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Abstract

This paper describes the development of an analytical technique for including the modification
to the poloidal magnetic field that is generated by the toroidal component of motion of the
charged particles in the axisymmetric pulsar magnetosphere model of Mestel and co-workers.
This ‘quasi-dipole’ technique, and its ‘distorted dipole’ case, are developed in such a way as
to retain as much as possible of the earlier formalism in which the poloidal magnetic field
was taken to be the dipole field of the star. The field is described in terms of a ‘magnetic
Stokes stream function’, which is constant on each poloidal field line. The technique involves
using the cylindrical polar radial coordinate and this stream function (in preference to the
axial coordinate) as the independent variables, forming a non-orthogonal coordinate set in
meridian planes. The field contains an unspecified function, which represents the modification
to the dipole field of the star generated by the toroidal magnetospheric currents. Expressions
are calculated for the curl of the poloidal magnetic field, which must be matched to an
expression obtained for the toroidal electric current density from a magnetosphere model,
thus determining the unspecified function.

1. Background

In the 30 years that have elapsed since pulsars were discovered, theorists have
not managed to produce a self-consistent model of the pulsar magnetosphere—even
for the simplified axisymmetric case of coincident magnetic and rotation axes.
Some of the most interesting and promising approaches, particularly for the
axisymmetric case, have been introduced by Professor Leon Mestel and his
co-workers at the University of Sussex.

In particular, Mestel, Robertson, Wang and Westfold (1985; ‘MRΩ2’) proposed
an axisymmetric pulsar magnetosphere model in which electrons leave the star
with non-negligible speeds and flow with moderate acceleration, and with poloidal
motion that is closely tied to poloidal magnetic field lines, before reaching SL,
a limiting surface near which rapid acceleration occurs. As well as these ‘Class
I’ flows, there exist ‘Class II flows’, which do not encounter a region of rapid
acceleration (Burman 1984). The formalism introduced by MRΩ2 to describe
the moderately accelerated flows can be interpreted in terms of a plasma drift
across the magnetic field, following injection along it (Burman 1985a).

The MRΩ2 formalism for the description of the outflow fully incorporates the
toroidal magnetic field generated by the poloidal flow. The general formalism leaves
the poloidal magnetic field unspecified, but, in the early detailed development of
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MRΩ2 and in my papers (Burman 1985b, 1987), that field was taken to be the
dipolar field of the star.

Numerical work by Fitzpatrick and Mestel (1988a, 1988b) suggested that the
dipole approximation is inadequate. They developed a numerical technique for
incorporating the modification to the poloidal magnetic field that is generated by
the toroidal motions throughout the magnetosphere. They based their treatment
on the hypothesis that those motions are such as to cancel the dipole field of
the star, leaving a sextupole poloidal magnetic field at large distances.

An elaboration of the MRΩ2 model by Mestel and Shibata (1993) incorporates
electron–positron pairs, created near and beyond SL, into the outflowing stream.
The gamma rays emitted by the rapidly accelerated electrons in that region result
in copious pair production, and the outflowing stream becomes a ternary plasma,
consisting of the primary electrons and a dense secondary electron-positron plasma.
Mestel and Shibata located SL well within the light cylinder—the surface on
which the speed of corotation with the star reaches c, the vacuum speed of light.

The purpose of this paper is to present an analytical technique for including
the modification to the poloidal magnetic field that is generated by the toroidal
motion of the magnetospheric particles. As sketched in a previous interim report
(Burman 1996), I am developing the technique in such a way as to retain as
much as possible of the earlier formalism in which the poloidal magnetic field was
taken to be dipolar. The formalism contains a free function of radial distance
from the symmetry axis, which is to be chosen so as to model the distortion of
the poloidal magnetic field from the dipole form caused by the toroidal motions
of the magnetospheric charges.

2. Electrodynamic Basis

(2a) Steadily Rotating Axisymmetric Systems

The system is steadily rotating at angular frequency Ω. The dimensionless
cylindrical radial coordinate X extends from the rotation axis and passes through
unity on the light cylinder, which has radius c/Ω about the axis. The dimensionless
axial coordinate, also normalised by c/Ω, is denoted by Z. The unit toroidal
vector is represented by t and the toroidal coordinate by φ. The steady-rotation
condition ∂/∂t = Ω∂/∂φ expresses temporal change as arising from rotation of any
non-axisymmetric structures at angular frequency Ω in the azimuthal direction.
This relation is applicable to scalars and cylindrical polar components of vectors,
whereas ∂/∂t = Ω∂/∂φ−Ω× for operation on vectors (Westfold 1981).

It follows from Faraday’s law and ∇.B = 0, together with ∂/∂t = Ω∂/∂φ, that
the electric field can be written as the sum of a part XB × t, associated with
the rotation of the magnetic field structure, and a ‘non-corotational’ part −∇ψ
(Mestel 1971, 1973):

E = XB × t−∇ψ . (1)

The gauge-invariant potential ψ is related to the familiar scalar and vector
potentials V and A by ψ ≡ V −XAφ (Endean 1972; Westfold 1981).

MRΩ2 developed their equations in dimensionless form by expressing distances
and speeds in units of c/Ω and c, and normalising field and source variables in
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terms of the equatorial dipolar magnetic field strength at the light cylinder. The
last quantity, denoted by B1, is 1

2 (Ωrs/c)3B0 where rs is the stellar radius and
B0 the polar surface dipolar magnetic field strength. The magnetic field B and
the charge density ρe are expressed in units of B1 and ΩB1/4πc. The system is
taken to be axisymmetric, with the magnetic and rotation axes coinciding. Since
the system is both steadily rotating and axisymmetric, the operators ∂/∂t and
∂/∂φ are both null when operating on scalars and cylindrical polar components
of vectors; ∂/∂t = 0 implies ∂/∂φ = (Ω/Ω)× for operation on vectors.

The poloidal part of the electric current density is expressed in terms of a
Stokes stream function S :

jp = X−1t × ∇S, jX = X−1∂S/∂Z, jZ = −X−1∂S/∂X , (2)

with the dimensionless jp and S normalised to ΩB1/4π and (c/Ω2)B1/4π. The
continuity equation div jp = 0 is automatically satisfied. The poloidal part of
Ampère’s law reduces to (MRΩ2)

Bφ = −S/X . (3)

It follows from Gauss’s law and the toroidal part of Ampère’s law that (Mestel
et al. 1979, equation 2 ·8)

∇2ψ + 2BZ = −(1−XVφ)ρe , (4)

with ∇2 dimensionless and ψ expressed in units of cB1/Ω; the subscripts φ and
Z denote toroidal and axial components, with Vφ the toroidal component of the
normalised flow velocity.

Any axisymmetric poloidal magnetic field can be expressed through a ‘magnetic
Stokes stream function’ P by

Bp = X−1t × ∇P, BX = X−1∂P/∂Z, BZ = −X−1∂P/∂X , (5)

with P normalised to (c/Ω)2B1, yielding a dimensionless Bp. The vector potential
is −P t/X. The solenoidal condition div B = 0 is automatically satisfied.

Three auxiliary variables P̄ , U and Q, defined by

P̄ ≡ −P, U ≡ X 2
3 , Q ≡ P̄ 2

3 , (6)

are often convenient. It is U (or X) and Q (or P̄ ), rather than X and Z, that I
shall regard as the independent variables, forming a non-orthogonal coordinate set
in meridian planes. The poloidal field lines are lines of constant Q (or P̄ or P ).

(2b) Dipole Fields

A dipole field has the ‘stream function’

P̄ = X2/R3 = (sin2 θ)/R , (7)

withR ≡ (X2+Z2) 1
2 the dimensionless spherical polar radial coordinate (normalised

by c/Ω) and θ the angle from the Z axis. The cylindrical polar field components
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and the dipole field magnitude are given in terms of the spherical polar variables
R and θ by

BX = (3/2R3) sin(2θ), BZ = (3 cos2 θ − 1)/R3,

Bp = (1 + 3 cos2 θ) 1
2 /R3 . (8)

The expressions in (7) for the dipolar form of P̄ can be re-arranged as

QU = X2/R2 = sin2 θ . (9)

Use of these relations in (8) enables the field quantities to be expressed in terms
of U (or X) and Q (or P̄ ) as the independent variables (MRΩ2):

BX = (3P̄ /X2)[QU(1−QU)] 1
2 , BZ = (2P̄ /X2)(1− 3QU/2),

Bp = (2P̄ /X2)(1− 3QU/4) 1
2 . (10)

The toroidal magnetic field generated by the poloidal flow is given by (3)
in terms of the stream function S of the poloidal electric current density:
Bφ = −S/X. Combining this with Bp from (10) gives

Bφ/Bp = −X(S/2P̄ )÷ (1− 3QU/4) 1
2 (11)

for the toroidal-to-poloidal magnetic field ratio when the poloidal currents are
accounted for.

Equations (7) and (9) show that the dipole field lines, P = constant or Q =
constant, have equations P̄R = sin2 θ = QU. Expressions for their slope follow on
taking BX and BZ from (8) or (10):

dZ/dX = BZ/BX = 2
3 (3 cos2 θ − 1)/ sin(2θ)

= 2
3 (1− 3QU/2)÷ [QU(1−QU)] 1

2 , (12)

in terms of either θ alone or the U -Q coordinates. The rate of change of the
slope is given by

d2Z/dX2 = −(1/9R)(1 + cos2 θ)/(sin2 θ. cos θ)

= −(2/9U 3
2 )(1−QU/2)÷ [QU(1−QU)] 1

2 (13)

(see Section 5c below) in terms of either spherical polar or U -Q coordinates.
The standard formula for the radius of curvature of a plane curve (in the X-Z

plane) is

ρ ≡ [1 + (dZ/dX)2] 3
2 ÷ |d2Z/dX2| . (14)
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Substituting the derivatives from (12) and (13) gives

ρ = (R/3)(1 + 3 cos2 θ) 3
2 ÷ [(1 + cos2 θ). cos2 θ. sin θ]

= (4U 1
2 /3Q)(1− 3QU/4) 3

2 ÷ [(1−QU/2)(1−QU)] (15)

for the dimensionless radius of curvature of dipole field lines in terms of either
spherical polar or U -Q coordinates. The field-line radius of curvature is particularly
important in the pulsar context, because of its bearing on curvature radiation.

3. Quasi-dipole Formalism

(3a) The Quasi-dipole Field

In order to retain as much as possible of the detailed MRΩ2 formalism that
has been developed for the dipolar case, I shall write the poloidal magnetic field
in the form

BX = (3P̄ /X2)[QUα(U,Q)] 1
2 , BZ = (2P̄ /X2)β(U,Q),

Bp = (2P̄ /X2)∆ 1
2 , ∆(U,Q) ≡ β2 + 9QUα/4 , (16)

where α(U,Q) and β(U,Q) are as-yet-unspecified (but not independent) functions
of position. Use of Bφ = −S/X and Bp from (16) gives

Bφ/Bp = −X(S/2P̄ )÷∆ 1
2 (17)

for the toroidal–poloidal field ratio.
The forms for BX and BZ in (16) define the ‘quasi-dipole’ field. They are

suggested by the MRΩ2 forms, in (10) above, for a dipole field, and express the
field components in terms of U (or X) and Q (or P̄ ), rather than X and Z, as
the independent variables. In the dipole case (MRΩ2):

α = 1−QU, β = 1− 3QU/2, ∆ = 1− 3QU/4; (18)

since QU = sin2 θ for a dipole field, these can be expressed as functions of θ
alone:

α = cos2 θ, β = (3 cos2 θ − 1)/2, ∆ = (1 + 3 cos2 θ)/4 . (19)

So long as α and β are left unspecified, there is no loss of generality in
using the quasi-dipole forms. The functions α and β are not independent, but
are related by the solenoidal condition on B, so there is, in effect, a single free
function of U and Q.

(3b) First Derivatives of Quasi-dipole Fields

The field components will now be expressed in terms of the stream function by

BX = −X−1P̄ ,Z and BZ = X−1P̄ ,X (20)
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with a comma denoting partial differentiation with respect to its following suffix.
Differentiating the definitions Q ≡ P̄

2
3 and U ≡ X

2
3 gives, after using (20) to

substitute for P̄ ,X and P̄ ,Z ,

Q−1Q,X = 2XBZ/3P̄ , Q−1Q,Z = −2XBX/3P̄ , dU/dX = 2U/3X . (21)

These will now be used in calculating the first partial derivatives of the expressions
in (16) for BX and BZ defining a quasi-dipole magnetic field, hence enabling the
divergence and curl of the quasi-dipole field to be formed.

Divergence. Differentiating BX from (16) at constant Z, using BZ from
(20) in reverse for P̄ ,X and BZ from (16), together with Q,X and dU/dX from
(21), gives

(X/BX)BX ,X = (8β − 5)/3 + (Uα,U + 2Qβα,Q )/3α . (22)

Differentiating BZ from (16) at constant X, using BX from (20) in reverse for
P̄ ,Z and Q,Z from (21) gives

(X/BX)BZ ,Z = −2β − (4Q/3)β,Q . (23)

Since ∇.B = BX ,X +BX/X +BZ ,Z in cylindrical polar coordinates (X,φ, Z)
with axisymmetry, use of (22) and (23) for the derivatives, and BX from (16),
yields

3α(X/BX)∇.B = 2α(β − 1) + Uα,U + 2Qβα,Q− 4Qαβ,Q . (24)

Note from BX in (16) and the definitions of Q and U, that 3X/BXQU = X2/P 2α
1
2 ;

hence (24) can be written as

(α 1
2X2/P 2)∇.B = 2α(β − 1)/QU +Q−1α,U + 2U−1βα,Q− 4U−1αβ,Q . (25)

The functions α and β are required to be such that this is identically zero.
Curl. Differentiating BX from (16) at constant X, using BX from (20) in

reverse for P̄ ,Z and Q,Z from (21), and then using BX from (16) again, gives

(X3/2P̄ )BX ,Z = −(3QU/2)(4α+Qα,Q ) . (26)

Differentiating BZ from (16) at constant Z, using BZ from (20) in reverse for
P̄ ,X and BZ from (16) again, and also Q,X and dU/dX from (21), gives

(X3/2P̄ )BZ ,X = 2β(β − 1) + (2U/3)β,U + (4Qβ/3)β,Q . (27)

Subtracting (27) from (26), dividing through by QU and using U ≡ X
2
3 in

the coefficient on the left, results in

−(U2X/12P̄Q)(∇×B)φ = α+ β(β − 1)/3QU

+ (Q/4)α,Q + (1/9Q)β,U + (2β/9U)β,Q . (28)
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In application, this result for (∇×B)φ must be matched to jφ, the normalised
toroidal component of the electric current density.

4. Distorted Dipole Formalism

(4a) The Distorted Dipole Field

The dipolar form X2/R3 for P̄ can be regarded as an equation for Z and
re-arranged (MRΩ2) to give Z2 = (1−QU)U2/Q; this enables Z to be eliminated,
leaving U and Q as the coordinates. The idea behind the distorted dipole
approximation is to take a form for P̄ which is sufficiently similar to the dipolar
one that it readily allows the elimination of Z as a coordinate, but is more
general in that it contains a free function of distance from the axis.

I define ‘distorted dipole fields’ by expressing the magnetic stream function
by (Burman 1996)

P̄ = X2/D3, QU = X2/D2, D2 ≡ X2g(U) + Z2 , (29)

where g(U) is a free function of distance from the axis. In the dipole case,
g(U) ≡ 1 and D reduces to the dimensionless distance from the star.

Substituting P̄ from (29) into (20) for the poloidal field components yields
the quasi-dipole forms (16) with

α(U,Q) ≡ 1−QUg(U), β(U,Q) ≡ 1− 3QUf(U)/2,

∆ = 1− (3QU/4)(4f − 3)− (3QU/2)2(g − f2) , (30)

where

f(U) ≡ d(U3g)/d(U3) ≡ (U/3)dg/dU + g . (31)

With the forms in (30) for α and β, the forms in (16) for BX and BZ become

BX = (3P̄ /X2)[QU(1−QUg)] 1
2 , BZ = (2P̄ /X2)(1− 3QUf/2) . (32)

Using P̄ , QU and D from (29), first with α from (30) in BX from (16), then
with β from (30) in BZ from (16), yields

BX = 3XZ/D5, BZ = [2Z2 − (3f − 2g)X2]/D5 , (33)

expressing the distorted dipole magnetic field components as functions of X and
Z. These can also be written, along with D from (29), in terms of the spherical
polar coordinates as

BX = (R2/D2)(3/2D3) sin(2θ),

BZ = (R2/D2)[2 cos2 θ − (3f − 2g) sin2 θ]/D3,

with

D2/R2 = 1 + [g(U)− 1] sin2 θ, U ≡ (R sin θ) 2
3 . (34)
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The forms in (29) for QU and D2, with α from (30), show that

X/D = (QU) 1
2 , Z/D = α

1
2 . (35)

So the following equations give the spherical polar angle θ in terms of the U -Q
coordinates:

tan θ = X/Z = (QU/α) 1
2 , sin θ = X/R = (1 + α/QU)−1/2 . (36)

The form for BX in (33) demonstrates satisfaction of the necessary requirements
on BX of vanishing on the symmetry axis X = 0 and on the equatorial plane
Z = 0. The distorted dipole component BZ , given in (32), (33) and (34), vanishes
on quasi-conical surfaces given by

QU = 2/[3f(U)]; i.e. tan2 θ = 2/(3f − 2g) . (37)

In the dipole case, the BZ = 0 surface is the (double) cone QU = 2
3 or tan2 θ = 2,

corresponding to θ = 54◦ ·7.
The forms in (29) for QU and D2 show, after using α from (30) and the

definition of U, that

Z2 = (U2/Q)α(U,Q) . (38)

So the form of magnetic stream function defined in (29) is algebraically attractive in
that—just as occurs in the dipole case—it enables Z to be eliminated analytically,
leaving U and Q as the independent spatial variables: they seem to form a
natural (though non-orthogonal) coordinate set.

The idea behind the distorted dipole approximation is to select a form of
magnetic stream function which is sufficiently similar to the dipolar one that
it readily allows the elimination of the axial coordinate—thus enabling the
mathematics to be developed along similar lines to the treatment of the dipole
case—but is more general in leaving some scope to model the distortion of the
poloidal magnetic field from the dipole form. The aim is to have a technique
which is mathematically tractable while yielding some modelling potential, which,
in the proposed forms, resides in a free function of radial distance from the
symmetry axis. I shall call g(U) the ‘magnetic structure function’—its departure
from one determines the distortion of the poloidal magnetic field from the dipole
form caused by the toroidal motions of the magnetospheric charged particles. In
the dipole case g ≡ 1 ≡ f , and the various equations in this sub-section take on
their familiar dipolar forms, as in Section 2b above.

The quasi-dipole formalism of Section 3 above contains functions α(U,Q)
and β(U,Q), which are linked by the partial differential equation obtained on
putting the right-hand side of (25) equal to zero to ensure the vanishing of
div B. I intend to use that formalism later as the basis for an improved distorted
dipole approximation, with additional free functions entering through expansion of
α(U,Q) in powers of QU, with 1−QUg(U) appearing as the first approximation.
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(4b) First Derivatives of Distorted Dipole Fields

The expressions in (30) for α(U,Q) and β(U,Q) specifying a distorted dipole
field have the following first partial derivatives with respect to U (at constant
Q) and Q (at constant U ):

α,U = −Q(g + Ug′), α,Q = −Ug,

β,U = −(3Q/2)(f + Uf ′), β,Q = −3Uf/2 , (39)

with a dash denoting d/dU.
Use of a magnetic Stokes stream function means that ∇.B = 0 is automatically

satisfied. Substituting α = 1−QUg and β = 1−3QUf/2, together with the relevant
derivatives from (39), into (25) for the quasi-dipole ∇.B yields (3f − 3g − Ug′)
for the right-hand side; the definition (31) of f in terms of g shows that this
vanishes, as expected.

Substituting the same expressions for α and β, together with the relevant
derivatives from (39), into (28) for the quasi-dipole (∇×B)φ yields

(∇×B)φ = −(2P̄Q/XU2)[6(1− f)− Udf/dU − 15QU(g − f2)/2] . (40)

The expressions in (29) for P̄ and QU in the distorted dipole formalism, together
with U ≡ X

2
3 , show that the coefficient before the braces in (40) is equal to

−2X/D5.
The distorted dipole stream function leads to a toroidal component of curlB

containing the magnetic structure function g(U) and its first and second derivatives.
Steadily rotating axisymmetric systems have no displacement current, so the
magnetic field and the electric current density are linked by Ampère’s law:
∇×B = j in terms of the dimensionless quantities. The expression in (40) for the
toroidal component of curl B must match the toroidal component of the electric
current density in the region, as yielded by a magnetosphere model.

5. Field-line Curvature

(5a) Quasi-dipole Fields

The quasi-dipole field lines, described by (16) for BX and BZ , have slope

dZ/dX = BZ/BX = 2β/[3(QUα) 1
2 ] . (41)

Forming the second derivative from dZ/dX = BZ/BX gives

d2Z/dX2 = BZ ,X /BX − (BZ/BX)(BX ,X /BX) ; (42)

inserting BX from (16) and BZ/BX from (41) into this leads to

(3X/2)(QUα) 1
2 d2Z/dX2 = (X3/2P̄ )BZ ,X −βXBX ,X /BX . (43)
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Using (27) for BZ ,X and (22) for BX ,X /BX in (43) yields the following result
for the rate of change of the slope:

(9Xα/2)(QUα) 1
2 d2Z/dX2 = −δ , (44)

where

δ(U,Q) ≡ αβ(2β + 1) + β(Uα,U + 2Qβα,Q )− 2α(Uβ,U + 2Qββ,Q ) . (45)

Taking dZ/dX from (41) gives

1 + (dZ/dX)2 = (Bp/BX)2 = 4∆/9QUα , (46)

where the quasi-dipole forms of Bp and BX in (16) have been used; ∆(U,Q) ≡
β2 + 9QUα/4, as before. Equation (46) shows that

(9Xα/2)(QUα) 1
2 [1 + (dZ/dX)2] 3

2 = (4U 1
2 /3Q)∆ 3

2 . (47)

Inserting (47) and (44) for the numerator and denominator in the standard
formula for the radius of curvature of a plane curve, equation (14) above, yields

ρ = (4U 1
2 /3Q)∆ 3

2 /|δ| (48)

for the dimensionless radius of curvature of the quasi-dipole magnetic field lines.

(5b) Distorted Dipole Fields

For a distorted dipole field, α and β are given in (30), and their first partial
derivatives with respect to U and Q are given by (39). Inserting those derivatives
into the quasi-dipole form (45) for δ produces

δ = [αβ +QU(3αf − βg)](2β + 1) +QU(3αf ′ − βg′)U (49)

for the distorted dipole case; inserting α and β themselves, from (30), into this
gives

δ = [1−QU(2g − 3f/2)](1−QUf)

+QU [3(1−QUg)f ′ − (1− 3QUf/2)g′]U . (50)

The second relation in (31) between f and g, which can be written Ug′/3 ≡ f −g,
can be used to substitute for g′ in (50), resulting in the alternative form

δ = 1−QU(5f/2− g) + 3QU(1−QUg)Uf ′ + (QU)2(3f − 5g/2)f . (51)

The dimensionless radius of curvature of distorted dipole field lines is given by
(48), with ∆ from (30) and δ from (50) or (51).
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(5c) Dipole Fields

In the case of a dipole field, g ≡ 1 ≡ f and QU = sin2 θ, so (30) and (50) for
∆ and δ reduce to

∆ = 1− 3QU/4 = (1 + 3 cos2 θ)/4 , (52)

δ = (1−QU/2)(1−QU) = (1 + cos2 θ)(cos2 θ)/2 . (53)

Hence, on using U 1
2 /Q = X/QU = R/ sin θ, equation (48) for the dimensionless

radius of curvature yields the dipolar formulas (15), in Section 2b above, for
ρ in terms of either R-θ or U -Q coordinates. Also, since α = 1 −QU = cos2 θ
and β = 1− 3QU/2 = (3 cos2 θ− 1)/2 for a dipole field, substituting (53) for the
dipolar form of δ into (44) for the second derivative leads to the expressions
(13), quoted in Section 2b above, for the rate of change of the slope of dipole
field lines in R-θ or U -Q coordinates.

6. Concluding Remarks

The formalism presented in this paper is a description of an axisymmetric
magnetic field structure applicable to the magnetosphere of a steadily rotating
magnetised neutron star whose rotation and magnetic axes coincide. The poloidal
part of the magnetic field is thought of as the dipole field of the star modified
by the toroidal currents in the magnetosphere. The formalism includes a free
function, which is to be chosen so that the toroidal electric current density
calculated from a magnetosphere model will match the curl of the poloidal field
calculated here. A subsequent paper will explore this process for a magnetosphere
model of the type introduced by MRΩ2.
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