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Abstract

The separation, by an optical standing wave, of a beam of two-level atoms prepared in a
thermal mixture of ground and excited states, is considered as an example of a Maxwell
demon. By including the momentum exchanged with the cavity, it is shown how no violation
of the second law is possible. A classical and quantum analysis is given which illustrates this
principle in some detail.

1. Introduction

Maxwell’s demon is a hypothetical information gathering and processing device
that can apparently extract work in a closed cycle from the thermal motion of
gas molecules, in apparent contradiction of the second law of thermodynamics.
The demon uses information of the velocity of a molecule to open or close a door
between two gas chambers; fast (hot) molecules are allowed to pass through,
slow (cold) molecules are not. The resulting temperature difference between the
two chambers can then be used to extract useful work form the system. As
Bennett (1987) has explained however, the demon cannot violate the second
law as it must erase information in order to work in a cycle. The erasure of
information necessarily requires that a minimum amount of heat be dissipated
into the environment. This later result is the content of Landauer’s (1961)
principle, which states that a minimum of kBT ln 2 energy is dissipated into an
environment at temperature T when a single bit of information is erased. A
computer simulation of this process has been given by Skordas and Zurek (1992).

In this paper I consider another form of Maxwell’s demon in which the thermal
degrees of freedom are the internal electronic states of two-level atoms in an
atomic beam. An atom in the excited state |2〉 is ‘hot’ and an atom in the
ground state |1〉 is ‘cold’. The measurement of which state the atom is in is
carried out by the atom-optical Stern–Gerlach effect (Sleator et al. 1992). In this
process the atom is passed transversely through a standing wave optical field. If
the field is well detuned from the atom, virtual two-photon transitions transfer
momentum from the field to the atom, while leaving the electronic state of the
atom unchanged. The sign of the momentum transfer depends on what state
the atom is in as it enters the beam. The result is a deflection of the atom, in
opposite directions, depending on the electronic state. For a thermalised beam,
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this leads to a separation into a hot beam, in which all atoms are in the excited
state, and a cold beam, in which all atoms are in the ground state. In this case
the entropy of each beam is effectively zero.

If we assume that the state of the cavity field and the cavity itself are initially
pure states and are unchanged by the interaction, then the process described
above has apparently taken a state of non-zero entropy to a state of zero entropy.
Can this device really work? The answer is provided by considering the other
important dynamical system in this problem—the motion of the mirror forming
the optical cavity. I will show that in order for the device to keep working, the
mirror must be reset, and this entails an entropy cost sufficient to avoid any
violation of the second law.

The analysis can be carried out at two levels. Firstly, one may treat the
problem entirely classically, at least as far as the centre of mass motion of the
atom and cavity mirrors are concerned. This is the appropriate level of description
if one wishes to give a standard statistical thermodynamic explanation. On the
other hand, the problem can be analysed quantum mechanically. This is the
appropriate level of description for a system in which the bulk motion of the
atoms and mirrors are completely isolated, except for the interaction with the
standing wave.

2. Classical Description

A single two-level atom passes transversely through an optical standing wave.
One mirror of the cavity is so massive it cannot move, the other mirror of the
cavity however can move, and take up momentum exchanges between the atom
and the field. If the electronic resonance is well detuned from the cavity frequency,
the atom experiences a conservative force proportional to the intensity gradient.
This force is due to the electric dipole induced in the atom by the far off-resonance
field. If the field is tuned below the resonance the force is directed toward regions
of high intensity. If the field is detuned above the atomic resonance, the force is
directed away from regions of high intensity. In both cases the electronic state
of the atom does not change, as only virtual two-photon transitions are involved.
The dipole force may be described in terms of an effective potential which for a
standing wave is described by the Hamiltonian (Walls 1994)

HK = h̄gσz cos[2k(qA − qM )] , (1)

where qA is the position of the atom as it enters the beam and qM is the position
of the cavity mirror, both measured along the cavity axis. The wave number of
the field is k while the interaction strength g is given by

g =
Ω2

4∆
, (2)

where Ω is the Rabi frequency of the electronic transition and ∆ is the detuning
between the atom and the field. The operator σz describes the inversion of the
two-level atom

σz = 1
2 (|2〉〈2| − |1〉〈1|) , (3)

where |1〉 is the ground state and |2〉 is the excited state.
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Fig. 1. A schematic representation of the atom-optical Maxwell
demon. A beam of atoms prepared in a thermal distribution of two
electronic states is deflected by a far-off resonant optical standing
wave. Atoms in different electronic states are deflected in different
directions.

In the Raman–Nath regime, the time of interaction of the atom with the
field is small, so that the free motion of the centre-of-mass of the atom can be
neglected while it traverses the cavity. Similarly we can neglect the free motion
of the mirror during the passage of the atom through the cavity. In this case, the
effect of the interaction is to give the atom and the mirror equal and opposite
momentum kicks, the size of which depends on just where the atom enters the
standing wave. The largest transfer of momentum occurs when the atom passes
through a node of the standing wave, i.e. 2k(qA − qM ) = π/2. After the passage
of the atom through the cavity the mirror moves freely, unless steps are taken
to prevent it, until the next atom enters. The atom moves off on a deflected
path, the direction of which indicates what the electronic state of the atom was
as it entered the cavity (see Fig. 1). We will assume the electronic state of the
incoming atom is

ρel = λ1|1〉〈1|+ λ2|2〉〈2| . (4)

The probabilities λi can be defined in terms of an effective electronic temperature
Tel by
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λ1 = (1 + e−ε/kBTel)−1 (5)

and λ2 = 1 − λ1 where ε is the energy difference between the two electronic
states. As ρel commutes with the interaction, equation (1), we can regard σz
as a classical random variable which takes the values {1

2 ,−
1
2} with probabilities

P ( 1
2 ) = λ2 and P (− 1

2 ) = λ1.
If the first atom passes through a node of the standing wave, the momentum

transferred to that atom ∆pA is given by

∆pA = ±θ , (6)

where θ = h̄gkτ and τ is the time it takes an atom to traverse the standing
wave. The plus-sign corresponds to σz = 1

2 and occurs with probability λ2, while
the minus-sign corresponds to σz = − 1

2 and occurs with probability λ1. An
equal and opposite momentum is given to the cavity mirror, by conservation of
momentum. In the time it takes the next atom to enter the cavity this transfer
of momentum to the mirror will cause it to move a small distance and thus the
next atom will not enter precisely at a node and thus will experience a different
momentum kick to the first. The problem is now apparent. Unless steps are
taken at each step to restore the cavity mirror to the same state, before an atom
enters the cavity, it will become impossible to deduce the atomic state from the
deflection of the atomic beam. In effect the mirror comes to thermal equilibrium
with the electronic degrees of freedom of the atomic beam and beam separation
is no longer possible. The demon’s hand begins to shake so that it is incapable
of extracting useful information about the electronic state of the atoms.

The simplest way to restore the mirror to the initial position is to provide
a restoring force together with enough friction to allow the mirror to suffer
over-damped motion. The average energy transferred to the mirror by the
interaction is θ2/2M , where M is the mass of the mirror. If this is dissipated
into a heat bath at temperature TM , the entropy cost is

S =
θ2

2MTM
. (7)

There is an additional entropy cost. Frictional damping of the mirror must be
accompanied by fluctuations in momentum (Gardiner 1991). Such fluctuations
cause the position of the mirror to fluctuate as well, and thus each atom
cannot enter, with certainty, at a nodal position. The result is a fluctuation
in the momentum transferred to the atom and a resulting entropy penalty, the
consequence of which is a difficulty in distinguishing the atomic state by beam
deflection. Typical values for the parameters in the model are (Dyrting 1993)
g = 5× 108 Hz and k = 10−7 m−1, while the interaction time is τ = 10−7. This
gives the momentum transfer per atom as θ = 10−26 kg m−1, rather small! Thus
at room temperature S ≈ 10−50 J K−1.

It is interesting to consider in a little more detail the classical description of
the exchange of momenta in this model. The description breaks down into two
steps; an impulsive change in the momenta of the atoms and mirror as each
atom passes through the cavity and free evolution of the mirror until the next
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atom enters. The atom once past the cavity continues on its deviated path and
the next atom enters the cavity at the same place as the first. Thus we really
don’t need to consider the centre-of-mass motion of the atoms. The dynamics is
most easily described in terms of a map, from just after one atomic injection to
just after the next, for the relative position and momentum variables (along the
cavity axis),

X1 =
√ 1

2 (qA − qM ) , (8)

X2 =
√ 1

2 (pA − pM ) . (9)

The factor of
√ 1

2 is included to ensure that this is a canonical transformation.
If we assume the initial total momentum is zero the map may be written as

Xn+1
1 = Xn

1 +
t

2M
Xn

2 , (10)

Xn+1
2 = Xn

2 + 2
√

2θσz sin(2
√

2kXn+1
1 ) , (11)

where t is the time between atomic injections. Defining the dimensionless variables

x1 = 2
√

2kX1 , (12)

x2 =

√
2tk
M

X2 , (13)

we have the classical map

xn+1
1 = xn1 + xn2 , (14)

xn+1
2 = xn2 + 2βσz sinxn+1

1 , (15)

where β = 2ktθ/M . This map is related to the ‘standard-map’ (Lichtenberg
1979), a well-known prototype of chaotic dynamics. The difference however is
that here the control parameter βσz is a random variable, and furthermore it is
highly unlikely that the system could be operated in the chaotic region due to
the very small exchanges of momenta involved. However, the map does enable
us to simulate the thermalisation of the demon if no attempt is made to restore
the mirror to a standard state after each atomic injection.

To monitor the gradual decay in the effectiveness of the demon we consider
the momentum transferred to each atom. In dimensionless units this is simply
proportional to xn+1

2 − xn2 which, from equation (15), is given by 2βσz sinxn+1
1 .

If the mirror were restored to its standard position at each step, xn+1
2 −xn2 would

always be given by 2βσz. Thus, a measure of the performance of the demon can
be given by considering the quantity

∆p =
∣∣∣∣xn+1

2 − xn2
2βσz

∣∣∣∣ (16)

= | sinxn+1
1 | . (17)
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This quantity would remain at unity if the mirror was reset each time. In Fig. 2
we plot this quantity versus n for a particular sample path of σz chosen to have
the required statistics. The decay of this quantity to zero is evidence that the
uncertainty in the electronic state is disordering the position of the mirror at
each step. In Fig. 3 we show the behaviour of this quantity averaged over one
thousand sample trajectories with β = 0 ·01.

Fig. 2. Three typical simulations of the scaled momentum transferred
at each atomic injection. Here ∆p =

∣∣sinxn+1
1

∣∣ is plotted versus the
number of atoms injected, where β = 0 ·01 and λ1 = λ2 = 0 ·5.

Fig. 3. Average of 1000 simulations of ∆p versus the number of
atomic injections, where β = 0 ·01 and λ1 = λ2 = 0 ·5.

3. Quantum Description

As in the classical case, the quantum description of this system is given as a
map. This is most easily done in the Schrödinger picture. The change in the
state of the atomic centre-of-mass/mirror system, due to each atomic injection,
with no account taken of which way the atom was deflected, is given by

ρ′ = trel(UKρel ⊗ ρU†K) , (18)

where

UK = exp[−igτσz cos(2
√

2kX1)] (19)
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and X1 is the relative position variable defined by equation (8). Here ρel is
the state of the electronic degrees of freedom, ρ is the state of the atomic
centre-of-mass/mirror just before an atomic injection and ρ′ is the atomic
centre-of-mass/mirror just after an atomic injection. The partial trace trel is
taken over electronic degrees-of-freedom. If the electronic state is as given in
equation (4), then

ρ′ = λ1D
†ρD + λ2DρD

† , (20)

where

D = exp
(
− igτ

2
cos(2

√
2kX1)

)
. (21)

The state of the relative position is taken to be a pure state |ψ〉 with coordinate
representation

〈x1|ψ〉 = (2π∆)−1/4 exp
(
− (x1 − x̄)2

4∆

)
, (22)

where x = π/4
√

2k.
The statistical entropy is not a straightforward quantity to calculate. Instead

we use the linear entropy defined by

SL = 1− tr(ρ2) . (23)

For a pure state this is zero and for a general mixed state is less than unity.
Before a kick, the linear entropy for the atomic centre-of-mass/mirror system is
zero, while the linear entropy for the electronic degrees-of-freedom is

SiL = 1− (λ2
1 + λ2

2) , (24)

which is a maximum of 1
2 for λ1 = λ2. After an atomic injection, the linear

entropy is given by

SfL = 1− (λ2
1 + λ2

2 + 2λ1λ2|〈ψ|D2|ψ〉|2) . (25)

If we assume that the relative variable X1 is much better defined than an optical
wavelength, that is

√
∆ ¿ λ, then

SfL = 1−
(
λ2

1 + λ2
2 + 2λ1λ2 exp

{
− 2

∆p2
A

∆p2
i

})
, (26)

where ∆pA is the momentum transferred to the mirror and

∆p2
i =

h̄2

4∆
(27)
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is the initial uncertainty in the relative momentum. If any beam splitting is to
occur at all it is necessary to arrange things so that ∆pA À ∆pi, in which case
SfL ≈ SiL. In general, however, the final entropy is greater than the initial entropy
as the initial quantum fluctuations in the atomic centre-of-mass are transferred
to the mirror.

4. Conclusion

The deflection of an atom by a standing wave in the atom-optical Stern–Gerlach
effect provides a simple model system for a Maxwell demon. The entropy exchanges
may be followed in some detail. If the atomic electronic states are thermal we
have shown above that, unless steps are taken to restore the cavity mirror to its
initial state for each atomic injection, the device eventually fails to separate atoms
into an excited state beam and a ground state beam. The fluctuating exchanges
of momentum between one atomic injection and the next are sufficient to cause
the mirror to come to thermal equilibrium with the electronic degrees-of-freedom.
The entropy of the mirrors increases by an amount sufficient to ensure the
enforcement of the second law.

A number of questions remain to be answered. In this paper the electronic
state is taken as a thermal state, with no coherences between atomic levels. How
is the analysis changed if the electronic state is a pure superposition of the ground
and excited states, with the same populations as the thermal mixed state? This
would make for a true quantum Maxwell demon. As discussed above, the mirror
must be restored to its initial state each time an atom passes through the cavity.
This is a kind of feedback. The deflection of the atomic beam may be regarded
as a measurement of the electronic state of the injected atom. We thus need
to adjust the state of the mirror momentum by an amount depending on the
results of the measurement. This is a particular case of quantum limited feedback
(Wiseman and Milburn 1993). It is known that this kind of feedback necessarily
introduces a certain level of noise into the system. It would be interesting to
analyse this from the point of view of the second law. In practice the atoms
arrive in the cavity at Poisson distributed times. In that case a master equation
can be derived for the atomic centre-of-mass/mirror system (Milburn 1987) and
entropy exchanges followed in some detail.
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