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Abstract

 

Variational ro–vibrational wave functions are calculated using an Eckart–Watson Hamiltonian, which has
embedded an ab initio potential energy function. These wave functions, together with an ab initio dipole
moment function, are employed to predict transition energies and absorption intensities. The radiative
transition probability integrals are determined using a novel adaptation of the Harris–Engerholm–Gwinn
integration scheme. The method and solution algorithm yields results in excellent agreement with
previously determined experimental and theoretical electric dipole allowed transitions for the 

 

1

 

A

 

1

 

 ground
state of H

 

2

 

O. The method has also been applied to the 

 

1

 

A

 

1

 

 states of the helide analogs of water, namely
He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

, in order to predict their ro–vibrational transition energies and absorption intensities,
thereby facilitating their possible interstellar detection.

 

1.  Introduction

 

Due to the inert nature of helium, the chemistry of interstellar gas clouds has largely
centred on hydrogen (see e.g. Green 1981). There has been a resurgence of interest in
helide chemistry due to theoretical investigations which predict that helide cations are
much more strongly bound than their neutral counterparts (see e.g. Koch and Frenking
1986; Wong 

 

et al.

 

 1987; Frenking and Cremer 1990). Impetus has also come from experi-
ment, where mass spectral investigations have identified ions of the form HeNg

 

+

 

 and
NgX

 

n

 

+

 

 (where Ng is Ne, Ar, Kr or Xe; X is C, N or O; and 

 

n

 

 = 1, 2) (Munson 

 

et al.

 

 1963).
With the exception of HeXe

 

+

 

, only the former cations have been spectroscopically
observed (Dabrowski and Herzberg 1978). More recently, a high-resolution vibration–
rotation spectrum of HeH

 

+

 

 has also been reported (Bernath and Amano 1982). For larger
helide ions, only metastable species such as N

 

2
+

 

−

 

(He)

 

n

 

 (

 

n

 

 = 1

 

−

 

3) (Bieske 

 

et al.

 

 1992) and
He

 

n

 

−

 

HN

 

2
+

 

 (

 

n

 

 = 1, 2) (Meuwly 

 

et al.

 

 1996) have been spectroscopically characterised.
The ro–vibrational spectrum for the 

 

1

 

A

 

1

 

 state of water and its helide analogs (such as
He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

) is of considerable interest in a variety of fields ranging from astron-
omy and astrophysics to studies involving the atmosphere of planets (see e.g. Dudley and
Williams 1984; Jørgensen 1994). In the case of water, there are considerable experimental
data culminating in the HITRAN 92 (Rothman 

 

et al.

 

 1992) and HITRAN 96 (Rothman 

 

et
al.

 

 1998) data bases. However, there are no experimental ro–vibrational transition
energies and absorption intensities for He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

 in the literature.
There are numerous ab initio calculations of the ground state of water, with the

extensive calculations of Partridge and Schwenke (PS) (1997) yielding a comprehensive
spectroscopic characterisation of the molecule. However, for the helide analogs there are
only a few theoretical calculations. Using the MP2_AE/6-31G(d, p) level of theory, Koch
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and Frenking (1986) predicted that the 

 

1

 

A

 

1

 

 state of He

 

2

 

O

 

2+

 

 is metastable, with equilibrium
bond length and bond angle of 1.148 Å and 92.2˚ respectively. Hughes and von Nagy-
Felsobuki (1997), using the CCSD(T)_AE/cc-pCVTZ model, yielded structural param-
eters of 1.168 Å and 92.6˚ respectively. They have also calculated ro–vibrational
eigenenergies of the low-lying ro–vibrational states. The only structural parameters for the

 

1

 

A

 

1

 

 state of He

 

2

 

S

 

2+

 

 were calculated by Hughes and von Nagy-Felsobuki (1999) using the
CCSD(T)_FC/cc-pVTZ level of theory (which yielded parameters of 1.665 Å and 77.0˚
respectively). There are no calculated ro–vibrational transition energies and absorption
intensities of He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

.
With the advent of supercomputers, significant progress has been made in developing

algorithms for computing ab initio ro–vibrational energy levels and intensities for tri-
atomic molecules. In the case of the electronic wave function, accurate potential energy
surfaces (PES) can be constructed from discrete electronic calculations employing
extensive particle basis sets within theories that incorporate high levels of electron cor-
relation (see e.g. Meyer 

 

et al.

 

 1986). Although ro–vibrational calculations are still not
commonplace, they are usually obtained utilising ro–vibrational Hamiltonians (cast in
differing coordinate systems) and using either analytical or numerical vibrational basis
sets (see e.g. Searles and von Nagy-Felsobuki 1991, 1993). While ro–vibrational transition
energies for different algorithms have been shown to converge for a given PES (see e.g.
Searles and von Nagy-Felsobuki 1989; Wang and von Nagy-Felsobuki 1992, 1995),
calculating ro–vibrational absorption intensities requires the construction of an additional
property of a molecule; namely, its dipole moment surface (DMS). Hence, the accuracy of
ab initio absorption intensities is a severe test of the accuracy of the PES and DMS as well
as of the robustness of the solution algorithm (e.g. convergence of the ro–vibrational wave
functions and the evaluation of energy and transition probability integrals).

As an extension of our previous work in developing an integrated suite of programs to
calculate spectroscopic properties of triatomic molecules (see e.g. Searles and von Nagy-
Felsobuki 1988, 1991, 1992, 1993; Wang and von Nagy-Felsobuki 1992, 1995) we wish
to present a general approach for the calculation of absorption intensities. We shall
therefore detail several ‘new’ property surfaces, namely, an ab initio PES for the 

 

1

 

A

 

1

 

 state
of He

 

2

 

S

 

2+

 

 and the DMS for He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

. We shall benchmark the experimental
(see e.g. Rothman 

 

et al.

 

 1992, 1998) and theoretical (see e.g. PS 1997) ro–vibrational
transition energies and absorption intensities of H

 

2

 

O with those calculated using our
solution algorithm (which incorporates a novel integration scheme for the calculation of
radiative transition probabilities). We shall also detail the predicted transition energies,
absorption intensities of the 

 

1

 

A

 

1

 

 states of He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

 (which are isovalent with
H

 

2

 

O), thereby assisting in their possible spectroscopic detection.

 

2.  Discrete Ab Initio Property Surfaces

 

Generally, the basis sets employed were the correlation consistent polarised valence X
zeta (cc-pVXZ) basis sets of Woon and Dunning (1994, 1995). Here X represents the
degree of expansion.

For H

 

2

 

O, a 771 point PES and DMS is available from the work of PS (1997). These
discrete surfaces were calculated using the aug-cc-pV5Z (quintal zeta) basis set, within an
internal contraction multi-reference configuration interaction (denoted ICMRCI) model
coupled with a multi-reference Davidson correction (+Q). The ICMRCI+Q/aug-cc-pV5Z
discrete energies and dipole moments surfaces are available from E-PAPS (1997).
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For He

 

2

 

O

 

2+

 

, a discrete 68 point PES is also available from the literature (Hughes and
von Nagy-Felsobuki 1997). It was calculated using an all-electron couple cluster method
involving single and double excitations with a perturbation estimation of the triple excita-
tions [denoted CCSD(T)_AE] and a cc-pCVTZ basis set. Oliphant and Bartlett (1994)
showed that using the same level of theory, the average errors for H

 

2

 

O with respect to
bond lengths, bond angles, frequencies and atomisation energies were in the range 0.0 Å,
0.3˚, 

 

�

 

13

 

−

 

21 cm

 

−

 

1

 

 and 41.0 kJ mol

 

−

 

1

 

 respectively. It would be anticipated that the
discrepancies for these properties in the case of He

 

2

 

O

 

2+

 

 would be of a similar order of
magnitude.

There is no discrete PES available for He

 

2

 

S

 

2+

 

. Consequently, a discrete PES was
constructed using standard ab initio calculations employing the GAUSSIAN 94 suite of
programs (Frisch 

 

et al.

 

 1995). The level of theory used was the frozen-core CCSD(T)_FC/
cc-pVQZ (quadrupole zeta) model. It would be anticipated that for a helide ion containing
a second-row atom and using the frozen-core approximation, larger discrepancies should
occur in bond lengths, bond angles, frequencies and atomisation energies than for either
H

 

2

 

O or He

 

2

 

O

 

2+

 

.
For the construction of the discrete PES, ab initio electronic points were chosen to be

nearly coincident to the quadrature points required by Harris, Engerholm and Gwinn
(HEG) (1965). This ensures that the error of the fit associated with the potential energy
function is minimised. For He

 

2

 

O

 

2+

 

 and He

 

2

 

S

 

2+

 

 the HEG scheme uses 8000 quadrature
points, which would render the electronic problem intractable. To cull the possible cal-
culations, an adaptive strategy was employed, the details of which have been described
elsewhere (Searles and von Nagy-Felsobuki 1993; Hughes and von Nagy-Felsobuki
1997). Table 1 lists the 98 points on the potential energy hypersurface for He

 

2

 

S

 

2+

 

. The
instantaneous displacements from equilibrium bond length are all less than 2.0

 

r

 

e

 

 and so
the potential energy surface is concentrated near the potential well in order to ensure a
highly accurate surface. Using the CCSD(T)_FC/cc-pVQZ level of theory, the optimised
structure for the 

 

1

 

A

 

1

 

 ground state of He

 

2

 

S

 

2+

 

 is calculated to be of C

 

2v

 

 symmetry, with
bond length and bond angle of 1.6504 Å and 76.6˚ respectively, yielding a minimum
energy of 

 

−

 

402.2374016 

 

E

 

h

 

.
There are no discrete DMS available for He

 

2

 

O

 

2+

 

 and He

 

2

 

S2+. Dipole moments using
the GAUSSIAN suite of programs are not available at the CCSD(T) level of theory. The
level of theory used in the construction of the DMS for He2O2+ and He2S2+ was the
QCISD_AE/aug-cc-pCVTZ and QCISD_FC/aug-cc-pVTZ respectively. All calculations
were performed in the centre-of-mass coordinate system (and not in the centre-of-charge
system, the default option in GAUSSIAN).

Green (1974) concluded that for a diatomic molecule with a single sigma bond, the
error in the dipole moment at the Hartree–Fock (HF) limit is of the order of ~0.1 to 0.2 D.
Furthermore, he noted that a similar order of accuracy could be achieved provided the
basis set was at least double zeta in size and augmented with polarisation functions.
Oliphant and Bartlett (1994) showed that the average error for polyatomic molecules, at
the HF level using large size basis sets, was of a similar order (i.e. 0.29 D). Hence, we
would anticipate that for He2O2+ and He2S2+ discrepancies no larger than 0.3 D should
occur for the discrete ab initio DMS.

For the construction of the discrete DMS, ab initio points were also chosen to be nearly
coincident to the quadrature points as required by the HEG scheme. A similar adaptive
strategy for the construction of the discrete PES was chosen for the construction of the
discrete DMS. Table 2 lists the 58 and 70 points on the dipole moment hypersurface for
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He2O2+ and He2S2+ respectively. For the optimised equilibrium structures, the dipole
moment was calculated to be 1.7026 D and 0.2373 D respectively.

3.  Analytical Representations of the Discrete Property Surfaces

For H2O, the potential function fitted to the discrete ICMRCI+Q/aug-cc-pV5Z PES has
been detailed by PS (1997). It is a many-body potential of the Murrell type involving one-,
two- and three-body terms. The fitting parameters were determined either from an unequal
weighted least squares fit or pre-determined to reproduce preliminary estimates of the
molecular shape. A subroutine to evaluate this fit is available from E-PAPS (1997).

For He2O2+, a multi-dimensional least squares fit of the discrete CCSD(T)_AE/cc-
pCVTZ PES using singular value decomposition (SVD) analysis has been reported
elsewhere (Hughes and von Nagy-Felsobuki 1997). This approach employed Padé approxi-
mates, which are rational functions, with the numerator and denominator being power
series expansions of order m and n respectively [labelled as P(m,n)]. The most ‘appro-
priate’ potential function was the P(4,5) analytical representation, which utilised an
Ogilvie expansion variable (Hughes and von Nagy-Felsobuki 1997). Singular values σ50
and σ52−55 were set to zero in order to ensure that no oscillatory behaviour or singularities
occurred in the integration region.

The approach outlined by Hughes and von Nagy-Felsobuki (1997) was used to fit the
analytical representation of the discrete CCSD(T)_FC/cc-pVQZ PES of He2S2+. A num-
ber of analytical representations were investigated, using a variety of expansion variables
(see e.g. Searles and von Nagy-Felsobuki 1993) for power series up to order 7, and Padé
approximates up to order 6 (in both the numerator and denominator series). The ‘best’
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analytical functional form was the Ogilvie P(4,6), provided that the singular values σ62,
σ65, σ67 and s69–71 were set to zero. The coefficients of the fit are given in Table 3 [with a
(χ2)1/2 of 3.65 × 10−5 Eh]. Whilst this potential function was not the ‘best’ in terms of the
‘goodness-of-fit’, it yielded the lowest (χ2)1/2 that was ‘artefact-free’. That is, it contained
no singularities or oscillations and so conformed to the anticipated physical properties of
the analytical hypersurface. Fig. 1 gives three two-dimensional constant potential energy
plots for the Ogilvie P(4,6) potential function.

Fig. 1. Two-dimensional constant energy plots in terms of the normal
coordinates for the P(4, 6) potential energy function of He2S2+.
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The DMS for H2O is available from E-PAPS (1997). It was constructed from the prod-
uct of the point charge and the position vectors in a conveniently orientated coordinate
system (PS 1997). The point charge function is a scalar function, expanded in terms of
Legendre polynomials and a many-bodied term (PS 1997).

Previously, we have constructed the DMS of a number of triatomic molecules as a
power series expansion in the terms of the three normal coordinates (Searles and von
Nagy-Felsobuki 1988, 1991, 1992, 1993). Such a procedure was useful in evaluating
vibrational transition probability integrals using Gauss quadrature schemes. However,
errors in the fit far exceeded the calculated errors of individual points on the dipole
moment hypersurface (Searles and von Nagy-Felsobuki 1988, 1991, 1992, 1993). In order
to generate a more accurate DMS, we have employed a functional form as outlined by
Gabriel et al. (1993). Their dipole function is given in terms of displacement coordinates
in a power series expansion of bond lengths (Q1,2 = ri − re) and the included bond angle



676 Sudarko et al.

(Q3 = αi – αe). Here the labels ‘i’ refer to the individual instantaneous bond lengths and
bond angle, whereas the labels ‘e’ denotes the equilibrium values. The Cartesian coordin-
ates were such that the x coordinate bisected the included bond angle.

For He2O2+ and He2S2+, the (re, αe) geometry was (2.2076a0, 92.6˚) and (3.1188a0,
76.6˚) respectively. The analytical function for He2O2+ (He2S2+) was defined within the
range of 1.1471a0 (1.7420a0) � rHe−O(S) � 3.0765a0 (4.3743a0) and 33.9˚ (37.4˚) �
αHe−O(S)−He � 138.8˚ respectively. Table 4 gives the expansion coefficients for each

Fig. 2. Two-dimensional constant dipole plots in terms of the normal coordinates for the fifth order dipole
moment function of He2O2+: (a)–(c) µy and (d), (e) µx.
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component of the dipole moment function of He2O2+ and He2S2+. For the µx component,
a fifth order power series expansion was used respectively, whereas for the µy component
a fifth and fourth order power series expansion was used respectively for both the helides.
The (χ2)1/2 for fits are at least three orders of magnitude smaller than what was previously
achievable using a normal coordinate expansion for triatomic molecules (see e.g. Searles
and von Nagy-Felsobuki 1988, 1991, 1992, 1993). Figs 2 and 3 give the contour plots in
terms of their normal coordinates of each component of the dipole moment function for
He2O2+ and He2S2+ respectively.

Fig. 3. Two-dimensional constant dipole plots in terms of the normal coordinates for the dipole moment
function of He2S2+: (a)–(c) fourth order for µy and (d), (e) fifth order for µx.
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4.  Ro–vibrational Transition Energies

The vibrational Hamiltonian used in all subsequent calculations is the t coordinate Hamil-
tonian derived by Carney et al. (1977). The rectilinear Hamiltonian has the form

 (1)

where the first term is the vibrational kinetic energy operator, the second term is the
vibrational angular momentum operator, the third term is the Watson operator and the last
term is the potential energy operator.

The basic approach that we have adopted for the variational solution of the corres-
ponding eigenvalue problem of equation (1) has been detailed by Doherty et al. (1986)
and Searles and von Nagy-Felsobuki (1988, 1991, 1993). It differs vastly from the
variational approach used by PS (1997). They employed a Radau hyperspherical
Hamiltonian with self-consistent-field nodeless vibration configuration basis functions
and also analytical integrations for all integrals except the potential energy integrator for
which they use a Gauss–Legendre quadrature scheme.

To further emphasise the differences in the two solution algorithms, the following
points need to be made about our approach. The one-dimensional wave functions are cal-
culated using a finite-element solution of a one-dimensional Hamiltonian, which is
expressed in terms of a single t coordinate. For each t coordinate 1000 finite-elements are
constructed within each domain. A ‘full’ 20 × 20 × 20 three-dimensional configuration
basis was spliced from the one-dimensional solutions, yielding an 8000 size basis set for
use in the variational solution of the three-dimensional problem. For the three-dimensional
Hamiltonian, a third-order expansion of the Watson operator was used. The potential
energy integrals were evaluated using the HEG (1965) scheme, whereas all other integrals
were evaluated using a sixteen point Gauss quadrature scheme. Finally, the secular deter-
minant was constructed using equation (1), spanned by the configuration basis set and
then diagonalised to yield vibrational wave functions and eigenenergies (both of which are
required for the ro–vibrational problem).

Table 5 compares the experimental vibrational band origins (VBO) of H2O with the
variational solutions of PS (1997) and those obtained using our algorithm. It should be
noted that both calculations used the same PES. The agreement between the two cal-
culations, and with experiment, is excellent. The lowest twenty VBO yield identical
assignments (with our assignments being based on the expansion densities of the config-
urational basis functions in the wave function). The difference between our calculated
result and that of PS (1997) is within 1.0 cm−1 for all the low-lying VBO, except for those
assigned as the excited states of the bend mode. Our calculated results for the excited bend
modes below 6200 cm−1 are in excellent agreement with experiment and with PS (1997).
However, for the �050� and �060� VBO our calculated results are in poorer agreement with
the experimental values (Zobov et al. 1999) than those of PS (1997). This suggests that the
limitations we have imposed on the truncation of our basis set (i.e. 8000 basis functions)
have been too severe for these highly excited bend modes.

Table 5 also compares the vibrational band origins of H2O, He2O2+ and He2S2+. The
VBO display the expected trends associated with their reduced mass. Table 5 also gives
the expansion densities for the dominant configurational component. From these densities
it is clear that the wave functions are not diagonal in terms of the configurational basis
functions. This is due to the Hamiltonian, which has embedded in it the ‘full’ mechanical
anharmonicity as well as operators that couple the t vibrational modes. Hence,

H = T
V
 + T

I
 + U

W
 + V ,
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configurational basis functions that belong to the same irreducible representations may
mix. This complicates the comparison of the assignments. For example, the fifth and six
wave functions of He2O2+ are dominated by the same configurational components,
namely (|020�, |110�), with the expansion densities of size (0.43, 0.12) and (0.30, 0.27)
respectively. In order to simplify the assignments it would be more appropriate to use the
irreducible representation classification. Thus, only those configurations with an odd
quanta in the asymmetric stretch mode, belong to the B2 irreducible representation, with
all other configurations having A1 symmetry.

In the case of H2O the expansion densities are greater than 0.8 for all the low-lying
VBO, whereas for He2O2+ and He2S2+ this is only achieved for four and six VBO respect-
ively. According to the symmetry classification, the assignments of He2O2+ and He2S2+

are similar (differing only in the order of the third and fourth wave function and the
assignment of the sixteenth). In the case of H2O, the curvature of the potential for the
asymmetric stretch coordinate is far steeper than for either He2O2+ or He2S2+, thereby
yielding a significantly different assignment.

The ro–vibrational Hamiltonian in the vibration matrix representation as given by
Carney et al. (1977) has the form

 (2)

where Ei is the ith pure vibrational eigenenergy, �S�ij is the vibration overlap matrix
element and � are the angular momentum operators whose components are referred to the

H
ij
  = E

i
�S�

ij
 + 0.5�A�

ij 
Π

x
 + 0.5�B�

ij 
Π

y
 + 0.5 �C�

ij 
Π

z
RV

i

2 2 2

+ 0.5�D�
ij 

(Π
x
Π

y
 + Π

y
Π

x
) + 

�
 �F�

ij 
Π

z
 ,
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molecule-fixed coordinate system. The vibration-averaged rotational constants are
labelled �A�ij, �B�ij, �C�ij and �D�ij . The matrix element �F�ij is the Coriolis coupling term.

The full ro–vibrational wave function Ψ(ν, r) is given by a linear combination of a
configurational basis composed of vibrational wave functions ψ(ν) (solutions of equation
1) and symmetric-top functions Φjkm. To ensure that the Hamiltonian matrix represen-
tation contained real matrix elements, plus and minus combinations of regular symmetric-
top eigenfunctions R±

jkm were used, namely

 (3)

Carney et al. (1977) have detailed the matrix elements spanned by plus and minus
combinations of the regular top eigenfunctions incorporating the angular momentum oper-
ators. The HRV matrix is constructed using the ro–vibrational configurational basis set and
is diagonalised yielding ro–vibrational eigenenergies and eigenfunctions.

Table 6 compares the low-lying rotational energy levels of the ground vibrational state
for the 1A1 state of H2O, He2O2+ and He2S2+. Our calculation predicts that the ground
vibrational state of H2O is 4638.0 cm−1, which is the same as that calculated by PS (1997).
The largest discrepancy between the two solution algorithms is 1.5 cm−1, which occurs for
the highest J level compared. The rotational levels for He2O2+ and He2S2+ show the
expected trend due to their increasing reduced mass.

5.  Ro–vibrational Transition Probabilities

A novel approach for the numerical calculation of three-dimensional vibration transition
moment integrals is to employ the HEG (1965) quadrature scheme. These integrals are
given by

 (4)

where the ψ are the one-dimensional wave functions dependent on one of the t coordinates
and p labels the Cartesian components of the dipole moment operator in the molecule-
fixed framework. Assuming that the dipole moment operator can be expanded as a conver-
gent power series in the normal coordinates t1, t2 and t3, equation (4) then becomes

 (5)

Truncating to first order, the transition probability integral becomes

 (6)

where the elements of the matrix Xil(tq) for each coordinate are given by

 (7)

R
JKM

 =        (Φ
JKM

 + Φ
J(−K)M 

) .
2

1

���
+

Ψ
VJKM

 = ∑  ∑C
VJKm

ψ
V 

R
JKM

 + C
VJ0M

ψ
V 

Φ
J0M

 + ∑C
VJKp

ψ
V 

R
JKM

   ,]
K = 1

K = J

NV

V = 1
[

K = J

K = 1

− +

R
JKM

 =        (Φ
JKM

 − Φ
J(−K)M 

) ,i2

1

���
−

�ψ
i
(t

1
)ψ

j
(t

2
)ψ

k
(t

3
)|µ

p
|ψ

l
(t

1
)ψ

m
(t

2
)ψ

n
(t

3
)� = �ijk|µ

p
|lmn� ,

�ijk|µ
p
|lmn� = �ijk|c

0
|lmn� + i�ijk|c

1
t
1
|lmn� + j�ijk|c

2
t
2
|lmn� + k�ijk|c

3
t
3
|lmn� + ...

higher-order terms.

�ijk|µ
p
|lmn� = c

0
δ

il
δ

jm
δ

kn
 + ic

1
δ

jm
δ

kn
X

il
(t

1
) + jc

2
δ

il
δ

kn
X

jm
(t

2
) + kc

3
δ

il
δ

jm
X

kn
(t

3
) ,

X
il
(t

q
) = �ψ

i
(t

q
)|t

q
|ψ

l
(t

q
)� .
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Hence X(tq) gives the expectation of the normal coordinate. If D(tq) is defined as the
diagonal form of X(tq) and C(tq) are the eigenvectors, then X(tq) is expressed as

 (8)

The diagonal elements of X(tq) are the quadrature points of tq. The expectation values of
X(tq) can be evaluated numerically and therefore the matrix can be diagonalised to
determine the quadrature points in equation (9). The transition probability integrals are
determined by evaluating the dipole moments at the quadrature points using the fitted
DMS via

X(t
q
) = (C(t

q
))TD(t

q
)C(t

q
) .
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 (9)

Table 7 gives the vibration transition frequencies, square dipole matrix elements,
Einstein coefficients and radiative lifetimes for the 1A1 state of H2O, He2O2+ and He2S2+.
For molecules belonging to the C2ν symmetry there are no Raman forbidden transitons.
Hence, lifetimes of the excited states for H2O are small for transitions connected to the
ground vibrational state. The longest lifetime of 11.4 s is for an excited state of He2S2+ for
an assigned wave function with expansion densities of the form: 0.55 |040� + 0.13 |140� +
0.11 |030� + 0.05 |050� + 0.04 |060�. Similar lifetimes for highly excited states have been
calculated for the alkali metal trimers (Searles and von Nagy-Felsobuki 1993).

The radiative transition probabilities (R2) between the two ro–vibrational levels can be
evaluated using (Zare 1987)

 (10)

where ΨVJKM is the ro–vibrational wave function and µSF is the dipole moment function
in the space fixed (SF) framework. In this framework the dipole moment in the three spa-
tial directions are equivalent and so the dipole moment operator in the equation (10) can
be replaced with 3 µz .

Since the dipole moment operator was constructed within the molecule-fixed frame-
work, it needs to be transformed into the SF framework via (Zare 1987)

 (11)

where �x and µy are the dipole moment components in molecule-fixed coordinates, and
the D are the appropriate Wigner rotation matrices.

By using equations (3) and (11) the ro–vibrational transition probabilities can be
derived as

 (12)

It should be noted that the rotational wave functions can be cast in terms of the Wigner
rotational matrices (Zare 1987). Hence, integrals involving these rotation matrices
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M2K2� are evaluated analytically following the recipe given by Zare
(1987). The three-dimensional vibration transition moment integrals are evaluated using
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We have assigned all the ro–vibrational levels using our expansion density analysis.
For the vibration–rotation states higher than the fourth excited rotational state, the result-
ant wave functions are heavily mixed and so the assignment of a state in terms of a single

Fig. 4. Comparison of the ro–vibrational spectra of water for 819 transitions (up to and including the ν =
4 and J = 4 level). The insets are an expansion of the transitions between 0–250 cm−1. (a) Experiment
HITRAN (Rothman et al. 1998); (b) PS (1997); and (c) using the solution algorithm for Searles and von
Nagy-Felsobuki (1988, 1991, 1993) but also incorporating the PES and DMS of PS (1997).
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Fig. 5. Comparison of ab initio ro–vibrational spectra up to and including the ν = 4 and J = 4 level using a
line strength threshold of 1.0 × 10−30 cm per molecule: (a) He2O2+ 634 transitions and (b) He2S2+ 685
transitions.
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diagonal representation becomes problematical. This is also evident in the published H2O
wave function of PS (1997). For example, the expansion density for the |ν1 = 4, 	2 = 0, ν3
= 0� | J = 4, Ka = 0, Kc = 4� component is 0.22, whereas the other component contributing
to the same PS wave function, namely |ν1 = 3, 	2 = 0, ν3 = 2� | J = 4, Ka = 0, Kc = 4�, has
an expansion density of 0.21 (see E-PAPS 1997). Hence, to assign this rotational energy
level to the former component and not the the latter is problematical (see the comments
made by PS 1997). We have experienced a similar difficulty and so have restricted our
analysis to energy levels whose wave functions (according to our expansion density
analysis) have unequivocal assignments. That is, we have restricted our analysis to tran-
sitions, which are up to and which include, the ν = 4 and J = 4 levels for H2O, He2O2+ and
He2S2+.

According to the ro–vibrational selection rules the total number of allowable transi-
tions up to and including the ν = 4 and J = 4 levels is 1250. However, many of these line
strengths are still not significant (i.e. well below 10–30 cm molecule−1). There are only
819 transitions which have been assigned, up to and including the ν = 4 and J = 4 level, in
the experimental HITRAN96 data base (Rothman et al. 1998). Fig. 4 compares the experi-
mental ro–vibrational spectrum of H2O (Rothman et al. 1998) for these 819 transitions
with the ab initio calculated spectra obtained by using the solution algorithms of PS
(1997) and Searles and von Nagy-Felsobuki (1988, 1991, 1993). The root-mean-square
(rms) between HITRAN 96 and our ab initio calculation for the line position and strength
is 0.12 cm−1 and 3 × 10−22 cm molecule−1 respectively. The corresponding rms for the
difference between PS (1997) and our results is 0.12 cm−1 and 8 × 10−23 cm molecule−1

respectively. It should be noted that PS 1997) empirically adjusted the PES to yield a
maximum agreement with experiment for their solution algorithm.

Fig. 5 compares the ab initio ro–vibrational spectra of He2O2+ and He2S2+, for all
transitions up to the ν = 4 and J = 4 level, using a threshold of 10−30 cm molecule−1 for the
line strength. For He2O2+ and He2S2+ this resulted in 634 and 685 transitions respectively.
These spectra are significantly different from water (as would be anticipated from con-
sideration of the potential energy and dipole moment functions alone). Nevertheless, the
differences in the nuclear spins also play an important role. For water, the nuclear spin
statistic is either 1 or 3 depending on the symmetry of the state, whereas for the helide
cations it is 0 or 1. It is hoped that the detailing of the ro–vibrational spectra for the low-
lying transition will be of assistance for their detection in interstellar space.

6.  Conclusions

Ab initio ro–vibrational eigenergies and line strengths were calculated using an Eckart-
Watson Hamiltonian. The radiative transition probability integrals were determined using
a novel adaptation of the HEG integration scheme. The solution algorithm yielded results
for the 1A1 ground state of H2O, which are in excellent agreement with experiment
(Rothman et al. 1998), and with the theoretical results of PS (1997). This solution
algorithm has also been employed to calculate the ro–vibrational eigenergies and line
strengths for the 1A1 states of He2O2+ and He2S2+, in order to facilitate their possible
interstellar detection.
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