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Summary 

Let a. two-dimensional survey with a Gaussian aerial beam establish values at 
intervals of '\1'2 standard deviations. Then the correction for aerial smoothing is 
simply calculated as the difference between the value to be corrected and the mean 
of the neighbouring four values. 

I. INTRODUCTION 

An important part of the reduction of radio-astronomical observations 
consists in correcting for the blurring which arises from the finite extent of the 
aerial beam. Methods for doing this in the one-dimensional case have been 
discussed by Bracewell and Roberts (1954), and in principle, and indeed in 
practice, the methods may be extended to two dimensions. It was shown, 
however, that some of the detail is irretrievably lost; and, as there is considerable 
labour involved in calculating the correction, which is in any case only partial, 
there has been a tendency in recent publications of two-dimensional observations 
to omit any correction for aerial smoothing (e.g. McGee and Bolton 1954). 

There appears therefore to be scope for new methods of correction involving 
procedures less elaborate than the calculation of two-dimensional convolutions 
or two-dimensional Fourier transforms. A sacrifice of accuracy would seem 
reasonable in order to obtain this simplicity, especially where the correction to 
be applied is small. A simple, approximate ruethod of correction would be 
valuable for quickly seeing the effect of the correction and for deciding whether 
the labour of calculating a small correction would be worth while. 

In some current researches, the labour involved in applying the established 
methods is already prohibitive as a result of the vast increase in the mass of 
observational data yielded by the high-resolution aerials employed. The Mills 
radiometer (Mills and Little 1953) is a case in point. An attempt has therefore 
been made to find a simple, approximate two-dimensional method of correction 
for a Gaussian aerial beam as used in that case. 

The approach to the problem was to list simple numerical operations on a 
two-dimensional array of data (graphical or tabular) and to explore the possi­
bilities of each in turn. The operation of taking finite differences is the one 
which has proved fruitful. It is applicable to aerial beams other than Gaussian. 

As a by-product, the present theory provides, in the one-dimensional case, 
a sound alternative to a formula given by Eddington (1913) for correcting the 
blurring effect of a Gaussian distribution of errors. Eddington's series, which 
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is widely known and used in astronomy (though not apparently in radio 
astronomy), has proved valuable in practice, but suffers from being theoretically 
doubtful (Jeffreys 1938) and from the fact that in actual use t,he series of 
derivatives is evaluated as a series of finite differences. 

II. THEORY 

Some preliminary notes are needed on the theory of finite differences in 
relation to Fourier theory. If from a given function another is derived by taking 
finite differences, then its spectrum is related to that of the given function in a 
way which will now be shown; first for functions of one variable, and then for 
functions of two variables. 

Let 
rt.~f(x) f(x +tct) -f(x -tex:), 

i.e. rt.~f(x) represents the result of taking the difference between two values of 
f(x), at values of x separated by an interval ex:. 

Now the Fourier transform off(x+xo) is, by the shift theorem, exp(2nixos)f{s), 
where /(s) is the Fourier transform of f(x). Hence 

F.T. of rt.~f(x)=e'ITirt.8j(s)-e-'ITirt.8Rs} 

=2i sin (nex:s)f(s). 

Thus, the effect of differencing a function of one variable at interval ex: is to multiply 
the spectrum by 2i sin nex:S. 

In the two-dimensional case let f(x, y) have a two-dimensional Fourier 
transform j(sx, Sy). For differences at interval ex: in the x-direction we write 

rt.~xf(x, y)=f(x+tex:, y)-f(x-tex:, y), 

and for differences at interval ~ in the y-direction 

~~yf(x, y)=f(x, y+t~)-f(x, y-t~). 

As an example of the notation for differences of higher order, 

rt.rt.~xxf(x, y) f(x+tex:, y) -2f(x, y) +f(x-tex:, y), 
rt.~i1xyf(x, y)=f(x+tex:, y+t~)-f(x-tex:, y+t~) 

+f(x-tex:, y-t~)-f(x+tex:, y-t~). 

By the two-dimensional shift theorem, the two-dimensional Fourier transform 
of f(x +xo, y +Yo) is 

Hence 

2-dim. F.T. of rt.~xf(x, y) =e'ITirt.8xj'(sx' Sy) -e-'ITirt.8xf(sx, Sy) 

=2i sin (nex:sJJ(sx, Sy), 

2-dim. F~T. of Myf(x, y) =2i sin (n~sy)j(sx' Sy), 

" "" rt.rt.~xxf(x, y)=(2i sin nex:sx)2j(sx, Sy), 

" "" rt.~~xyf(x, y)=(2i sin nex:sx)(2i sin n~sy)j(sx' Sy). 
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With these necessary properties established, we turn to the study of the 
integral equation 

Ta(x, y)= I: ",I: '" A(x-u, y-v) T(u, v)dudv, 

where T(x, y) is the true distribution of temperature and Ta(x, y) is the observed 
distribution. To represent a Gaussian aerial pattern we take 

1 \ (X2 y2) 1 
A(x, Y)=21tcr" exp ( - 2cr2+2,,2 j' 

where cr and" are the standard deviations in the x and y directions respectively. 
GivenTa and A it is now required to deduce T. By the two-dimensional 

convolution theorem 
Ta(sx' sy)=A(sx, Sy)T(sx, Sy), 

where 'la' A, and T are the two-dimensional Fourier transforms of T a, A, and T 
respectively. Since 

it follows that 
T(sx' Sy) =exp {27t2( cr2sx2 +,,2Sy 2)}Ta(sx' Sy). 

N ow using the formula 

exp fJ2=1+sin2 6+~ sin4 6+~~ sin6 6+ . . . , 
we have 

=(1+sin2 7tlxsx +sin2 7t~Sy+~ sin4 7trxsx 

+ ~ sin4 7t~sy+sin2 7trxsx sin2 7t~Sy+ . .. )Ta(Sx, Sy), 

where rx=y2cr, ~=y2", rx2Sx2<~, and ~2Sy2<~. 

Hence, taking transforms, and provided that T(sx' Sy) does not extend outside 
the central rectangle of breadth rx- I and height ~-\ 

1 1 
T(x, y) =T a(x, Y)-4rxrx/:::"xxT a(x, y) -4~~/:::"yyTa(x, y) 

5 5 
+96rxrxrxrx/:::"xxxxTa(x, Y)+96~~~~/:::"yyyyTa(x, y) 

1 + 16 rxrx~~/:::"xxyyTa(x, y) + ... 
This equation states that it is possible to obtain the true distribution by the 
application to the observed distribution of a series of corrections formed by 
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differencing the observations. If T(x, y) contains Fourier components of s:{latial 
frequencies for which Isx I >toc-1 or Isy I >l~-l they will be severely reduced 
by Gaussian smoothing and will not be recoverable by the present process ; 
however, their presence will not interfere with the application of the method . 
.An approximately Gaussian aerial beam produced with a finite array will not 
receive spatial frequencies beyond a certain Iilnit, and in the case of Mills's 
aerial this limit agrees, within a few per cent., with the natural limit set by the 
method. 

Bearing in mind the purpose for which the equation was established, we 
now limit attention to the formulae resulting from the retention of two terms 
only. Then 

T(x, y) . 

",Ta(x, y) -~[Ta(x+!oc, y) +Ta(x-toc, y) -2Ta(x, y)] 

-~[Ta(X' y+t~)+Ta(x, y-t~)-2Ta(x, y)] 

=Ta(x, y) + [Ta(X, y) - Ta(x+toc, y) +Ta(x-ioc, y) yTa(x, y+i~) +Ta(x, y-t~) J. 
. . . . . . . . . . . . . . . . . . .. (1) 

(2) 

---+------------98 ----------+---

-97---- 100 -- 5 -- 95 --

---+----------- 98 -----------r---

Fig. I.-How the correction to the value 100 is calculated. 

The correcting procedure based on formula (1) is as follows. Tabulate tke 
values of Ta(x, y) in a two-dimensional array at intervals of y2a and y2't' in tke 
x and y direotions respeotively. Subtract tke mean of tke four values ;urrounding 
any partioular point from tke value at tkat point, and tke result is tke oorrection 
to be applied to tkat value. For example, in Figure 1 the mean of the four values 
surrounding the value 100 is 97. The corrected value is therefore 103. The 
alternative arrangement of formula (2) gives the correction as the mean excess 

. 1 
of the value 100 over the four surrounding values, namely, 4(5 +2 +3 +2) =3. 
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III. TRIAL OF THE FORMULA 

It is sufficient to test the formula in the one-dimensional case, where it 
reduces to 

1 
T(x)=Ta(x) -tlX/)"""Ta(x}. 

A convenient distribution T in Figure 2 was taken and smoothed with a Gaussian 
aerial pattern to obtain the Ta shown. For comparison purposes, Ta was then 
smoothed so that the dotted curve, representing a single stage of restoration by 

T (TRUE DISTRIBUTION) 

Fig. 2.-Numerical trial of correction by one stage of differencing. 
o Values of Ta used for differencing. 
X Values corrected by differencing. 

One stage of correction by successive substitutions. 

successive ·substitutions, could be plotted. Ta was then read off at the six 
points marked by circles, and the above formula applied to obtain the corrected 
values shown as crosses. 

This test shows that, in this case, the simple formula gives the order of 
magnitude of the correction correctly and that it is as good as a single stage of 
correction by successive substitutions, which is of course much harder to compute, 
even in the one-dimensional case. 
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IV. RELATION TO EDDINGTON'S FORMULA 

The one-dimensional solution is 

T(x) =Ta(x) -~A2Ta(X) +~ 4Ta(X) +. 

59 

This equation may be compared with Eddington's formula for dealing with the 
same problem 

In practical applications the differential coefficients are replaced by finite 
differences and, if only one correction term is taken, the two procedures may be 
shown to be the same since the Gaussian function assumed for the purposes of 
Eddington's formula has a standard deviation of 1/ Y2. 

The derivation of Eddington's formula is known to be doubtful (see Jeffreys 
1938). The method of deriving a finite-difference formula by Fourier methods 
seems to be a better approach. 

V. DISCUSSION 

In approximate terms we may say that the negative second difference 
measures the upward convexity (or downward curvature) of the data. Where 
this is a maximum, as in the vicinity of a peak, the effect of the correction i~ 
greatest and is in such a sense as to increase the height of the peak. Near points 
of inflection the correction is small and changes sign. These features may be 
observed on Figure 3 which shows two curves, one obtained from the other by 
smoothing. The correction clearly agrees closely in sense and magnitude with 
the curvature. 

Fig. 3.-A curve (. - -) obtained from another (-) by 
smoothing. 

The precise interval over which the differences are to be taken is prescribed 
by the theory. But if the data do not show much change in dista;nces of several 
beam widths, then a coarser interval may be desirable to save numerical work. 
Also, small adjustments to the interval may be desired for numerical or graphical 
reasons. Differences taken over an interval m times wider than pre­
scribed (ma instead of a) will bEl approximately m2 times greater,. since 
sin2 1tmas~m2 sin2 1tas. Within the limitations of this approximation, adjust­
ments may be made to the interval, the factor m 2 being allowed for. 
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