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Abstract

We discuss the destabilisation of the electron 2D metallic state by an in-plane magnetic field. We
demonstrate that such a field can destabilise the metallic state through spin polarisation which
significantly enhances the exchange correlations between electrons. We find that the conducting phase of
the fully spin polarised system is almost completely suppressed. We discuss this phenomenon within a
memory function formalism which treats both disorder and exchange-correlation effects. We determine
the shift in the position of the metal–insulator phase boundary as the system is polarised by an increasing
parallel magnetic field.

1. Introduction

A number of recent experiments have shown that a parallel magnetic field destroys the
conducting phase of 2D electron systems and makes the system insulating (Simonian et al.
1997; Pudalov et al. 1997a, 1997b; Hamilton et al. 1999). The critical magnetic field
needed is of the order of 1 T in both Si and GaAs and varies with the carrier density. The
physical mechanism is not related to the quantum Hall insulator induced by perpendicular
magnetic fields (Pudalov 1996) since a magnetic field parallel to the 2D plane does not
affect orbital motion within the plane.

We know from numerical simulations that spin polarised electrons are more strongly
correlated than unpolarised electrons at the same density (Tanatar and Ceperley 1989),
because of the additional exchange when all electrons have parallel spin. We are proposing
as a mechanism for the destabilisation of the conducting phase that the polarised state is
more likely to be in an insulating state than is the unpolarised state. 

Here we focus on localisation of strongly correlated polarised and unpolarised systems
when there is weak disorder. For very strong electron correlations, the pure electron
system localises into the Wigner crystal (Tanatar and Ceperley 1989). This localisation is
caused by the strong interactions between the electrons. Since it occurs even without
impurities the mechanism for Wigner localisation is diametrically different from impurity
driven Anderson independent-particle localisation. As we move away from the limit of
very strong correlations where the density fluctuations ρ(q, t) = �k<kF

 a†
k+q(t)ak(t) cause

Wigner localisation, to leading order the basis set remains the density fluctuations. In our
formalism, defect scattering is incorporated in such a way that the Ward identities and
particle conservation are satisfied within the density basis. By restricting the basis to

* Refereed paper based on a contribution to the Ninth Gordon Godfrey Workshop on Condensed Matter
in Zero, One and Two Dimensions held at the University of New South Wales, Sydney, in November 1999.
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density fluctuations we average over phase information of processes where the particles
and holes propagate independently and so exclude the possibility of Anderson localisation.
However, Anderson localisation is not expected to occur for very low densities.

2. Theory

We have previously proposed that strong correlations in the presence of weak disorder can
localise the electrons into a glassy state (Thakur and Neilson 1996) and have obtained
good agreement with the position of the metal–insulator transition in zero magnetic field
for unpolarised electrons (Thakur and Neilson 1999). In our approach (for full details of
the formalism see Neilson and Thakur 1999), we search for a metal–glass transition using
the Kubo relaxation function

(1)

Here Φν(q, t) is defined for the normalised dynamical density variable Nν(q, t) =
ρ(q, t)/ ����χν(q), where χν(q) is  the static  susceptibility.  The polarisation index

ν = p when the system is fully polarised with all the carrier spins aligned and ν = u for the
unpolarised system. We are interested in the dynamics of relaxation processes as time
t → ∞. The order parameters for the glassy states are given by the relaxation function in
this limit, fν(q) = limt → ∞Φν(q, t). When fν(q) is non-zero, spontaneous fluctuations do
not decay even at infinite time.

For the calculation of fν(q) at a given carrier density, information about the electron
correlations is needed as input. We take this from simulation data in Tanatar and Ceperley
(1989}, expressing it through the static susceptibility χν(q) = χν(q, ω = 0), which we write
as χν(q) = χν

(0)(q){1 + V(q)[1 − Gν(q)] χ ν
(0)(q)}−1, where χ ν

(0)(q) is the static Lindhard
function for polarisation ν. The static local field factor Gν(q) contains the correlations.

We find that the key property contained in χν(q) that determines the transition is the
size of the area occupied by the density exclusion region in the exchange-correlation hole.
We assume in the strongly correlated region that the overall shape of the exchange-
correlation hole is not greatly affected by low levels of disorder, and so use data for the
disorder-free system from Tanatar and Ceperley (1989} to determine Gν(q) (Świerkowski
et al. 1991). It is not an unreasonable approximation due to the fact that the Coulombic
impurities which we considered are screened by the surrounding electron cloud thus
weakening their scattering rate. For an impurity concentration around 0.05, which is typ-
ically used in our calculations, the system remains weakly coupled. This is because the
electron-impurity interaction potential corresponding to these values of concentration is
much smaller than the electron–electron interaction. For this reason we employed the local
field factor G(q) of the pure and homogeneous electron gas in our calculations.

The level of disorder is expressed in terms of a scattering rate γν for carriers scattering
from defects. We evaluate γν using the memory function formalism (Götze 1978; Gold and
Götze 1983) which involves calculations of the force–force correlation function. The
derivation of the force-fluctuation variable respects continuity and number conserving
equations. After solving γν for an appropriate system’s Hamiltonian, we expressed γν in
terms of conductivity using σ = (nse

2/m*)(1/γν). In this paper we compare our calculated σ
with experimental values.

The experimental systems we investigated in this paper are based on p-type GaAs
semiconductors. These systems have only direct bands and no valleys. Among the direct
bands in GaAs it is only the lowest energy band which is occupied.

Φ
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In our formalism the spilling of the wave function normal to the 2D plane is char-
acterised by a spatial decay parameter 2/b. Its value for GaAs systems at zero bias is
around 0.12 nm. The spilling of this magnitude will only become important if the lowest
cyclotron orbit l = 26/���H(T) nm  is  much  smaller than 2/b  and  this  can  lead  to
residual coupling of parallel magnetic field with orbital motion. This situation only arises
at large values of H. The typical value of H used in GaAs experiments is less than 1 T,
which makes l greater than 26 nm. At these high values of l the residual coupling can be
totally neglected.

3. Results

Fig. 1 shows the order parameter fν(q = 2kF) for the polarised and unpolarised states as a
function of the in-plane impurity density ni, expressed as an impurity concentration ci =
ni/ns, with ns the carrier density. For ci less than a critical density fν(q = 2kF) = 0,
indicating a conducting phase. At the critical ci the fν(q = 2kF) discontinuously jumps to a
finite value, signalling the transition to an insulator (Thakur and Neilson 1996).

We find that fully spin polarising the system destabilises the conducting phase except
within a small range of carrier densities on the higher density side. The stable conducting
phase is restricted to very small levels of disorder. This shrinkage of the conducting region
is associated with the enhancement of exchange correlations for the fully polarised
system, an effect which favours localisation. In the limit of a perfect system, which is of
course an unrealistic limit, we do not predict an insulating state. Within this clean limit the
system becomes translationally invariant and thus making the solid free to translate.
Hence, there would not be a transition.

We propose that the disappearance of the conducting phase in the presence of an in-
plane magnetic field is associated with polarisation of the carrier spins. At low carrier
densities the energy cost for spin aligned states is small and a weak magnetic field is

Fig. 1. Order parameters fν(q = 2kF) for the unpolarised and fully polarised systems as functions of
impurity concentration ci at a carrier density corresponding to rs = 9.
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Fig. 2. Critical magnetic field Hc as a function of rs . 

Fig. 3. Dependence of the critical magnetic field Hc on hole density ps for the metal–insulator transition
in GaAs (solid line). The impurity density is ni = 2.4 × 109 cm−2. The experimental points are taken from
Hamilton et al. (1999).
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sufficient to fully polarise the electrons. While numerical simulations (Rapisada and
Senatore 1996) indicate, at least for electron densities rs � 20, that the ground state of the
system remains an unpolarised electron liquid, for rs > 10 the free energies of the fully
spin polarised and unpolarised systems are very close and the Zeeman energy gain from a
quite small parallel magnetic field will be sufficient to produce a polarised ground state.
We estimate the critical magnetic field Hc by equating the difference in free energies Ep −
Eu of the polarised and unpolarised states with the Zeeman energy gain,

Hc = (Ep − Eu)�/(gµB).

In Fig. 2 we show Hc as a function of the carrier density parameter rs . We have used
gσz = 1.1 for holes in GaAs (Daneshvar et al. 1997).

Hamilton et al. (1999) have reported that, with a hole density corresponding to rs = 9, a
magnetic field H � 0.7 T drives the conducting state to an insulator for p-GaAs. We find
at rs = 9 that the critical magnetic field needed to fully polarise the system is Hc = 0.6 T,
which is very close to this value. For electrons in Si MOSFETs the values of effective
mass and gσz are not very different from those for holes in GaAs and the measured value
Hc = 0.5 T in Si by Simonian et al. (1997) at rs = 9 is also in good agreement with our
value. The critical disorder level needed to drive the fully polarised system to the
insulating state corresponds to a conductivity of σ � 4.5e2/h. This is consistent with the
measured value at the transition of σ � 5e2/h for rs = 9 (Hamilton et al. 1999).

Hamilton et al. (1999) gave a phase diagram showing the metal–insulator phase
boundary as a function of hole density ps and magnetic field. For a conductivity σ � 5e2/h
we obtain an in-plane impurity density of ni = 2.4 × 109 cm−2. We find for this ni that the
value of rs at the phase boundary drops from rs = 11.5 for the unpolarised system (H = 0)
to rs = 9.2 for the fully polarised system (H = 0.6 T). To compare with the experimental
points taken from Hamilton et al., we use a linear interpolation between ps and H to
determine a critical magnetic field as a function of hole density. Fig. 3 compares the
experimental points with our calculated Hc (solid line). There is reasonable agreement.

In conclusion, we have shown that enhancements in exchange correlations due to spin
polarisation can drive the system into an insulating phase. Our estimate of the shift in the
position of the metal–insulator transition boundary is in reasonable quantitative agreement
with experiment. We predict a re-emergence of the conducting phase for the fully polar-
ised system within a very narrow band of carrier densities.
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