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Abstract

We propose a new scheme of gamma-quanta amplification without inversion. Laser pumping
of electron states creates giant nuclear-spin polarisation via the hyperfine interaction. This
results in extreme cooling of the ground-state nuclear spin in a projection which does not
absorb both laser pump and gamma-quanta according to selection rules for these transitions.
Induced emission from the nuclear excited state is not influenced by the pump. Therefore
gamma-quanta travelling inside the pump beam have an opportunity to induce stimulated
emission without subsequent quenching by ground state nuclei.

1. Introduction

Lasing becomes increasingly difficult as the wavelength of radiation becomes
shorter and reaches the gamma-ray band. The first difficulty comes from small
nuclear cross sections relative to atomic ones. This gives rise to a second, more
serious obstacle in creating population inversion of nuclear states which demands
an enormous energy flux. Many concepts have been proposed to reduce pump
requirements. One of them is gain without inversion (GWI) of population of
absorbing and emitting nuclear states (Coussement et al. 1993; Kocharovskaya
1995). In this paper we consider recoilless gamma-ray transitions as the resonance
cross section of Mössbauer nuclei is high. This choice moderates the first difficulty.

It is well recognised that resonant gamma-absorption and gamma-emission of
Mössbauer nuclei are reciprocal, as corresponding cross sections are equal to each
other. Consequently, gamma-lasing in a Mössbauer sample can be achieved only
when the number of excited nuclei predominates over the number of ground-state
nuclei. We present a method which breaks this reciprocity and shows the way to
achieve gamma-lasing without population inversion. Thus, the second obstacle
becomes a solvable problem as well.

Our method takes its origin in the new principle of lasing without inversion
formulated for the optical band (Kocharovskaya and Khanin 1988; Scully et al.
1989; Harris 1989). We develop a new scheme of induced gamma-emission
amplification which differs from that proposed in Coussement et al. (1993). There,
the scheme contains radio-frequency (RF) excitation of nuclear spin states when
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spin level crossing in an external magnetic field takes place. This RF scheme
demands cooling of the sample down to milli-Kelvin temperatures. At room
temperature the RF scheme (Coussement et al. 1993) does not provide GWI,
but one can consider it as supplementary for lasing with population inversion
created by cooling.

In our scheme we propose to excite spin sublevels of ground-state nuclei by a
resonant laser pump via hyperfine interaction. Following the paper by Coussement
et al. we consider Mössbauer nuclei with spin Ie = 1

2 in the excited state and
spin Ig = 3

2 in the ground state. In this crystal the nuclear electric quadrupole
interaction splits the ground-state spin Ig into a doublet: | ± 1

2 〉 and | ± 3
2 〉. We

apply a magnetic field H parallel to the c-axis of a noncubic uniaxial crystal,
also as Coussement et al., to obtain nuclear spin sublevel crossing. The Zeeman
interaction gives an additional splitting of the doublet sub-states. Interplay
between quadrupole and Zeeman interactions may result in crossing of doublet
sub-components. We consider the case of | − 1

2 〉 and | − 3
2 〉 sub-components

crossing as in Coussement et al. (see Fig. 1 in their paper). A small misalignment
of the magnetic field with c-axis gives a strong mixing of − 1

2 and − 3
2 spin states

at their crossing point. Mixed states at the level crossing split into a smaller
doublet g

|1〉 = cosψ| − 1
2 〉 − sinψ| − 3

2 〉
|2〉 = sinψ| − 1

2 〉+ cosψ| − 3
2 〉

(1)

with energy gap h̄ω21, where ψ defines the degree of states mixing.
We consider a gamma-transition from the excited state |e〉 to the ground state

|g〉 with selection rule ∆M = ±1. When level crossing takes placing, the nucleus
decays into a superposition of states |1〉 and |2〉, i.e.

| − 3
2 〉 = cosψ|2〉 − sinψ|1〉 = |n〉 (2)

if the spectral width of the gamma-quantum γ, defined by the lifetime of the
excited state τ0 (γ = 1/τ0), is larger than the transition frequency ω21 between
sublevels |1〉 and |2〉. Otherwise the nucleus falls into one of these states with a
probability defined by the ψ value.

We also take into account the nuclear spin interaction with the electron shell.
In our scheme a laser pump induces a transition between two states of the
electron shell (ground and excited states). We choose the value of the magnetic
field H, which together with the magnetic hyperfine field Hg of the ground-state
electron, creates a level crossing of the ground-state nucleus. The excited electron
state h is assumed to create a different hyperfine field on nuclear spin, so when
an electron is excited by the laser pump the nuclear spin sublevels do not cross
each other. Then an electron transition from the excited state to ground state
is accompanied by a nuclear spin transition from the pure state (for example
| − 1

2 〉) to the superposition state |n〉 (see equation 2) if the selection rule is
the same as for gamma-quanta. The energy diagram with transitions between
state functions is shown in Fig. 1. We show only the nuclear spin state | − 1

2 〉
in the excited electron state h, as the laser pump transition has a selection rule
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∆M = ±1. It is supposed that the nucleus has another spin in the excited state
e and its interaction with the electron gives the shift of the resonant frequency
of the electron transition. Below we show that a Raman pump of the states
|1〉, |2〉, |3〉 (where |3〉 is the excited electron state) results in ground-state
population trapping and the electron is not excited. Therefore we can confine
our consideration to the analysis of the four-level system interaction with the
two fields on the adjacent transitions, as shown in Fig. 1.

Fig. 1. Diagram of the energy states: g is the ground state of the nucleus
and electron; h is the electron excited state when the nucleus is not excited;
and e is the nuclear excited state when the electron is not excited.

Below we show that the Raman pump forces the nucleus to abandon the state
| − 3

2 〉 in equation (2) which is involved in the electron transition according to
the selection rules. As a result we get a predominant population of the state
| − 1

2 〉, which corresponds to giant nuclear spin polarisation. It differs about a
million times from nuclear spin polarisation at room temperature. Electron and
gamma-transitions from this state to the excited states are forbidden. Therefore
one can reduce, and in principle make zero, the absorption cross section of
gamma-quanta by a Raman pump via hyperfine interaction. As the excited
nucleus state e is not polarised the emission cross section is not zero. Thus one
can get amplification of gamma-quanta without population inversion. We assume
the process populating the excited state e results from the parent nucleus decay
or the additional pump process (Collins and Carroll 1997). Then the Raman
laser pump essentially reduces the pump requirements for the gamma-transition.

We model the initial emission of gamma-quanta by Lorentzian irradiation with
randomly shifted phase. Mean dwell time between successive phase shifts is equal
to the lifetime of the nucleus in the excited state e. A single gamma-quantum
induces Raman excitation of the ground-state doublet g when the frequency of
the phase shift γ is higher than the doublet split frequency ω21. The laser
pump is described by the phase diffusion model. It induces Raman excitation of
the nuclear spin doublet g when the decay rate of the electron coherence (i.e.
electron polarisation) Γ is larger than the doublet split frequency ω21. In the
next section we derive kinetic equations for the quantum system interacting with
random phase fields.
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2. Random Phase Field Interaction with the Quantum System

We reduce our consideration of the gamma-quantum interaction with nuclei,
polarised by the Raman pump via hyperfine interaction, to the double Λ scheme
(Kocharovskaya 1995) (see Fig. 1). In this scheme the laser pump

ER(t) = ER exp [iωt+ iΦ(t)− ikz] (3)

excites the resonant transitions |1〉 → |3〉; |2〉 → |3〉; and the probe field

EP (t) = EP exp [iΩt+ iα(t)− iKz] (4)

is applied to the transitions |1〉 → |4〉 and |2〉 → |4〉. Here ω,Ω; k,K; and Φ(t), α(t)
are the frequencies; wave numbers; and phases of these fields, respectively. The
probe field arises due to nuclei decaying in an external source. We consider
this field as a sequence of monochromatic fractions (quanta) with uncorrelated
phases (Lorentzian irradiation). Mean dwell time between successive phase shifts
is equal to the lifetime of the nucleus in the excited state τ0. Time intervals
between successive phase shifts (i.e. the duration τ of the field fraction with
constant phase) obey the Poisson distribution

dW (t) = exp(−τ/τ0)
dτ

τ0
. (5)

The correlation function of this field is described by the expression

〈EP (t)E∗P (t0)〉 = E2
PK(t− t0) exp [iΩ(t− t0)] , (6)

where

K(t− t0) = 〈exp [iα(t)− iα0(t0)]〉 =
∫ ∫

ei(α−α0)ϕ(α0)ϕ(α0, t0|α, t)dαdα0

ϕ(α0) = lim
t−t′→∞

ϕ(α′, t′|α0, t0),

and where ϕ(α0, t0|α, t) is the density of the conditional probability that the
phase, being equal to α0 at time t0, changes its value to α at time t; ϕ(α0)
is the probability to find the phase α0 within any cross section of the random
process. We consider the stationary, discontinuous Markovian process. The density
of conditional probability of this process obeys the forward Kolmogorov–Feller
equation (Burshtein 1968; Feller 1966; Wodkiewicz and Eberly 1985)

∂

∂t
ϕ(α0, t0|α, t) = − 1

τ0
ϕ(α0, t0|α, t) +

1
τ0

∫
ϕ(α0, t0|β, t) f(β|α)dβ (7)

with the initial condition of ϕ(α0, t0|α, t0) = δ(α − α0). The function f(β|α)
defines the probability for the phase β to change to the value α at the time of the
phase jump. When the random process is uncorrelated, then f(β|α) coincides
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with the stationary distribution ϕ(α). One can obtain from (7) the following
equation for the irradiation correlation function:

∂

∂t
K(t− t0) = − 1

τ0
K(t− t0) . (8)

Its solution gives the Lorentzian power spectrum of the field

P (Ω′) = Re
1
π

∫ ∞
0

〈EP (t)E∗P (0)〉e−iΩ′tdt =
|EP |2
π

τ0

1 + (Ω− Ω′)2τ2
0

(9)

with a half-width 1/τ0.
The laser pump has correlated phase jumps. This process is described by the

conditional probability

f(α0|α) = f(α− α0) = f(α0 − α) , (10)

which is an even function as the probability of finding a new phase after the
jump is symmetrically distributed relative to the phase value prior to the jump.
The phase correlation is defined by the dispersion of the function f(ϑ), where
ϑ = α − α0, i.e. by the mean value of the phase jump. For example, in the
limit of infinitely small jumps, when the mean jump-value is zero, this function
takes the form f(ϑ) = δ(ϑ) and we have no phase change. When the mean value
of the phase jump is finite and small, the individual phase changes after each
jump are also small but with time the cumulative phase variation grows. This
random walk of the phase corresponds to the phase diffusion process. With an
increase of the f(ϑ)-function dispersion the process modifies, and, finally, when
f(ϑ) coincides with the stationary distribution function ϕ(α), the process changes
qualitatively. It becomes almost the same as an uncorrelated process.

The equations for the correlation function and for the spectrum of the field with
correlated phase jumps coincide with equation (8) and equation (9), respectively.
Only the parameter 1/τ0 is different. It is to be replaced by

1
τ1

=
1
τ0

(1− 〈cosϑ〉); 〈cosϑ〉 =
∫

cosϑ f(ϑ) dϑ . (11)

Therefore the spectrum of correlated irradiation is narrower that the frequency
of the phase jump 1/τ0.

Let us consider the evolution of the quantum system excited by the field
with random phase. Its partial density matrix

∧
ρ (α) obeys the Burshtein (1968)

equation

d
∧
ρ

dt
= − i

h̄
[
∧
H (α),

∧
ρ (α)]− 1

τ0

∧
ρ (α) +

1
τ0

∫
dβ f(β|a)

∧
ρ (β)+

∧
R (
∧
ρ (α)) , (12)

where
∧
H (α) is the Hamiltonian of the quantum system excited by the field

fraction with constant phase α, and
∧
R (
∧
ρ (α)) is the operator describing relaxation
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of the diagonal and non-diagonal components of the density matrix induced by
internal interactions in the sample. We consider the phase difference between the
field and induced polarisation for each field fraction, as just this value contains
the information about field absorption. This phase difference is defined by the
variable

σge(α) = ρge(α) exp (−iΩt− iα+ iKz) , (13)

where g (e) denotes the ground (excited) states (Shoemaker 1978). Mean values
of this variable and population difference

〈σge〉 =
∫
σge(α) dα; w =

∫
[ρee(α)− ρgg(α)] dα (14)

satisfy the equations

·
w= 2i (Aeg〈σge〉 −Age〈σeg〉)−

1
T1

(w − w0) ,

〈 ·σge〉 =

(
i∆− 1

T2

− 1
τ1

)
〈σge〉+ iAgew , (15)

〈σeg〉 = 〈σge〉∗ ,

where Age = dgeEP /h̄; dge is the matrix element of the dipole transition from the
state g to the state e; T1 and T2 are relaxation times of the population difference
and polarisation; w0 is the equilibrium population difference; and ∆ = ωeg − Ω
is a tuning parameter. We note that for uncorrelated irradiation the relation
τ1 = τ0 is valid.

Solution of equation (15) gives the mean value of polarisation in the instantaneous
reference frame linked rigidly to the field phase. Therefore its analysis yields
reliable information about absorption of the field EP (t). The dephasing rate
in equation (15) has an extra component 1/τ1 equal to the half-width of the
field spectrum. In the next paragraph we consider the solution of a similar
equation for the quantum system excited by the Raman pump ER(t) and the
probe EP (t) fields. As their phase noises have a different origin one can make
a phase average for both fields independently. Then Lorentzian irradiation of
gamma-quanta contributes to the dephasing rate 1/T2 of the gamma-transition,
whereas the laser pump gives broadening of its own resonant transition equal to
its spectrum width.

3. Double Λ Scheme in Gamma-Optics

Before calculating the integral absorption of gamma-quanta by nuclei with
ground-state spin polarised by laser pump, we consider the four-level system shown
in Fig. 1. We assume that it is excited by two fractions of the fields (equations
3 and 4) with constant phases Φ(t) = const and α(t) = const. Equations for the



Giant Nuclear-spin Polarisation 345

density matrix of this system are

·
ρ11= i (A14 + B13)− w12ρ11 +

∑
n6=1

wn1ρnn;

·
ρ22= i (A24 + B23)− w21ρ22 +

∑
n6=2

wn2ρnn;

·
ρ33= − i (B13 + B23)− (w31 + w32) ρ33;
·
ρ44= − i (A14 +A24)− (w41 + w42) ρ44;

·
σg4= (i∆g − Γγ)σg4 + iAg4 (ρ44 − ρgg)− iAg′4ρgg′ , (16)

·
σg3= (iδg − Γ)σg3 + iBg3 (ρ33 − ρgg)− iBg′3ρgg′ ,

·
ρ12= (iω21 − ΓM ) ρ12 + i (A14σ42 −A42σ14) + i (B13σ32 −B32σ13) ,

where Ag4 = Ag4σ4g − A4gσg4; Bg3 = Bg3σ3g − B3gσg3; Ag4 = S(g)dg4EP /h̄;
Bg3 = S(g)dg3ER/h̄; S(1) = − sinψ; S(2) = cosψ; dg4 = d4g = dP ; dg3 =
d3g = dR; ∆g = ω4g − Ω; δg = ω3g − ω; σg4 = ρg4 exp (−iΩt− iα+ iKz) ;
σg3 = ρg3 exp (−iωt− iΦ + ikz) ; g = 1, 2; and wnm is the probability of a
relaxation transition from the state n to the state m. The states 4 and 3
decay spontaneously to the couple of the ground states g(1, 2). Transitions
between states 1 and 2 are induced by the spin-lattice interaction. As h̄ω21 ¿ kT
(where T is the temperature of the sample), transition probabilities w21 and w12

are equal [since they satisfy the relation w21/w12 = exp (h̄ω21/kT )]. The main
contribution to the dephasing rate of the gamma-transition Γγ is given by the
value 1/4τ0. Here we take into account that the nucleus decays from state 4 to
the states 1 and 2 simultaneously. Therefore, the probability of the transition
4→ g equates to 1/2τ0. Elastic scattering of the phonons on the nucleus gives
also the contribution to the zero-phonon line of the gamma-transition, whereas
it gives the main contribution to the electron transition dephasing rate Γ at
room temperature. The nuclear-spin dephasing rate ΓM is caused by magnetic
interactions with neighbouring nuclei, with electron spin, etc. All these relaxation
rates are related as follows:∑

g

w4g = 4Γγ =
1
τ0
À w21 = w12; ΓÀ w3g À w21 . (17)

Let us turn back to equation (12) which describes the interaction of the
random-phase field with the quantum system and generalise it for the case
of interaction with two random fields. Phase average (see equation 14) gives
equations similar to (16). As in equation (15) the additional contributions to
the decay rates Γ and Γγ appear:

Γ′γ = Γγ +
1
τ0

; Γ′ = Γ +
1
τ ′1
, (18)
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where 1/τ ′1 obeys equation (11). It should be noted that the durations of the
gamma-quantum τ0 and laser quantum τ ′0 are different as they have different
origins.

All equations for the population ρnn (n = 1, 2, 3, 4) and equations for nondiagonal
elements of the density matrix of the ground state spin ρ12 do not change as
the random phase does not influence the relaxation of these variables.

Raman excitation of the four-level system by two fields EP (t) and ER(t) may
be useful for amplification without inversion only when the resonant frequency of
the spin states ω21 is smaller than the effective half-widths of gamma and electron
transitions Γ′ and Γ′γ . Below we omit the primes in the notation keeping in mind
that coherence decay rates of relevant transitions depend on the parameters of
the driving fields.

We consider gamma-quanta of coherence length longer than the length of the
sample. Moreover, the sample is supposed to be optically ‘thin’. Then the probe
field amplitude EP (t) at the output edge of the sample satisfies the equation

EP (L) = EP (0) + ∆EP ; ∆EP = 4πKNLIm (d41〈σ14〉+ d42〈σ24〉) , (19)

where EP (0) is the amplitude of the gamma-quantum; N is the concentration
of the nuclei in the sample; L is the sample length and 〈σg4〉 is the stationary
value of the nondiagonal components of the density matrix averaged over all
realisations of the random process. Equation (19) describes the average variation
of the probe field amplitude EP (0) in the time interval which is much longer than
τ0. When ∆EP has the same sign as EP (0), then the probe field is amplified.
Otherwise the field EP (t) is absorbed. When ∆EP /EP = q and |q| < 1, then
one has to make 1/|q| measurements to detect this effect.

Below we show that even when the sample is an optically ‘thick’ absorber,
Raman excitation makes it transparent and one can use equation (19) to describe
gamma-quanta propagation in the sample along the laser beam. Equation (19)
is violated only when the concentration of excited state nuclei is large enough
to produce the avalanche of gamma-quanta. To describe this process one has
to solve Maxwell–Bloch equations for the field and polarisation of the sample.
When the rate of the gamma-quantum avalanche growth is small enough, one
can simply calculate the gain coefficient of the field EP (t) per unit length

GP =
∆EP
LEP

. (20)

As the Lorentzian field is small, we calculate the stationary response of the
sample in the linear approximation. Solution of equation (16), averaged over all
possible realisations of the random process, gives the following equation for the
probe field gain:

GP =
4πKN |dP |2

h̄Γγ

{
ρ44 −

(
ρ22 cos2 ψ + ρ11 sin2 ψ

)
+ sinψ cosψ (ρ12 + ρ21)

}
, (21)

where ρmm and ρgg′ are stationary values of the density matrix. Equation (21)
is valid under the condition Γγ À ∆1,∆2.
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The state |4〉 is populated by nuclear pump or due to the spontaneous decay
of another higher energy nucleus. We suppose that the rate of this process is
much smaller than the decay rate 1/τ0. The Raman pump does not influence
the population of the state |4〉 as it induces the transitions |g〉 → |3〉 only. When
ΓÀ δ1, δ2, its absorption coefficient is

GR =
4πkN |dR|2

h̄Γ

{
ρ33 −

(
ρ22 cos2 ψ + ρ11 sin2 ψ

)
+ sinψ cosψ (ρ12 + ρ21)

}
. (22)

The stationary solution of the averaged equation (16) gives the following values
of the density matrix components in (22):

ρ11 = ρ22 = ρ12 = ρ21 ≈ η12/2; ρ33 ≈ 0 , (23)

where η12 is the sum of the populations of the states 1, 2 and 3. Equation (23)
is valid provided that (i) the spin states − 1

2 and −3
2 (see Fig. 1) are mixed in

equal proportion, i.e. ψ = π/4 (see equation 1), and (ii) the pump rate obeys
the condition

|Bg3|2 À ΓΓM ; Γω21 .

Substitution of the density matrix components, equation (23), in equation (22)
gives zero value for the absorption coefficient of Raman pump ER(t). Propagating
in the sample, this field creates a giant nondiagonal component of the spin-sublevel
density matrix which corresponds to the spin polarisation in the state | − 1

2 〉.
This giant polarisation is impossible to create by radio frequency (RF) excitation
at room temperature, as the RF field excites transverse magnetisation which is
proportional to the thermal population difference. The population difference is
equal to the ratio of the spin energy gap and temperature. The optical pump
‘transfers’ the population difference of the optical transition (which is equal to
one) to the nuclear spin coherence. It results in cooling down to a nearly
zero temperature of the ground-state nuclei. Substitution of the density matrix
components, equation (23), in equation (21) gives a similar result, showing that
nuclear spin polarisation neutralises gamma-quanta absorption as well. The gain
coefficient GP becomes positive for any population of the ground state, if there
is a small number of excited state nuclei N4 satisfying the relation

N4/N > w12Γ/|B13|2 . (24)

If the Raman pump has a selection rule ∆M = 0, or any other one assuming
the transitions to the ground spin-state with the projection |− 1

2 〉, then it polarises
the nuclear spin in the state | − 3

2 〉 and nondiagonal elements of the spin density
matrix become negative, i.e. ρ12 = ρ21 = −η12/2. In turn, equation (22) is also
changed, as the plus sign before the nondiagonal components changes to minus.
Both changes compensate each other and as a result the absorption coefficient GR
remains zero. The sample becomes transparent for the Raman pump again; but
equation (21) is not changed. Therefore the negative nondiagonal components of
the spin-density matrix result in enhancing the probe field absorption instead of
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its suppression. Thus, our scheme of GWI demands the same selection rules for
the probe and pump fields. Moreover, it demands applying a constant magnetic
field at the value where level crossing takes place and spin mixing is perfect
(ψ = π/4). When the magnetic field does not fit this value, the parameter ψ
differs from π/4 and absorption elimination becomes incomplete.

4. Conclusion

We have presented an example of laser induced transparency for gamma-quanta.
A laser pump makes the sample transparent for the field with a frequency much
greater than the frequency of excitation. We calculated the gain coefficient for
gamma-irradiation. As this method is general and has no limitations, it can
be applied to GWI on optical transitions from highly-excited electron states.
Moreover, instead of nuclear spin states crossing in a magnetic field, one can
use the other method to obtain the optical branching. For example, a circularly
polarised laser beam induces transition to the superposition of the spin states in
a transverse magnetic field, resulting in transverse magnetisation of the sample
(Kohmoto et al. 1983).
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