
C S I R O P U B L I S H I N G

Australian Journal 
of Physics

Volume 50, 1997
© CSIRO Australia 1997

A journal for the publication of 
original research in all branches of physics 

w w w. p u b l i s h . c s i r o . a u / j o u r n a l s / a j p

All enquiries and manuscripts should be directed to 
Australian Journal of Physics
CSIRO PUBLISHING
PO Box 1139 (150 Oxford St)
Collingwood Telephone: 61 3 9662 7626
Vic. 3066 Facsimile: 61 3 9662 7611
Australia Email: peter.robertson@publish.csiro.au

Published by CSIRO PUBLISHING
for CSIRO Australia and 

the Australian Academy of Science

http://www.publish.csiro.au/journals/ajp
http://www.publish.csiro.au


Aust. J. Phys., 1997, 50, 511–24 .

Relativistic Effects in Low-energy

Electron–Argon Scattering∗

R. P. McEachranA,B and A. D. StaufferB

A Electron Physics Group, Atomic and Molecular Physics Laboratories,
Research School of Physical Sciences and Engineering,
Australian National University, Canberra, ACT 0200, Australia.
B Department of Physics and Astronomy, York University,
Toronto, Ontario M3J 1P3, Canada.

Abstract

We have performed a relativistic treatment at low energy of electron–argon scattering which
includes both polarisation and dynamic distortion effects. Our results are in excellent agreement
with the experimentally derived momentum transfer cross section and scattering length, as
well as with very recent measurements of the elastic differential cross section.

1. Introduction

Although there have been extensive experimental and theoretical investigations
of elastic electron scattering from the noble gases for many years, there are still
discrepancies between the various theories and experiments for the heavier noble
gases, argon through xenon. Recently there have been new experiments and
theoretical calculations concerned with low-energy electron–argon collisions. In
particular, Petrović et al. (1995) have carried out drift velocity measurements
of very low energy electrons in an argon–molecular hydrogen mixture. The
subsequent analysis of these data yielded a new value for the electron–argon
scattering length which the authors feel should be reliable to within 1%. Even
more recently, Gibson et al. (1996) have performed absolute measurements of
the electron–argon differential cross section, using a crossed-beam technique, at
energies between 1 and 10 eV for the incident electron. One of the primary
aims of this latter investigation was to see if there is any convergence between
the various experimental and theoretical predictions. If this were the case, then
perhaps argon could also be used as a ‘secondary standard’ in absolute elastic
scattering experiments, using the relative flow technique, for calibrating/checking
the operation of a crossed-beam apparatus. Furthermore, argon is an important
gas in many aspects of gaseous electronics with applications in particle detectors,
lasers and plasma etching and deposition [see for example Petrović et al. (1995)
and references cited therein]. The momentum transfer cross section for argon
has been experimentally determined by Frost and Phelps (1964), Milloy et al.
(1977), Haddad and O’Malley (1982) and Nakamura and Kurachi (1988), while
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previous measurements of the differential cross section include those of Williams
(1979), Srivastava et al. (1981), Zhou Qing et al. (1982), Weyhreter et al. (1988)
and Furst et al. (1989).

On the theoretical side there have been several recent calculations of low-energy
electron–argon cross sections, for example, Nahar and Wadehra (1987) who used a
semi-empirical local potential, Sienkiewicz and Baylis (1987) who solved the Dirac
scattering equation with a model potential, the multi-configuration Hartree–Fock
calculations of Saha (1991, 1993, 1996) and finally that of Mimnagh et al. (1993)
who included multipole polarisation and dynamic distortion potentials within
a non-relativistic polarised-orbital framework. Previous theoretical calculations
include those of Fon et al. (1983) and Bell et al. (1984) based upon R-matrix
theory, Dasgupta and Bhatia (1985) who used a psuedopotential approach and
the polarised-orbital method, Haberland et al. (1986) who applied Kohn–Sham
density functional theory and the adiabatic exchange approximation of McEachran
and Stauffer (1983b) which was also within the framework of the polarised-orbital
method.

In Section 2 of this paper we outline our general theoretical approach, while
in Section 3 we present our results for the momentum transfer cross section, the
total elastic cross section and the elastic differential cross section between 0 and
10 eV. In Section 4 we present our conclusions.

2. Theory

The original polarised-orbital approximation (Temkin 1957; Temkin and Lamkin
1961) was derived in order to take into account the dominant long-range adiabatic
interaction between the incident electron and the atom. This interaction is usually
described in terms of an adiabatic multipole polarisation potential. Previously
we have used this basic approach, in conjunction with a first-order perturbation
correction to the Hartree–Fock wavefunctions, to calculate these polarisation
potentials for the noble gases and have applied them to elastic electron scattering
from these atoms with considerable success (McEachran and Stauffer 1983a,
1983b, 1984). However, it has long been recognised that, in electron scattering, the
neglect of the effects of the motion of the incident electron led to an interaction that
becomes increasingly too attractive as the incident energy increases. LaBahn and
Callaway (1966) and Callaway et al. (1968) introduced a formalism whereby such
dynamic effects could be incorporated into the polarised-orbital approximation
but their results were somewhat mixed. For a review and consistent derivation
of these and other polarised-orbital approximations, see Drachman and Temkin
(1972).

We have recently determined these dynamic distortion effects, within the general
framework of our polarised-orbital method, and have applied them to the elastic
scattering of electrons from helium (McEachran and Stauffer 1990) and from neon,
argon and krypton (Mimnagh et al. 1993). In these calculations, which were carried
out within a non-relativistic framework, both the polarisation and distortion
potentials included many multipoles, including the monopole terms. With the
exception of neon, these new calculations, including multipole polarisation and
dynamic distortion effects, gave better agreement with experiment, particularly at
the lowest energies, than our previous adiabatic exchange results which included
only the dipole polarisation potential.
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We have also previously shown, within the adiabatic exchange approximation,
that the low-energy total and momentum transfer cross sections for krypton
(McEachran and Stauffer 1988) and xenon (McEachran and Stauffer 1987) are
in much better agreement with experiment, particularly in the vicinity of the
Ramsauer–Townsend minimum, if the phase shifts are determined from the
solution of the relativistic Dirac scattering equations rather than from the
equivalent non-relativistic Schrödinger equation. In this paper, we employ the
same polarisation and dynamic distortion potentials as used by Mimnagh et al.
(1993), however, we now determine the phase shifts relativistically from the
solution of the Dirac scattering equations. As will be shown in the following
section, the resulting momentum transfer cross section, total elastic cross section
and elastic differential cross sections are in considerably better agreement with
experiment than either of our previous calculations (McEachran and Stauffer
1983b; Mimnagh et al. 1993).

We now present a brief outline of the theory for the relativistic formulation
of electron scattering from the noble gases, including polarisation and dynamic
distortion effects. In particular, the phase shifts are determined from the solution
of the coupled first-order differential equations

f ′κ(r) +
κ

r
fκ(r)−

1
c

[2c2 + U(r) + ε] gκ(r) =
1
c
WQ(κ; r) , (1a)

g′κ(r)−
κ

r
gκ(r) +

1
c

[U(r) + ε] fκ(r) = − 1
c
WP (κ; r) . (1b)

Here fκ(r) and gκ(r) are the large and small components of the scattering
wavefunction respectively, U(r) is the total scattering potential and WP (r) and
WQ(r) are the exchange kernels involving the large and small components of
the relativistic Dirac–Fock bound state wavefunctions respectively. Furthermore
(1 + γ)ε = k2 with γ =

√
1− v2/c2, where v is the speed of the incident electron

and k is the magnitude of its momentum. The quantum number κ is defined
in terms of the orbital and total angular momentum quantum numbers of the
incident electron according to

κ =

{
j + 1

2 , if j = l − 1
2

−(j + 1
2 ), if j = l + 1

2 .
(2)

The relativistic scattering phase shifts δκ(k) can be determined from the asymptotic
form of the large component of the scattering wavefunction, i.e.

fκ(r) r→∞−−−−→ Aκ sin
(
kr − lπ

2
+ δκ(k)

)
. (3)

Alternatively, these phase shifts can be written as δ±l where the spin-up phase
shifts (+) correspond to j = l+ 1

2 , while the spin-down phase shifts (−) correspond
to j = l − 1

2 .
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We express the total scattering potential U(r) as the sum of a static potential
Ust(r), a polarisation potential Up(r) and a dynamic distortion potential Ud(r)
as follows:

U(r) = Ust(r) + Up(r) + 1
2 Ud(r) . (4)

The static potential vanishes exponentially at infinity while the polarisation and
distortion potentials behave according to

Up(r) r→∞−−−−→
∑
ν

Uνp (r) = −
∑
ν

αν

2r2ν+2 , (5)

Ud(r) r→∞−−−−→
∑
ν

Uνd (r) = +
∑
ν

6βν
r2ν+4 . (6)

Here the constants αν and βν are the static and dynamic multipole polarisabilities
respectively of the atom and can be found from the asymptotic form of the
Uνp (r) and Uνd (r). For more details on the derivation of these polarisation and
distortion potentials, the reader is referred to the papers of McEachran et al.
(1977) and McEachran and Stauffer (1990) respectively.

Once the phase shifts have been determined, the elastic differential cross section
can be found from the expression

σel(θ) = |f(θ)|2 + |g(θ)|2 , (7)

where

f(θ) =
1
k

∞∑
l=0

{(l + 1)T+
l (k) + l T−l (k)}Pl(cos θ) , (8)

g(θ) =
1
k

∞∑
l=0

{T−l (k)− T+
l (k)}P 1

l (cos θ) (9)

are the direct and spin-flip scattering amplitudes respectively and the T -matrix
elements, T±l (k), are given by

T±l (k) = exp
(
iδ±l (k)

)
sin

(
δ±l (k)

)
. (10)

Here Pl(cos θ) and P 1
l (cos θ) are the Legendre and associated Legendre polynomials

respectively. The total elastic cross section and the momentum transfer cross
section can, in turn, be expressed in terms of the T -matrix elements according to

σel
tot(k

2) =
4π
k2

∞∑
l=0

{
(l + 1) sin2

(
δ+l (k)

)
+ l sin2

(
δ−l (k)

)}
, (11)
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σmt(k2) =
4π
k2

∞∑
l=0

{
(l + 1)(l + 2)

2l + 3
sin2

(
δ+l (k)− δ+l+1(k)

)
+
l(l + 1)
2l + 1

sin2
(
δ−l (k)− δ−l+1(k)

)
+

(l + 1)
(2l + 1)(2l + 3)

sin2
(
δ+l (k)− δ−l+1(k)

)}
. (12)

The relativistic ground state wavefunction of argon was determined using the
Dirac–Fock computer code of Grant et al. (1980). This wavefunction was then
used to determine the static potential as well as in the evaluation of the exchange
kernels. The polarisation and distortion potentials, on the other hand, were
determined from the first-order correction to the non-relativistic Hartree–Fock
wavefunction for argon and are thus identical to those used by Mimnagh et al.
(1993). In these potentials all multipole components up to and including those
which vanish at infinity as r−12 were included.

3. Results

In Table 1 we present our relativistic phase shifts as a function of k, the
magnitude of the momentum of the incident electron. We note that for l ≥ 3 the
spin-up and spin-down phase shifts are effectively equal to each other for this
range of energies of the incident electron. Also included in this table are the
corresponding values of the elastic total and momentum transfer cross sections.

In Table 2 we make a detailed comparison of theoretical and experimental values
of the argon scattering length. The theoretical values include those derived in our
previous non-relativistic adiabatic exchange and dynamic distortion approximations
as well as our present value. Also included is the multi-configuration Hartree–Fock
result of Saha (1993). On the experimental side there is the swarm derived
value of Haddad and O’Malley (1982), which was later revised by Petrović and
Crompton (1987), as well as the values of Ferch et al. (1985), Buckman and
Lohmann (1986) and Buckman and Mitroy (1989), all of which were deduced
from modified effective range theory (MERT) fits to elastic total cross section
measurements at low energies. The experimental value of Weyhreter et al. (1988)
was deduced from low energy measurements of the elastic differential cross section
and it would now appear to be slightly too large in magnitude. Finally, there
is the recent value for the scattering length of Petrović et al. (1995) which was
determined from drift velocity measurements in an argon–molecular hydrogen
mixture. It would now appear that there is basic overall agreement between the
theoretical and experimental determinations of this quantity, at least to the 1
to 2% level, i.e. −1 ·45± 0 ·01 a0.

Robertson (1977) and Milloy and Crompton (1977) made high precision
measurements of drift velocities as well as of the ratio of the transverse diffusion
coefficient to the mobility, DT/µ, in low-energy swarm experiments in argon.
These measurements were then used by Milloy et al. (1977) and by Haddad
and O’Malley (1982) to determine the momentum transfer cross section for
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Table 2. Theoretical and experimental values for the argon scattering length A in atomic units

Theory A Experiment A

McEachran and Stauffer (1983) −1.506 Haddad and O’Malley (1982) −1 ·492
Mimnagh et al. (1993) −1.386 Ferch et al. (1985) −1 ·449
Saha (1993) −1 ·486 Buckman and Lohmann (1986) −1 ·492
Present work −1 ·441 Petrović and Crompton (1987) −1 ·48

Weyhreter et al. (1988) −1 ·593
Buckman and Mitroy (1989) −1 ·442
Petrović et al. (1995) −1 ·459

Fig. 1. Momentum transfer cross section in units of Å2. Theory: - - - ,
McEachran and Stauffer (1983b); — ·— , Mimnagh et al. (1993); —— ,
present results. Experiment: ◦, Haddad and O’Malley (1982); M , Nakamura
and Kurachi (1988); •, Gibson et al. (1996).

argon. In Fig. 1 we present our momentum transfer cross section, in three
separate approximations, together with the swarm derived results of Haddad
and O’Malley (1982) and Nakamura and Kurachi (1988). Also included are
the cross sections of Gibson et al. (1996) which were determined from a phase
shift analysis of their differential cross section measurements. We see that our
present calculation, determined from a relativistic formulation of the scattering
equations, and including dynamic distortion effects, is in excellent agreement with
the results of Haddad and O’Malley at all energies and particularly throughout
the entire Ramsauer–Townsend region. The magnitude of our momentum transfer
cross section at the minimum is 0 ·0917× 10−16 cm2 and occurs for an incident
electron energy of 0 ·23 eV. Thus, our position for the minimum is in complete
accord with experiment although our magnitude is slightly larger (∼5%) than
the experimental value of 0 ·0870× 10−16 cm2.

In Fig. 2 we present our results for the elastic total cross section together with
the theoretical results of Saha (1996) and the direct experimental measurements of
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Fig. 2. Total elastic cross section in units of Å2. Theory: — ·— , Mimnagh
et al. (1993); — — , Saha (1996); —— , present results. Experiment: ×,
Charlton et al. (1980); ◦, Ferch et al. (1985); M , Buckman and Lohmann
(1986); ¦, Nickel et al. (1985); •, Gibson et al. (1996).

Charlton et al. (1980), Nickel et al. (1985), Ferch et al. (1985) and Buckman and
Lohmann (1986), as well as the total cross sections derived from the differential
cross section measurements of Gibson et al. (1996). Total cross sections have
also been deduced from differential cross section measurements and a subsequent
phase shift analysis by Srivastava et al. (1981) and by Furst et al. (1989). Both
of these sets of data are very close to those already presented in Fig. 2 and have
been omitted simply for the sake of clarity. Our present cross section, determined
within a relativistic framework, is in much better agreement with experiment than
our comparable non-relativistic result (Mimnagh et al. 1993); this is particularly
true on the low-energy side of the Ramsauer–Townsend minimum. However, all
three of the theoretical curves lie somewhat higher than the experiments of Ferch
et al. (1985) and Buckman and Lohmann (1986) on the high-energy side of the
minimum. The magnitude of our total elastic cross section at the minimum is
0 ·290× 10−16 cm2 and occurs for an incident electron energy of 0 ·31 eV.

In Figs 3–8 we present our values for the elastic differential cross section for
incident electron energies of 1, 1 ·5, 2, 3, 5 and 10 eV respectively. Other recent
theoretical calculations included in these figures are the local potential results of
Nahar and Wadehra (1987), the relativistic model potential work of Sienkiewicz and
Baylis (1987), the non-relativistic dynamic distortion approximation of Mimnagh
et al. (1993) and the multi-configuration Hartree–Fock calculation of Saha (1996)
which included dipole and quadrupole polarisation terms. The experimental work
presented includes the differential cross section measurements of Srivastava et al.
(1981) at 3, 5 and 10 eV, of Weyhreter et al. (1988) at 1 and 1 ·5 eV and
of Gibson et al. (1996) at all energies. In the case of the latter experiment,
measurements were made on two different spectrometers, one at the Australian
National University and the other at the University of Nebraska. All of these
experiments employed the relative flow method for normalisation to helium cross
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Fig. 3. Differential cross section at
1 ·0 eV in units of Å2 sr−1. Theory:
· · · · · · , Sienkiewicz and Baylis (1987);
— ·— , Mimnagh et al. (1993);
— — , Saha (1996); —— , present
results. Experiment: ◦, Weyhreter
et al. (1988); •, Gibson et al. (1996).

Fig. 4. Differential cross section at
1 ·5 eV in units of Å2 sr−1. Theory:
— ·— , Mimnagh et al. (1993);
— — , Saha (1996); —— , present
results. Experiment: ◦, Weyhreter
et al. (1988); •, Gibson et al. (1996).
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Fig. 5. Differential cross section at
2 ·0 eV in units of Å2 sr−1. Theory:
· · · · · · , Sienkiewicz and Baylis (1987);
— ·— , Mimnagh et al. (1993);
— — , Saha (1996); —— , present
results. Experiment: •, Gibson et al.
(1996).

Fig. 6. Differential cross section at
3 ·0 eV in units of Å2 sr−1. Theory:
· · · · · · , Nahar and Wadehra (1987);
— ·— , Mimnagh et al. (1993);
— — , Saha (1996); —— , present
results. Experiment: ¦, Williams
(1979); ◦, Srivastava et al. (1981); M ,
Furst et al. (1989); •, Gibson et al.
(1996).
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Fig. 7. Differential cross section at
5 ·0 eV in units of Å2 sr−1. Theory:
· · · · · · , Nahar and Wadehra (1987);
— ·— , Mimnagh et al. (1993);
— — , Saha (1996); —— , present
results. Experiment: ◦, Srivastava
et al. (1981); M , Furst et al. (1989);
•, Gibson et al. (1996).

Fig. 8. Differential cross section at
10 ·0 eV in units of Å2 sr−1. Theory:
— ·— , Mimnagh et al. (1993);
— — , Saha (1996); —— , present
results. Experiment: ¦, Williams
(1979); ◦, Srivastava et al. (1981); M ,
Furst et al. (1989); •, Gibson et al.
(1996).
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sections in order to put their argon results on an absolute scale. The experimental
error quoted by Srivastava et al. is 20% while, except where the differential cross
sections are very small, the typical experimental errors given by both Weyhreter
et al. and Gibson et al. are around 7%. Also included in some of these figures
are differential cross sections deduced from the phase shift analyses of Williams
(1979) and Furst et al. (1989).

At all the energies presented the present work and that of Saha (1996) are
in best overall agreement with experiment. In particular, with regard to the
maxima in the 60◦–90◦ region in the differential cross sections of Gibson et al.
(1996), their magnitudes are predicted best by Saha while their locations are
somewhat better determined by our present calculations. The cross sections of
Sienkiewicz and Baylis (1987) at 1 and 1 ·5 eV as well as those of Nahar and
Wadehra (1987) at 3 eV are too large in the intermediate angular range between 30
and 120◦. This is also true, to a somewhat lesser extent, for the differential cross
sections determined by Mimnagh et al. (1993). The polarised-orbital calculation
of Dasgupta and Bhatia (1985) as well as the R-matrix calculations of Fon et al.
(1983) and Bell et al. (1984) are also in very good agreement with experimental
measurements of Gibson et al. (1996), but have not been shown for reasons of
clarity.

4. Conclusions

There is now very good agreement between theory and experiment in the
low energy region for electron–argon scattering. This is particularly true in the
vicinity of the Ramsauer–Townsend minimum of the momentum transfer cross
section and to a slightly lesser extent for the minimum in the total elastic cross
section. Furthermore, it would appear that the electron–argon scattering length
has been determined to within an accuracy of about one percent. There is also
very good overall agreement between theory and experiment with respect to the
elastic differential cross section between 1 and 10 eV.

As was the case in the low energy regime with krypton and xenon, the
determination of the phase shifts within a relativistic formulation of the scattering
problem significantly improved the agreement between theory and experiment for
argon, vis-à-vis the comparable calculation carried out within a non-relativistic
framework. This is particularly true around and below the Ramsauer–Townsend
minimum in both the momentum transfer and the total elastic cross section.

Acknowledgments

One of us (RPM) wishes to express his sincere appreciation for the hospitality
afforded to him by the Electron Physics Group during his recent visit to the
Australian National University. We wish to thank Professor H. P. Saha for sending
us his phase shifts prior to publication. We also wish to express our appreciation
to Dr M. J. Brennan and Professors M. T. Elford and R. W. Crompton for
valuable discussions concerning the experimental data. Furthermore, we wish to
thank Dr S. J. Buckman for his critical comments on the manuscript and Miss
Jennie Gibson for her most able assistance in the preparation of the figures. This
work was supported in part by the Natural Sciences and Engineering Research
Council of Canada.



524 R. P. McEachran and A. D. Stauffer

References

Bell, K. L., Scott, N. S., and Lennon, M. A. (1984). J. Phys. B 17, 4757.
Buckman, S. J., and Lohmann, B. (1986). J. Phys. B 19, 2547.
Buckman, S. J., and Mitroy, J. (1989). J. Phys. B 22, 1365.
Callaway, J., LaBahn, R. W., Pu, R. T., and Duxler, W. M. (1968). Phys. Rev. 168, 12.
Charlton, M. C., Griffith, T. C., Heyland, G. R., and Twomey, T. R. (1980). J. Phys. B 13,

L239.
Dasgupta, A., and Bhatia, A. K. (1985). Phys. Rev. A 32, 3335.
Drachman, R. J., and Temkin, A. (1972). In ‘Case Studies in Atomic Collision Physics’, Vol.

2 (Eds E. W. McDaniel and M. R. C. McDowell), Ch. 6 (North Holland: Amsterdam).
Ferch, J., Granitza, B., Masche, C., and Raith, W. (1985). J. Phys. B 18, 967.
Fon, W. C., Berrington, K. A., Burke, P. G., and Hibbert, A. (1983.) J. Phys. B 16, 307.
Frost, L. S., and Phelps, A. V. (1964). Phys. Rev. 136, A1538.
Furst, J. E., Golden, D. E., Mahgerefteh, M., Zhou, J., and Mueller, D. (1989). Phys. Rev. A

40, 5592.
Gibson, J. C., Gulley, R. J., Sullivan, J. P., Buckman, S. J., Chan, V., and Burrow, P. D.

(1996). J. Phys. B 29, 3177.
Grant, I. P., McKenzie, B. J., Norrington, P. H., Mayers, D. F., and Pyper, N. C. (1980).

Comp. Phys. Commun. 21, 207.
Haberland, R., Fritsche, L., and Noffke, J. (1986). Phys. Rev. A 33, 2305.
Haddad, G. N., and O’Malley, T. F. (1982). Aust. J. Phys. 35, 35.
LaBahn, R. W., and Callaway, J. (1966). Phys. Rev. 147, 28.
McEachran, R. P., Morgan, D. L., Ryman, A. G., and Stauffer, A. D. (1977). J. Phys. B 10,

663.
McEachran, R. P., and Stauffer, A. D. (1983a). J. Phys. B 16, 255.
McEachran, R. P., and Stauffer, A. D. (1983b). J. Phys. B 16, 4023.
McEachran, R. P., and Stauffer, A. D. (1984). J. Phys. B 17, 2507.
McEachran, R. P., and Stauffer, A. D. (1987). J. Phys. B 20, 3483.
McEachran, R. P., and Stauffer, A. D. (1988). Proc. Int. Symp. on Correlation and Polarisation

in Electronic and Atomic Collisions (Eds A. Crowe and M. R. H. Rudge), p. 183 (World
Scientific: Singapore).

McEachran, R. P., and Stauffer, A. D. (1990). J. Phys. B 23, 4605.
Milloy, H. B., and Crompton, R. W. (1977). Aust. J. Phys. 30, 51.
Milloy, H. B., Crompton, R. W., Rees, J. A., and Robertson, A. G. (1977). Aust. J. Phys.

30, 61.
Mimnagh, D. J. R., McEachran, R. P., and Stauffer, A. D. (1993). J. Phys. B 26, 1727.
Nahar, S. N., and Wadehra, J. M. (1987). Phys. Rev. A 35, 2051.
Nakamura, Y., and Kurachi, M. (1988). J. Phys. D 21, 718.
Nickel, J. C., Imre, K., Register, D. F., and Trajmar, S. (1985). J. Phys. B 18, 125.
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