o

f s
pe

ci
es

 

Sub−region 
Eastern Wallacea 
New Guinea 
Solomon Islands 
New Caledonia 
Pacific 

1800 1850 1900 1950 2000 
Year 

A. Slavenko et al. Pacific Conservation Biology

Fig. 5. Cumulative number of species described vs the year of original description in each
sub-region in Oceania and New Guinea. Photo of Fojia bumui, endemic to New Guinea, by
Allen Allison.

genus Tribolonotus (Zweifel 1966; Greer and Parker 1968; 
Cogger 1972). A revolution in taxonomic research in the 
region began towards the end of the 20th and into the 
21st Century, with the advent of technological advance-
ments that made molecular phylogenetic inference cheaper 
and easier than before. This revolution was most prominent 
in New Caledonia, which experienced a four-fold increase 
in species description rate in the 21st Century (Fig. 5), as 
its fauna was thoroughly researched and described (Sadlier 
et al. 1999; Bauer and Sadlier 2000; Sadlier et al. 2006, 
2009a, 2009b, 2014a, 2014b, 2014c, 2019). New Guinea 
also experienced a more than two-fold increase in its skink 
species description rate, but many of these new descriptions 
were based on morphology alone (Günther 2000; Greer 
and Shea 2004; Zug 2004; Greer et al. 2005; Shea 2017; 
Kraus 2018, 2020; Shea and Allison 2021). Only relatively 
recently have the skinks of New Guinea and the Solomon 
Islands begun to be explored using molecular phylogenetic 
methods (Austin 1995; Austin et al. 2010; Rittmeyer and 
Austin 2017; Rodriguez et al. 2018; Slavenko et al. 2020, 
2022), and the potential exists for New Guinea to experience 
a similar if not more spectacular taxonomic revolution as 
New Caledonia before it. 

Despite these recent advances in taxonomic research in 
the region, some issues remain. Many phylogenetic relation-
ships among the region’s skinks remain unresolved, 
particularly deeper nodes with short branches (Fig. 4). 
Parts of the topology in our phylogeny are likely erroneous, 
such as the low support for monophyly of Tiliquini and 
Sphenomorphini, two tribes whose monophyly is otherwise 
widely supported (Pyron et al. 2013). However, other 
nodes are strongly supported and represent cases in need 
of taxonomic revision – such as the non-monophyly of 
Emoia, Lipinia, Prasinohaema, and  Sphenomorphus. We have  
identified 42 species (all occur in New Guinea and most are 
sphenomorphin) that likely contain undescribed diversity, 
and even more dramatically,  143  species in six  genera  
that likely require either generic reassignment or a full 
revision of their genera and their contents. New Guinea 
and Eastern Wallacea remain especially poorly sampled 
genetically compared to the other sub-regions of the area 
(Fig. 3) – either due to lack of tissue samples, or due to 
lack of sequencing of available tissues. This is also evident 
in the weak resolution of deeper phylogenetic relation-
ships among New Guinea’s sphenomorphin skinks (Fig. 4), 
likely a direct result of the patchy genetic coverage, 
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particularly of nDNA markers, in these species 
(Supplementary Table S4 and Fig. S5). 

New Guinea’s western half (Indonesian New Guinea) 
remains extremely poorly known especially compared to 
the better-sampled eastern half (Papua New Guinea) (Heads 
2002; Slavenko et al. 2022), and the island of New Guinea 
in general has a huge diversity of habitats ranging from 
tropical rainforests and savannas to alpine vegetation at 
high elevation (Bryan and Shearman 2015). We thus suspect 
Eastern Wallacea and New Guinea, where much of our 
knowledge is based on fragmented, old collections, hold the 
most undescribed diversity in the entire region. Lack of 
accessibility to many localities remains a barrier that can 
only be overcome by political access and sufficient funding 
for fieldwork, which would be most efficient if done through 
local research, rather than ‘parachute science’. A strong 
emphasis should thus be placed on collections-based research 
tied to local capacity building through training of students 
and establishment of regional collections. 

Although extinction risk is high throughout the region, 
with nearly a fifth of species in one of the IUCN’s threatened 
categories (Fig. 2), the skink fauna of New Caledonia 
especially emerges as a hotspot not only of biodiversity but 
also of extinction risk. Over 60% of New Caledonia’s skinks 
are listed as threatened (Fig. 3), with the largest threats to 
its terrestrial biodiversity being due to mining, particularly 
of nickel (Pascal et al. 2008; L’Huillier and Jaffré 2010). 
Other sub-regions, while seemingly in better shape in terms 
of their threat assessments (but note many assessments are 
lacking or outdated and may change pending taxonomic 
revisions; Chapple et al. 2021), face their own unique 
challenges. New Guinea is facing increasing development 
pressures, including from the mining, petroleum, plantation, 
and logging industries (Shearman et al. 2009; Laurance et al. 
2011; Alamgir et al. 2019), threatening some of the largest 
remaining tracts of pristine primary rainforest on the planet. 
Many of New Guinea’s skinks are micro-endemics and 
microhabitat specialists (Slavenko et al. 2020, 2022; Kraus 
2021). This places them at great risk if their habitats are not 
properly conserved. A clear example of the dangers that might 
threaten all of New Guinea is exemplified by Woodlark 
(Muyua) Island – an endemism hotspot that is under severe 
threat of habitat loss due to mining (Kraus 2021). 

Habitat loss is also a major threat to skinks on other Pacific 
islands (Fisher and Ineich 2012), which on the whole face 
greater extinction risk than on New Guinea (Fig. 3). Logging, 
land clearance for palm oil, and nickel mining are key 
drivers of habitat loss in the Solomon Islands (Kabutaulaka 
2000; Morrison et al. 2007; Wairiu 2007; Katovai et al. 2015; 
Lavery et al. 2021). Additionally, for especially charismatic 
species such as the Solomon Islands skink (Corucia zebrata) 
or crocodile skinks (Tribolonotus spp.), illegal harvesting for 
the pet trade can be a major threat (Leary 1991; Janssen 
and Shepherd 2018; Lavery et al. 2021). In addition to 
existing stressors, human-induced climate change is also 

likely to negatively affect species in Oceania, New Guinea, 
and Eastern Wallacea, especially lowland species that may 
be vulnerable to rising sea levels; or montane endemics, 
which are at risk of climatic conditions shifting beyond 
their thermal tolerances (Duffy 2011; Kingsford and 
Watson 2011). 

Invasive species, especially predators, have proven to be 
one of the greatest threats to endemic insular skinks. 
Introduced wolf snakes (Lycodon capucinus) were a primary 
cause of the extinction of four or more skinks species 
on Christmas Island and Mauritius (Smith et al. 2012; 
Michaelides et al. 2015; Andrew et al. 2018; Oliver et al. 
2018). In the Pacific, brown tree snakes (Boiga irregularis) 
have led to the local extinction of several lizard species 
on Guam (Rodda and Fritts 1992; Richmond et al. 2022), 
Indian brown mongooses (Urva fusca) prey on skinks in Fiji 
(Morley and Winder 2015; see also Clause et al. 2018), and 
little fire ants (Wasmannia auropunctata) are associated 
with declines of lizards in New Caledonia (Jourdan et al. 
2001). Wolf snakes have been spreading eastward and 
establishing populations on additional islands in Wallacea 
and New Guinea, and may therefore create an additional 
threat in this region in particular (Kuch and McGuire 2004; 
Karin et al. 2018; O’Shea et al. 2018). Given how poorly 
known the fauna of these regions is, there is also a real risk 
that invasive species could (and may have already) eliminated 
species that have been overlooked before they were even 
scientifically described (McDonald et al. 2022). 

A sobering cautionary tale can be found in one of the few 
documented reptile extinctions of the modern era: the Tonga 
ground skink (T. microlepis). This species has not been seen 
since the 19th Century when it was originally described 
based on two syntypes (Duméril and Bibron 1839). It was 
declared extinct by the IUCN in 1996 (Allison et al. 2022), 
its extinction likely caused by direct exploitation by the 
original Polynesian settlers, invasive species such as pigs, 
cats, and rats introduced by later European explorers, and 
extensive land-use change for pumpkin plantations all 
over the main island (Ineich and Zug 1996). Although its 
large body size likely made it especially vulnerable to such 
stresses (Slavenko et al. 2016), it should be seen not as an 
outlier but rather as a canary in the coal mine – a similar 
fate might await other skink species in Oceania, New Guinea, 
and Eastern Wallacea if their conservation needs are not 
properly met. 

In conclusion, our analyses clearly establish the islands 
of Oceania, New Guinea, and Eastern Wallacea as hotspots 
of skink diversity, and potentially of large conservation 
concern not only for skinks but surely other taxa as well. As 
this fauna is relatively poorly known, it is also likely even 
richer and more threatened than we are currently aware. 
Habitat loss, mainly due to logging and agricultural 
land clearing, and invasive species emerge as the major 
threats to the skinks of the region (Rodda and Fritts 1992; 
Kabutaulaka 2000; Jourdan et al. 2001; Laurance et al. 2011; 
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Fisher and Ineich 2012; Katovai et al. 2015; Morley and 
Winder 2015; Alamgir et al. 2019; McDonald et al. 2022). 
However, the region also faces unique conservation chal-
lenges: many skinks have not been assessed by the IUCN 
(Figs 2 and 3) and few are placed on national threatened 
species lists. Thus most species receive no official protection 
and do not attract species management plans. Local govern-
ment capacity to manage threats or species conservation is 
often lacking, and greater involvement of local landowning 
communities is necessary to support conservation action 
(Keppel et al. 2012; Jupiter et al. 2017; Morrison et al. 
2022). It is also likely that a large portion of the biota 
remains undescribed and unrecognised, suggesting a high 
risk of cryptic extinction (i.e. the loss of species before they 
are scientifically documented). Crucially – more data are 
needed, and local capacity to collect these data is lacking. 
However, local communities also offer a treasure trove of 
traditional knowledge approaches to conservation and data 
collection, which may fill many of the gaps in species ecology 
and distribution (McMillen et al. 2014; Pollard et al. 2014; 
Keppel et al. 2015). Oceania, New Guinea, and Eastern 
Wallacea are thus placed in a unique context even in the 
larger framework of global skink conservation (Chapple 
et al. 2021), and we encourage similar regional assessments 
in other regions and on other taxa. The knowledge gaps 
identified here may seem daunting, but they also present 
remarkable opportunities for further research in a fascinating, 
global biodiversity hotspot. However, the need to fill these 
gaps is urgent, and we must strive to do this before much of 
this unique diversity is lost. 
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